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Abstract In order to efficiently and effectively control an over- 
all process in the process industry, a few important parameters 
should be identified from high-dimensional, non-linear, and cor- 
related data. Feature selection techniques can be employed to 
extract a subset of process parameters relevant to product quality. 
The performance of these techniques depends on the precision of 
the prediction model formulated to quantify the relationship be- 
tween the process parameters and the quality characteristics. Al- 
though the neural network-based partial least squares (NNPLS) 
method has been proven to be effective in prediction models 
for the aforementioned industrial process data, feature selection 
techniques appropriate for NNPLS models have yet to appear. 
Here, several techniques for scoring the relevance of process 
parameters to product quality are proposed and validated by ap- 
plying three datasets. These experiments show that the proposed 
techniques can discriminate relevant process parameters from ir- 
relevant ones. 

Keywords Feature selection �9 Neural network-based partial 
least squares (NNPLS) �9 Prediction model �9 Process data 

1 Introduction 

In general, the quality characteristics of products produced in the 
process industry, such as steelworks and photochemical manu- 
facturing, are affected by numerous process parameters. How- 
ever, not all process parameters are equally informative; some 
may be noisy, meaningless, correlated, or irrelevant to the quality 
characteristics of interest. Feature (or variable) selection tech- 
niques aim to discriminate between process parameters that are 
relevant to the product quality and those that are not. These tech- 

B. Jeong �9 H. Cho 
Department of Industrial Engineering, 
Pohang University of Science and Technology, 
San 31 Hyoja, Pohang 790-784, Republic of South Korea 
E-mail: hcho@postech.ac.kr 
Tel.: +82-54-279-2204 
Fax: +82-54-279-2870 

niques enable process operators to control a few vital process 
parameters rather than all parameters. 

The philosophy of feature selection dates back to the 19th 
century, when the Italian economist Pareto formulated a gen- 
eral rule linking a small number of causes with a large num- 
ber of corresponding effects. This general rule can be directly 
applied to the data collected from most process industries in 
order to identify a small number of vital parameters that sig- 
nificantly affect product quality [1-4]. Feature selection has 
become a major research topic, focusing on questions such as 
"which process parameters should be controlled?" and "how 
relevant and meaningful are they?" [5]. A prerequisite for suc- 
cessful feature selection is the construction of a good prediction 
model (or classifier) between process parameters and quality 
characteristics. 

Multivariate projection approaches (e.g., partial least squares 
(PLS) and neural network-based PLS (NNPLS)) are used to 
build prediction models for highly correlated, high-dimensional 
datasets by reducing their input space to a lower dimensional 
space. The PLS method projects the original variables (process 
parameters and quality characteristics) down to a few latent vari- 
ables between which a linear relationship can be established [6, 
7]. However, this linear mapping may not yield a robust pre- 
diction model for high-dimensional and non-linear data. The 
NNPLS method, which uses neural networks for mapping the 
latent variables, avoids the problems of over-parameterization 
and convergence to local minima that commonly occur in multi- 
input/multi-output networks [8]. But despite the success of the 
NNPLS model in building prediction models, it has not been 
widely used in feature selection. 

In this work, several NNPLS-based feature selection tech- 
niques for high-dimensional and non-linear data are proposed. 
Several other feature selection techniques are introduced for the 
purpose of comparison. Finally, the performance of the proposed 
techniques is compared with other techniques with known artifi- 
cial datasets. 

This paper is organized as follows: in Sect. 2, the notations 
used in the NNPLS model are briefly described; in Sect. 3, sev- 
eral feature selection techniques based on the NNPLS model 



are proposed; the performance of the proposed techniques is as- 
sessed in Sect. 4; and finally, concluding remarks are offered in 
Sect. 5. 

2 NNPLS model and its transformation 

2.1 Basic concept of the NNPLS model 

Without a loss of generality, process parameters will be referred 
to as input variables [Xl . . . . .  Xm], and quality characteristics 
will be referred to as output variables [Yl . . . . .  Yn]. Assum- 
ing that we have collected the data for each input and output 
variable, let X(d x m) be the input data matrix, and Y(d • n) 
be the output data matrix. Thus, the matrices X = (xij) and 
Y = (Yik) represent the dataset of input variables and the cor- 
responding output variables, respectively, where xij and yik rep- 
resent the ith observation of input variable xj and output vari- 
able y~, respectively (where i = 1 . . . . .  d; j = 1 . . . . .  rn; and 
k = l  . . . . .  n). 

The basic concept of the NNPLS method is to reduce the ori- 
ginal high-dimensional variables ([Xl . . . . .  Xm] and [y! . . . . .  Yn]) 
to lower dimensional, principal component-like latent variables 
([ t l  . . . . .  tA] and [Ul . . . . .  ua], where A is the number of latent 
variables), as follows: 

X = TP r + E  (1) 

Y = UQ r + F (2) 

U = N(T) (3) 

T = XW (4) 

where P(m • A) and Q(n x A) are the loading matrices; T(d • 
A) and U(d • A) are the score matrices; and E(d x m) and F(d  • 
n) are the residual matrices for X and Y, respectively. The weight 
matrix for X, W(m x A) makes the score vectors (ta) orthogonal 
to each other. The relationship function N(), which describes 
the inner relationship between T and U, is constructed using 
A individual single-input/single-output (SISO) neural networks. 
Hence, a distinct neural network is used to build the connection 
between T and U for each latent variable (e.g. the ath neural net- 
work is used to build the connection of the ath pair of scores, ta 
and Ua (a = 1 . . . . .  A)) [9]. 

2.2 Transformation of a three-layer neural network 

The NNPLL model can be viewed as a five-layer neural net- 
work, as shown in Fig. 1. It is well-known that the NNPLS 
model can be transformed into an equivalent three-layer neural 
network [9]. This transformation entails inner neural networks 
synthesis (Fig. 2), followed by outer model collapse (Fig. 3). It 
should be noted that the bias vectors are omitted. 

First, the A individual inner neural networks are synthesized 
into one neural network, as shown in Fig. 2. The hidden nodes 
of the synthesized neural network are an exclusive aggregation 
of those of the inner neural networks, and therefore the num- 
ber of hidden nodes (nil) is the sum of the number of hidden 
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nodes (Ha) of the inner neural networks. The weight matrices 
of input-to-hidden @(A x ni l )  and hidden-to-output r (n/ ,  • A) 
can be constructed in sparse matrices in which the non-connected 
weights are filled with zeros (0). 

Then, a three-layer neural network is constructed using the 
synthesized neural network and the NNPLS outer model (e.g., 
P and Q), as shown in Fig. 3. The weight matrix from the in- 
put nodes to the hidden nodes (f t )  is calculated as the product of 
the weight matrix for X (e.g., W)  and the input-to-hidden weight 
matrix of the synthesized neural network (e.g., ~) .  Similarly, 
the weight matrix from the hidden nodes to the output nodes 
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Fig. 3. Transformed three-layer neural network 

(e.g., ~ )  is computed as the product of F and QT. The bias vec- 
tors can be computed in a similar way; however, the procedure 
was skipped because the bias vectors are not used in the de- 
scription of the techniques proposed in our work. More detailed 
descriptions of the NNPLS method and the transformation pro- 
cedure can be found in [9]. The transformation makes possible 
the rapid construction of a robust neural network model. In add- 
ition, since the NNPLS method resolves the co-linearity among 
[xl . . . . .  Xm] as well as between [xl . . . . .  Xm] and [Yl . . . . .  yn], 
the transformation naturally produces a co-linearity-free neural 
network [ 10]. 

3 Feature selection using NNPLS models 

3.1 Using the transformed neural network model 

Since the NNPLS model can be transformed into a three- 
layer neural network model, the feature selection techniques 
developed previously for neural network models can also be in- 
corporated into those for the NNPLS model. These techniques 
can be classified into zero order (e.g. Garson's method [11]), first 
order (e.g. saliency based pruning, computation of output deriva- 
tive), and second order (e.g. automatic relevance determination, 
optimal cell damage, early cell damage) methods. The first and 
second order methods use the first and second derivatives of the 
neural network parameters, respectively, whereas the zero order 
methods use the network parameters themselves. Some of these 
feature selection techniques and related issues are summarized 
in [12]. 

One well-known feature selection technique is Garson's 
method, which defines the relevance measure as the contribution 
of an input node to an output node, and computes this contri- 
bution by exploiting both the connection weight value and the 
neural network structure. The computational load for weight an- 
alysis is known to be low, especially when modeling large-scale 
datasets [5]. 

I n  Garson's method, the proportional contribution (Sjk) of 
the j th  input node to the kth output node is calculated as 
follows: 

nH { ~  ~kl]) 
l= l  

~Em=t la;,~ I r 

j = l  . . . . .  m a n d k =  1 . . . . .  n (5) 

In this equation, an absolute scale of connection weights is used 
because the mixture of positive and negative weights can poten- 
tially produce an average close to zero. 

The relevance measure (e.g., the overall contribution, Sj) of 
the j th  input for all the output variables is defined as follows. The 
denominators of eqs. 5 and 6 function are normalizing factor, and 
the input matrix should be identically scaled, since the weights 
depend on the magnitude of the input. 

(sjk) 
k=l  

- -  , j = l , . . . , m  

~=1 k=l  

(6) 

3.2 Using original NNPLS models 

3.2.1 Using latent variables 

The latent variables of an NNPLS model can also be used for 
feature selection of the input variables. The latent variables 
[/1 . . . . .  ta] are representative of the input variables [Xl . . . . .  Xm] 
because the scores ta are the projections of [Xl . . . . .  Xm] onto 
the loadings Pa, and the loading matrix P of X contains 
the projection information describing how the input variables 
are related to each other. The relevance measure (Sj) of the 
j th  input variable can therefore be obtained by multiplying 
the j th  row of the loading matrix by the relevance meas- 
ure of the latent variables. The larger the magnitude of the 
relevance measure of an input variable, the greater its rele- 
vance. Since the latent variables are independent of each other, 
they can be ranked according to their individual relevance 
measures. Below, several methodologies that can be used to 
calculate the relevance measures of the latent variables are 
described. 

R 2 for the explained variance of Y (R2y). R2y, the fraction 
of the sum of squares of all Ys explained by the extracted la- 
tent variables, is a standard measure of model fitness. Since 
the cumulative R2y approaches 1.0 as the number of ex- 
tracted latent variables (A) increases, latent variables whose 
value of RZY is closer to 1.0 are more representative. Hence, 
RZY can be used as an index for determining the relevance 
of a latent variable. In general, the latent variables extracted 
earlier have larger R2y values than those extracted later. The 
relevance measure of the ath latent variable is calculated as 
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follows: 

V a = R2y(ta) = 1 - SS(Fa)/SS(Y) (7) 

variable over its possible range while assigning nominal values 
to the other latent variables. 

where SS denotes the sum of squares, and Fa is the residual after 
a latent variables have been extracted. Therefore, the relevance 
measure (Sj) of the j th  input variable is obtained as follows: 

A A 

Sj = Z PjaVa = Z P j a ( l  - SS(Fa)/SS(Y))  
a = l  a = l  

(8) 

Q2 for the predicted variance of y(Q2y). Another standard 
measure of model fitness in terms of its predictive power is Q2 y, 
the fraction of the sum of squares of all Ys that can be predicted 
by the model according to the cross-validation. Similar to RZY, 
the cumulative value of Qzy also approaches 1.0 as the num- 
ber of latent variables (A) increases, and therefore variables with 
larger value of Qzy are more predictive. The cumulative Qzy 
(Q2yeum) is calculated as follows: 

a 

QZYcum(a) = 1 - H PRESS(Fa)/SS(Fa) (9) 
ot=l 

where PRESS, the prediction residual sum of squares, is the 
sum of squares of the cross-validation residuals (e.g., the squared 
difference between the observed values (Yik) and the predicted 
values (~ik)): 

PRESS = Z (Yik - Yik) 2 (10) 
i=1 k = l  

PRESS is used to determine the number of latent variables and to 
prevent NNPLS models from being overfitted [13]. 

Thus, after computing the relevance measure of the ath la- 
tent variable (Eq. i 1), the relevance measure (Sj) of the jth input 
variable is calculated as Eq. 5: 

Va = Q2ycum(a) - Q2ycum(a- 1) 

a-1 
= (1 - PRESS(Fa)/SS(Fa)) H PRESS(Fa)/SS(Fa) (11) 

ot=l 

A 

Sj=ZpjoVo 
a = l  

A 

a = l  

( a H ) x ( 1 -  PRESS(Fa)/SS(Fa)) PRESS(F~)/SS(Fa) 
ot=l 

(12) 

Sensitivity analysis. The sensitivity analysis computes the varia- 
tion of the predicted outputs by changing the value of one latent 

3.2.2 Using input variables 

The relevance of a variable can be measured directly; however, 
direct measurement techniques are less efficient than those using 
latent variables. 

Sensitivity analysis. This technique computes the variation of the 
predicted outputs by changing the value of one input variable 
over its possible range while assigning nominal values to the 
other input variables. 

Saliency-based pruning method. The saliency-based pruning 
method has been used to evaluate the relevance of an in- 
put variable xj in terms of the variation of the learning error 
(MSE) when xj is replaced with its empirical mean Yj (that is, 
Sj = MSE(xj) - MSE(Yj)) [12]. Instead of the learning error, 
the cumulative R2y is used as a relevance measure for NNPLS 
models, as follows: 

A A 

a = l  a = l  

(13) 

where Xj denotes the matrix in which the j th  column is replaced 
with the empirical mean. 

4 Comparative studies 

The following abbreviations are used for the various techniques 
employed to calculate the relevance measure: 

1. GAS - Garson's method 
2. R2Y - R e for explained variance of Y 
3. Q2Y - Q2 for predicted variance of Y 
4. SAL - sensitivity analysis with latent variables 
5. SAO - sensitivity analysis with original variables 
6. SBP - saliency-based pruning method 

4.1 Case 1: three-class waveforms classification 

The first case is a three-class waveforms classification prob- 
lem [12]. Suppose that three waveforms (e.g., vectors) in 21 
dimensions, H i (i = 1, 2, and 3), are given, and that patterns in 
each class are defined as random convex combinations of two 
of these waveforms. Hence, three classes are available patterns 
defined by a random convex combination of H 1 and H 2 (class 
1); patterns defined by a random convex combination of H 1 and 
H 3 (class 2); and patterns defined by a random convex combi- 
nation of H 2 and H 3 (class 3). Thus, the problem is to classify 
the patterns into one of the three classes. Each component xj in 
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Fig. 4. Experimental results of the waveform classification problem 
Fig.6. Experimental results of the modified waveform classification 
problem 

the pattern x is generated with 19 extra pure noise components  

according to the equation: 

= 5 --]- ej l _ < j < 2 1  
xj ej 22 < j _< 40 

(14) 

where  u is a un i form random variable in [0, 1]; ej is a whi te  noise 

generated according to a normal distr ibution N(0, 1); and p and 
q identify the two waves used to generate the class of  pat tern x. 

It should be noted that each component  corresponds to an input 

variable, while each class corresponds to an output  variable. 

The exper iments  are performed with an open data 
(ht tp: / /www.sgi .com/tech/mlc/db/waveform-40.al l )  generated ac- 

cording to Eq. 14, and the number  of  latent variables is set to five. 
Figure 4 shows the average relevance measure  of  each compon-  

ent. The relevant  input  variables (Xl to x21) have larger relevance 

measures  than the irrelevant input  variables;  thus, the re levance 
measures  can be used to d iscr iminate  the relevant  variables f rom 

numerous  input variables.  
Addit ional  exper iments  were performed to show that  the 

relevant  variables are effective to classify the waveforms.  For  
each technique,  the t ra ining set has  300 patterns,  and the test  set 

has 4700 patterns. Figure 5 lists the exper imental  results. First, 

all the techniques  e l iminate  the pure noise components .  Sec- 
ond, classif ications using relevant  input variables give sl ightly 

bet ter  per formance  (percentage of  correct  classif ication) than 

classif ication using all the input variables,  except  in the case 

of  Bonn lander ' s  technique.  Third,  feature select ion techniques  
using the NNPLS model  provide per formance  s imilar  to neural  

networks techniques.  

Feature 
selection Selected input variables 

techniques 

N o n e  l l l l l l l l l l l l l l l l l l l l l  
I111111111111111111 

111111111111111111111 
0000000000000000000 

Relevance only 

Stepdisc t 

Bonnlander I 

Yaccoub, 
Moody ~ 
Ruck, Dorizzi ~ 

Czernichow ~ 

Cibas ~ 

Leray ~ 

000110111111111011100 
0000000000000000000 

O00011101111111111000 
0000000000000000000 

O00111111111111111100 
0000000000000000000 

011111111111111111100 
0000000000000000000 

010111111111111111100 
0000000000000000000 

000001111111011100000 
0000000000000000000 

000001111111111100000 
0000000000000000000 

GAS 001111111111111111110 
0000000000000000000 

R2Y, Q 2 Y ,  011111111111111111110 
SAO 0000000000000000000 
SAL 001111011111111100000 

0000000000000000000 
SBP 000011111111111111000 

0000000000000000000 

I Performance 
% of correctly 

ReY classified 
patterns 

93,55 71.15 

91.41 75.36 

88.31 73.36 

88.18 69.30 

87.13 74.77 

89.52 75.30 

88.31 76.15 

83.74 72.72 

85.57 71.45 

88.97 75.36 

89.42 76.09 

89.10 72.57 

87.61 72.81 

i Feature selection techniques developed for neural networks 

Fig. 5. Performance comparison of various feature selection techniques 

4.2 Case 2: Modif ied waveform classif icat ion 

Now, the feature select ion techniques  are applied to a modif ied 

waveform classification problem,  in which  some componen t s  
in the pat tern are generated by  means  of  negat ive re levance to 

the waveform class. The pat terns are generated according to the 

equation: 

Fig. 7. Experimental results of IRIS classification data 



[ ,~P+(1-u)H 7 
I 5 + e j  l < j < 1 0  

xj= ]_~  5 )+ej l O < j _ < 2 1  (15) 

[ ej 22 < j < 40 

One hundred experiments are repeated using 500 randomly se- 
lected patterns. It should be noted that the number of  latent 
variables is five. The experimental results are depicted in Fig. 6. 
The relevance measures of  components 11 to 21 obtained using 
R2Y, Q2Y, and SAL are similar in magnitude but opposite in 
sign to those of  components 1 to 10. This implies that R2Y, Q2Y, 

and SAL can classify the components both in terms of  the direc- 
tion and the magnitude of  the relevance measures, whereas GAS,  
SAO, and SBP can classify the components only in terms of  the 
magnitude. 

4.3 Case 3: IRIS dataset 

1011 

Moreover,  the experiments considering the modified waveform 
classification problem showed that the techniques based on la- 
tent variables can determine the direction of  the relevance meas- 
ure, as well  as its magnitude. The results showed that some 
techniques are incapable of  discriminating relevant and irrele- 
vant variables for particular datasets. Thus, the characteristics 

of  a dataset must be considered when choosing the most suit- 
able technique to apply. In process management,  relevance is not 
the only factor used to determine which process parameters are 
more important and must be optimized. For example,  defects in 
products often result from instabilities in irrelevant process pa- 

rameters. Thus, the domain knowledge of  process operators and 
the process stability index [15] should be taken into considera- 
tion together with the relevance measures. 

Acknowledgement The authors acknowledge the partial financial support of 
the BK21 project. 

The techniques are also applied to a dataset consisting of four in- 
put variables [sepal length (SL), sepal width (SW), petal length 
(PL) and petal width (PW)] and one output variable (e.g., type of  
iris: Setosa, Versicolor or Virginica), where the aim is to classify 
the type of  iris. Each iris type is defined by 50 input data; hence 
there are 150 samples in total. Based on the concept of  entropy, 
PL and PW are known to be much more relevant for classifying 
iris-type than SL and SW [ 14]. The number of  latent variables is 
set to two. 

Ten experiments were repeated with 50 randomly selected 
samples, and the remaining 100 samples were used as the vali- 
dation data. As shown in Fig. 7, GAS and SAO do not identify 
SW as an irrelevant variable. According to the ANOVA results, 
R2Y discriminates between SL and PW with 99% confidence 
(the F-value is 237.0 and the F-critical is 8.29). 

5 Discussion and conclusion 

We have tested the feature selection techniques for identifying 
the input variables that are relevant to output variables. The tech- 
niques considered included neural network models and NNPLS 
models. The NNPLS models were further categorized depend- 
ing on whether they use the latent variables or the original in- 
put variables. The NNPLS method has been widely used for 

building prediction models from industrial process data that are 
high-dimensional, non-linear, and correlated. The performance 
of  these techniques depends on the quality of  the prediction 
model used. 

In the experiments, the proposed methods effectively identi- 
fied the input variables relevant to the output variables of  interest. 
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