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Abstract Job shop scheduling problems are one of the chal-
lenging combinatorial problems that have drawn the attention of
researchers for the last three decades. It is observed that genetic
algorithm (GA) is gaining more importance over the past several
years. An attempt has been made through GA to solve job shop
scheduling problems with job-based, operation-based, and pro-
posed methods of representation and schedule deduction with the
make-span objective. Computational experiments of this attempt
have yielded better solutions coupled with appreciable reduc-
tion in computer processing time. A set of selected benchmark
problems have been used with the proposed heuristic for valida-
tion and the results show the better performance of the proposed
method of representation of jobs and schedule deduction.

Keywords Edge recombination operator · Genetic algorithm ·
Job shop scheduling · Schedule deduction

1 Introduction

1.1 Job shop problems

Job shop problems have a set of n jobs to be processed on a set
of m machines. Each job has a set of operations to be performed
on each machine in a particular order. Each machine can process
at most one operation at a time. Job shop scheduling deals with
the allocation of jobs to various machines with the objective of
minimizing the make-span, the time to complete all jobs [1], or
minimizing the tardiness (not meeting the due date) in jobs or
any other required objectives.
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There are several constraints on jobs and machines [2]. They
are:

(1) A job does not visit the same machines twice;
(2) There are no precedence constraints among operations of dif-

ferent jobs;
(3) Operation cannot be interrupted;
(4) Each machine can process only one job at a time;
(5) Neither release times nor due dates are specified.

Job shop problems occur mainly in industries where each
customer has specified characters and order sizes are relatively
small. In general, an infinite number of feasible schedules are
possible for any job shop problem, as one can insert any arbitrary
amount of idle time at any machine between adjacent pairs of op-
erations [3]. Job shop scheduling problem (JSP) is well known as
one of the most difficult NP-hard combinatorial problems.

With the advent of high speed computing systems, soft com-
puting techniques like GA are being applied to job shop schedul-
ing problems.

1.2 Genetic algorithms

Genetic algorithms (GA) are an attractive class of computational
models that are based on the mechanics of natural selection and
natural genetics. GA was introduced by Holland in 1975, and has
been extensively researched and applied to many combinatorial
optimization problems [4].

A GA comprises a set of individual elements (the population)
and a set of biologically inspired operators defined over the popu-
lation itself. According to the evolutionary theories, only the most
suited elements in a population are likely to survive and generate
offspring, thus transmitting their biological heredity to new gen-
erations. In computing terms, a GA maps a problem onto a set of
(typically binary or other coding methods) strings, each string rep-
resenting a potential solution. The GA then manipulates the most
promising strings in its search for improved solutions.

A GA operates through a simple cycle of stages:

1. Creation of “population” of strings,
2. Evaluation of each string,
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3. Selection of best strings, and
4. Genetic manipulation to create the new population of strings.

At the first stage, an initial population of potential solutions
is created as a starting point for each search. Each element of
the population is encoded onto a string (the chromosome) to be
manipulated by the genetic operators. In the next stage, the per-
formance (or fitness) of each individual is evaluated with respect
to the constraints imposed by the problem. Based on each indi-
vidual’s fitness, a selection mechanism chooses “mates” for the
genetic manipulation process. The selection policy is ultimately
responsible for assuring survival of the best-fitted individuals. The
combined evaluation and selection process is called reproduction.

The manipulation process uses genetic operators to produce
a new population of individuals (offspring) by manipulating the
“genetic information” referred as genes, possessed by members
(parents) of the current population. It comprises two operations:
crossover and mutation. Crossover recombines a population’s ge-
netic material. Mutation operation introduces new genetic struc-
tures in the population by randomly modifying some of the build-
ing blocks, helping the search algorithm escape from local min-
ima traps. Since the modification is not related to any previous
genetic structure of the population, it creates different structures
representing other sections of the search space.

The creation, evaluation, selection and manipulation cycle
repeats until a satisfactory solution to the problem is found or
some other termination criteria are met.

2 Brief survey of existing representation methods

2.1 Representation methods

This paper deals with a representation and deduction method
using a heuristic technique based on GA to solve job shop
scheduling problems. During the last few years, the following
nine representations for the job shop scheduling problem have
been proposed [5]:

• Operation-based representation
• Job-based representation
• Preference list-based representation
• Job pair relation-based representation
• Priority rule-based representation
• Disjunctive graph-based representation
• Completion time-based representation
• Machine-based representation
• Random keys representation.

These representations can be classified into the following two
basic encoding approaches:

• Direct approach
• Indirect approach.

In direct approach, a schedule (the solution of JSP) is en-
coded into a chromosome and GAs are used to evolve those chro-
mosomes to find out a better schedule. The representations, such
as operation-based representation, job-based representation, job

pair relation-based representation, completion time-based repre-
sentation, and random keys representation belong to this class.

In indirect approach, such as priority rule-based representa-
tion, a sequence of dispatching rules for job assignment, but not
a schedule, is encoded into a chromosome and GAs are used
to evolve those chromosomes to find out a better sequence of
dispatching rules. A schedule is then constructed with the se-
quence of dispatching rules. Preference list-based representation,
priority rule-based representation, disjunctive graph-based repre-
sentation, and machine-based representation belong to this class.

Schedule deduction for job-based representation and operation-
based representation approaches have been compared with the
proposed method of representation and schedule deduction.

2.2 Problem definition

Let us consider a 4 jobs, 3 machines problem [6].

Table 1. Time matrix of the problem

Jobs Operations
1 2 3

j1 2 3 4
j2 4 4 1
j3 2 2 3
j4 3 3 1

Table 2. Routing matrix of the problem

Jobs Operations
1 2 3

j1 1 2 3
j2 3 2 1
j3 2 3 1
j4 1 3 2

3 Schedule deduction using various methods

3.1 Job-based representation and deduction of schedule

This representation consists of a list of n jobs and a schedule
is constructed according to the sequence of jobs. For a given
sequence of jobs, all operations of the first job in the list are
scheduled first, and then the operations of the second job in the
list are considered. The first operation of the job under treat-
ment is allocated in the best available processing time for the
corresponding machine the operation requires; and then the sec-
ond operation is allocated, etc., until all operations of the job are
scheduled. The process is repeated with each of the jobs in the
list considered in the appropriate sequence. Any permutation of
jobs corresponds to a feasible schedule.

Considering the problem given in Tables 1 and 2 and sup-
posing a chromosome is given as [2 4 3 1], the first job to be
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processed is job j2. The operation precedence constraint for
j2 is [m3 m2 m1] and the corresponding processing time for
each machine is [4 4 1]. First, job j2 is scheduled as shown
in Fig. 1a. Then, job j4 is processed. Its operation precedence
among the machines is [m1 m3 m2] and the corresponding pro-
cessing time for each machine is [3 3 1]. Each of its oper-
ations is scheduled in the best available processing time for
the corresponding machine, as shown in Fig. 1b. Then, job j3
is processed. Its operation precedence among the machines is
[m2 m3 m1] and the corresponding processing time for each
machine is [2 2 3]. Each of its operations is scheduled in the
best available processing time for the corresponding machine,
as shown in Fig. 1c. Finally, job j1 is scheduled, as shown in
Fig. 1d.

The Gantt chart of the schedule for the sequence 2 4 3 1
under job-based representation shows the make-span as 16.

3.2 Operation-based representation and deduction of schedule

This representation encodes a schedule as a sequence of op-
erations and each gene stands for one operation. As it is ob-
served from literature that the minimum make-span is found
in operation-based representation, this representation has also
been followed in solving the problem. In this method, strings
(chromosomes) are coded as a sequence of numbers (genes)
with each gene representing one of the operations of the jobs
involved. The specific operation represented by the genes are
interpreted according to the order of the genes in the chro-
mosome [5]. Each of the n (jobs) differently named (coded)
genes will appear m (machines) times, spread over the entire
chromosome.

For the above problem, a coded string comprising 4∗3 num-
bers is generated randomly. The string, say, 1 1 2 4 3 1 4 2 3 2 4 3
is a typical chromosome, where 1 stands for job 1, 2 for job 2,
3 for job 3, and 4 for job 4. Because each job has four operations,
each job occurs exactly four times in the chromosome. There are
three 3s in the chromosome, representing the three operations of
job 3. The first 3 corresponds to the first operation of job 3, which
will be processed on machine 2, the second 3 corresponds to the
second operation of job 3, which will be processed on machine 3,
and the third 3 corresponds to the third operation of job 3, which
will be processed on machine 1.

The first operation of job 1 to be performed on machine 1
is scheduled, followed by the second operation of job 1 to be
processed in machine 2. Then, the first operation of job 2 to
be processed in machine 3 is scheduled, and so on. The allo-
cation of operations of jobs to various machines is shown in
Fig. 2.

The Gantt chart for the chromosome (1 1 2 4 3 1 4 2 3 2 4 3)
under operation-based representation and deduction of schedule
shows the make-span as 17.

3.3 Proposed representation and deduction of schedule

This representation consists of a list of n jobs and a schedule
is constructed according to the sequence of jobs in the chromo-

Fig. 1a–d. Scheduling of jobs as per job based representation a first job j2;
b second job j4; c third job j3; and d fourth job j1

some. For a given sequence of jobs, the first operation of all
the jobs, as in the sequence, is scheduled first. Then, the sec-
ond operation of all the jobs, as in the sequence, is considered.
The first operation of the first job in the sequence is allocated
in the best available processing time for the corresponding ma-
chine the operation requires, and then the first operation of the
second job in the sequence is allocated, etc., until the first op-
eration of all the jobs are scheduled. This process is repeated
with second, third, and other operations of the jobs until all the
jobs in the sequence are scheduled. Considering the same prob-
lem and supposing a chromosome is given as [2 4 3 1], the first
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Fig. 2a–e. Scheduling of jobs as per operation sequence in the chromosome
a first operation of job j1; b second operation of job j1; c first operation of
job j2; d first operation of job j4; and e all the operations of all jobs

operation of the jobs j2, j4, j3, and j1 are in m3, m1, m2, and
m1, respectively, and the corresponding times are [4 3 2 2]. The
first operation m3 of job j2 is scheduled. Then, the first op-
eration m1 of job j4 is scheduled, followed by the scheduling
of the first operation m2 of job j3. Finally, the first operation
m1 of job j1 is scheduled. The schedule obtained is shown in
Fig. 3a.

The second operation of the jobs j2, j4, j3, and j1 are in m2,
m3, m3, and m2, respectively, and the corresponding times are
[4 3 2 3]. The second operation m2 of job j2 is scheduled. Then,
the second operation m3 of job j4 is scheduled, followed by the
scheduling of the second operation m3 of job j3. Finally, the sec-
ond operation m2 of job j1 is scheduled, as shown in Fig. 3b.

The third operation of the jobs j2, j4, j3, and j1 are in m1,
m2, m1, and m3, respectively, and the corresponding times are
[1 1 3 4]. The third operation m1 of job j2 is scheduled. Then,
the third operation m2 of job j4 is scheduled, followed by the
scheduling of the third operation m1 of job j3. Finally, the third
operation m3 of job j1 is scheduled, as shown in Fig. 3c.

The Gantt chart of the schedule for the sequence 2 4 3 1
under proposed representation and schedule deduction scheme
shows the make-span as 15.

Fig. 3a–c. Scheduling of jobs as per proposed method a first operation of
jobs j2, j4, j3, and j1 b second operation of jobs j2, j4, j3, and j1 c third
operation of jobs j2, j4, j3, and j1
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4 Application of GA

4.1 Objective function

The objective of the problem is to find the job sequence for which
the make-span Cmax is minimum:

Objective function = f(x) .

4.2 Fitness function

Since GAs are most suitable for maximization problems, the
above minimization problem is converted into an equivalent
maximization problem by the following transformation:

Fitness function value F(x) = Cmax p − f(x) ,

where Cmax p is taken as the largest make-span value observed in
the current population. So, Cmax p varies dynamically with vary-
ing population.

4.3 Input

The input data are: job numbers, operation sequences, and oper-
ation time.

4.4 Initialization

This module deals with the creation of all possible chromo-
somes, within the population size. The operation of GA begins
with a population of random strings representing decision vari-
ables. The population size is taken as 10 and the number of
generations as 1000.

For the above problem, a coded string comprising n num-
bers is generated randomly. The string says 2 4 3 1 is a typical
chromosome. Ten random strings are created to form the initial
population.

4.5 Evaluation

The objective criterion for the problems has been chosen as the
make-span. The population of chromosomes is evaluated for this
objective. Population size (p_size) is kept constant throughout
the trial and the fitness value for each string generated is calcu-
lated. This value is used for the reproduction operation. For the
pattern of chromosome 2 4 3 1, the make-span is found by plac-
ing the jobs in various machines as per the sequence dictated
by the chromosome. The placement of jobs for the chromosome
discussed is shown in Fig. 4.

4.6 New population creation

Creation of new population deals with selection of chromosomes
and application of crossover and mutation operators.

4.6.1 Reproduction

At this step, we select good strings in the current population to
form the mating pool. Roulette-wheel selection operator is used

Fig. 4. Gantt chart for the chromosome 2 4 3 1 (make-span = 15)

for reproduction. The action of reproduction operator is to clear
the inferior points from further consideration by probabilistic
elimination:

p(x) = F(x)/
x=p_size∑

x=1

F(x) ,

where p(x) is the probability of selection of chromosome x.
Through the generation of random numbers, the chromo-

somes are probabilistically picked in proportion to their weight
and put into the mating pool. Steady state replacement policy
has been adopted in this attempt to always retain the current best
strings in the population [7].

4.6.2 Crossover

Crossover is the operation mainly responsible for the search of
new chromosomes/strings. The probability of crossover, p_cross,
is taken as 0.80 to cover 80% of the chromosome for crossover
to produce children. A random number between 0 and 1 is gen-
erated for each chromosome and crossover is effected if the
number is less than or equal to p_cross (0.80). The process is
repeated for 9(p_size − 1) chromosomes, keeping the best of
the chromosomes in the mating pool undisturbed. Edge recom-
bination (EX) crossover operator has been used. This operator
works on individual chromosomes and not on pairs. This op-
erator, in addition to being simple to implement, gives better
solutions.

If a chromosome qualifies for crossover, a random number
from 1 to n is generated to select the site for crossover operation.
When the crossover site is, say 2, crossover happens as indicated
below:

Before crossover: 2 4 3 1
After crossover: 2 4 1 3 .

4.6.3 Mutation

The next step is to perform mutation on chromosomes in the
intermediate population. Mutation is to maintain diversity in
the population. The probability of mutation is taken as 0.05 to
cover 5% of the chromosomes for mutation. A random num-
ber between 0 and 1 is generated and mutation is effected
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if the number is less than or equal to p_mute(0.05). Order-
based mutation (OBM) has been applied, wherein two genes
at random positions in the chromosome are swapped. Two
random numbers between 1 to n are generated for the se-
lection of genes and the selected genes are interchanged for
position.

When the genes selected for mutation are, for example, 2 and
4, mutation takes place as follows:

Before mutation: 2 4 1 3
After mutation: 2 3 1 4 .

The above steps are repeated with the new population for the
required number of generations

4.7 Output

The solution, which gets improved during each iteration/gener-
ation, is available as the result.

5 Validation

To validate the proposed heuristic, one instance from the suite
JSP test instances of Fisher and Thompson (mt10), five instances
set by Adams (abz5, abz6, abz7, abz8, and abz9), four instances
set by Yamada and Nakano (yn1 ,yn2, yn3, and yn4), one in-
stance set by Applegate and Cook (orb07), one instance set by
Storer (swv06), and 12 instances set by Lawrance (la27, la28,
la29, al30, la31, la32, la33, la34, la37, la38, la39, and la40)
have been selected (problems are available in operations research
(OR) library [8]). Roulette-wheel selection, edge recombination
(EX) crossover, and order-based mutation (OBM) are selected
as GA operators. The crossover and mutation probabilities are
assigned to be 0.80 and 0.05, respectively. It has been decided
to have the population size as 10 and number of generations
as 1000.

A typical benchmark problem (abz6) has been taken for
illustration. The first line contains the number of jobs and
the number of machines, followed by details of each job
through listing the machine number and processing time for

Table 3. Evaluation and reproduction of chromosomes

Ch no. Chromosomes in Obj. fun. Fitness value Prob. of sel. Cum. seln. Rand no. Chr. no. Chromosomes for
initial population f(x) F(x) p(x) prob. mating pool

1 5 1 7 8 6 3 2 4 9 0 1233 69 0.0651 0.0651 0.26 5 5 3 6 4 9 1 7 2 8 0
2 8 6 2 5 7 4 9 0 1 3 1195 107 0.1009 0.1660 0.87 9 5 1 6 4 3 0 7 9 8 2
3 5 8 0 3 7 9 6 1 2 4 1241 61 0.0575 0.2235 0.82 9 5 1 6 4 3 0 7 9 8 2
4 4 2 8 7 3 5 6 1 0 9 1302 0 0.0000 0.2235 0.26 5 5 3 6 4 9 1 7 2 8 0
5 5 3 6 4 9 1 7 2 8 0 1151 151 0.1425 0.3660 0.36 5 5 3 6 4 9 1 7 2 8 0
6 6 7 9 4 8 0 1 2 3 5 1217 85 0.0802 0.4462 0.42 6 6 7 9 4 8 0 1 2 3 5
7 9 5 1 8 0 3 7 2 6 4 1218 84 0.0792 0.5254 0.93 9 5 1 6 4 3 0 7 9 8 2
8 4 0 3 1 9 6 7 2 8 5 1076 226 0.2132 0.7386 4 0 3 1 9 6 7 2 8 5∗
9 5 1 6 4 3 0 7 9 8 2 1140 162 0.1528 0.8914 0.73 8 4 0 3 1 9 6 7 2 8 5

10 1 4 7 0 2 5 8 9 6 3 1187 115 0.1085 0.9999 0.03 1 5 1 7 8 6 3 2 4 9 0

∗Best string is copied into mating pool and not genetically operated.

each step of the job. The machines are numbered starting with
zero:

10 10

7 62 8 24 5 25 3 84 4 47 6 38 2 82 0 93 9 24 1 66
5 47 2 97 8 92 9 22 1 93 4 29 7 56 3 80 0 78 6 67
1 45 7 46 6 22 2 26 9 38 0 69 4 40 3 33 8 75 5 96
4 85 8 76 5 68 9 88 3 36 6 75 2 56 1 35 0 77 7 85
8 60 9 20 7 25 3 63 4 81 0 52 1 30 5 98 6 54 2 86
3 87 9 73 5 51 2 95 4 65 1 86 6 22 8 58 0 80 7 65
5 81 2 53 7 57 6 71 9 81 0 43 4 26 8 54 3 58 1 69
4 20 6 86 5 21 8 79 9 62 2 34 0 27 1 81 7 30 3 46
9 68 6 66 5 98 8 86 7 66 0 56 3 82 1 95 4 47 2 78
0 30 3 50 7 34 2 58 1 77 5 34 8 84 4 40 9 46 6 44 .

In this section, the application of GA for the proposed
method of representation and deduction of schedule is illustrated
with the above example.

Objective function = Cmax = f(x), fitness function F(x) =
Cmax p − f(x), where Cmax p = Largest make-span value in the
current population:

p(x) = F(x)/
x=p_size∑

x=1

F(x) ,

where p_size is population size and p(x) = Probability of selec-
tion of chromosome x.

The working of the GA is explained in Sect. 4. The GA pa-
rameters applied are roulette-wheel selection operator, edge re-
combination crossover operator, and order-based mutation oper-
ator. Initial population, corresponding fitness values (population
evaluation), selection of chromosomes for the next generation,
and chromosomes in the mating pool for the considered example
are given in Table 3. The parents selected for crossover from the
mating pool and corresponding offspring after crossover, chro-
mosomes selected for mutation, new population after mutation
and revised fitness values are given in Table 4.

The best make-span, corresponding schedule and CPU time
are given below for the above problem for the three methods of
representation and deduction of schedule considered in this paper.
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Table 4. Application of crossover and mutation operators

Population in the Rand no. Cr. over site, Population after Rand no. Genes for mutation, Population after Fitness
mating pool if selected crossover if selected mutation value

5 3 6 4 9 1 7 2 8 0 0.86 N.S. 5 3 6 4 9 1 7 2 8 0 0.44 N.S. 5 3 6 4 9 1 7 2 8 0 1248−1151 = 97
5 1 6 4 3 0 7 9 8 2 0.70 7 5 1 6 4 3 0 7 2 8 9 0.81 N.S. 5 1 6 4 3 0 7 2 8 9 1248−1133 = 115
5 1 6 4 3 0 7 9 8 2 0.59 5 5 1 6 4 3 2 8 9 7 0 0.94 N.S. 5 1 6 4 3 2 8 9 7 0 1248−1189 = 59
5 3 6 4 9 1 7 2 8 0 0.76 2 5 3 0 8 2 7 1 9 4 6 0.12 N.S. 5 3 0 8 2 7 1 9 4 6 1248−1240 = 8
5 3 6 4 9 1 7 2 8 0 0.88 N.S. 5 3 6 4 9 1 7 2 8 0 0.82 N.S. 5 3 6 4 9 1 7 2 8 0 1248−1151 = 97
6 7 9 4 8 0 1 2 3 5 0.78 5 6 7 9 4 8 5 3 2 1 0 0.04 4, 6 6 7 9 5 8 4 3 2 1 0 1248−1248 = 0
5 1 6 4 3 0 7 9 8 2 0.95 N.S. 5 1 6 4 3 0 7 9 8 2 0.25 N.S. 5 1 6 4 3 0 7 9 8 2 1248−1140 = 108
5 3 6 4 9 1 7 2 8 0 0.47 6 5 3 6 4 9 1 0 8 2 7 0.41 N.S. 5 3 6 4 9 1 0 8 2 7 1248−1196 = 52
4 0 3 1 9 6 7 2 8 5 Not genetically operated 1248−1076 = 172
5 1 7 8 6 3 2 4 9 0 0.37 1 5 0 9 4 2 3 6 8 7 1 0.66 N.S. 5 0 9 4 2 3 6 8 7 1 1248−1192 = 56

Probability of crossover = 0.80, Probability of mutation = 0.05, N.S. = not selected

5.1 Job-based representation and deduction of schedule

Best make-span: 1212
Best schedule: 5 7 6 4 8 2 3 9 0 1
CPU time: 1.37 s

5.2 Operation-based representation and deduction of schedule

Best make-span: 1251
Best schedule: 8 7 3 7 4 8 0 9 2 1

7 4 4 7 7 2 2 5 5 2
4 6 6 4 6 6 6 3 3 9
0 0 0 3 4 4 1 6 1 4
6 8 9 4 1 1 0 7 8 5
9 9 6 3 9 3 7 8 2 0
1 7 5 9 2 1 5 5 8 1
9 8 5 2 2 5 8 0 3 7
0 1 3 2 4 8 5 9 2 6
3 5 8 7 0 9 6 0 3 1

CPU time: 0.44 s

5.3 Proposed representation and deduction

Best make-span: 1076
Best schedule: 4 0 3 1 9 6 7 2 8 5
CPU time: 0.38 s

Fig. 5. Bar chart between make-span and problem
instances

All the schemes have been coded in the C++ language. The com-
puting system used is Intel Pentium IV CPU at 1.8 GHz, 128 MB
RAM processor.

6 Results and discussions

The details about the name of the problem, size of the problem,
make-span found, and the CPU time for the three methods of rep-
resentation and deduction of schedule are presented in Table 5.
The results are also presented in the form of charts in Figs. 5
and 6. The proposed method is found to perform reasonably bet-
ter when the problem size is bigger. This has been shown in
Table 5.

The advantage of the proposed method of deduction is that it
finds better solutions in a shorter time. The speed of finding the
solutions is 3 to 18 times higher than the time taken by job-based
method for the problems discussed. The priority rule-based rep-
resentation and the precedence constraint-based representation
are found to take longer CPU time compared to operation-based
and job-based representations [9]. The best solution can be re-
alized with operation-based representation with large number of
cycles. Job-based method and proposed method of deduction
may not yield the minimum make-span as there are strict rules in
the allocation of operations of the jobs, in addition to operation
precedence constraints.
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Table 5. Results of various methods of deduction

Problem Problem Size Job based representation Operation based representation Proposed representation
no. instance and schedule deduction and schedule deduction and schedule deduction

Makespan CPU time (secs) Makespan CPU time (secs) Makespan CPU time (secs)

1 abz5 10×10 1411 1.37 1461 0.49 1361 0.44
2 abz6 10×10 1212 1.37 1251 0.44 1076 0.38
3 orb07 10×10 487 1.37 493 0.50 499 0.44
4 mt10 10×10 1167 1.32 1283 0.49 1241 0.44
5 la37 15×15 1807 5.00 2034 0.99 1883 0.82
6 la38 15×15 1561 5.05 1622 0.99 1521 0.83
7 la39 15×15 1720 5.05 1701 1.04 1560 0.83
8 la40 15×15 1642 5.05 1797 0.93 1596 0.87
9 la27 20×10 1730 6.81 1671 0.88 1626 0.77

10 la28 20×10 1612 6.92 2050 0.87 1478 0.77
11 la29 20×10 1594 6.97 1958 0.87 1551 0.77
12 la30 20×10 1682 6.92 1963 0.82 1605 0.77
13 abz7 20×15 909 10.33 1031 1.27 846 1.05
14 abz8 20×15 925 10.38 1197 1.27 886 1.10
15 abz9 20×15 934 10.32 1080 1.27 950 1.10
16 swv06 20×15 2272 10.00 2582 1.26 2564 1.10
17 yn1 20×20 1286 13.73 1349 1.70 1123 1.43
18 yn2 20×20 1299 13.79 1548 1.70 1144 1.42
19 yn3 20×20 1278 13.85 1585 1.71 1220 1.43
20 yn4 20×20 1388 13.74 1637 1.65 1334 1.37
21 la31 30×10 2160 20.27 2410 1.26 1902 1.10
22 la32 30×10 2309 20.31 2439 1.21 2142 1.15
23 la33 30×10 2145 20.27 2251 1.26 1951 1.10
24 la34 30×10 2209 20.32 2341 1.26 1961 1.10

Fig. 6. Bar chart between CPU time and problem
instances

In job-based method, all the operations of the first job are to
be scheduled first, followed by all the operations of second job
in the sequence, and so on. In the proposed method, first opera-
tion of all the jobs in the sequence are scheduled, followed by the
second operation of all the jobs, and so on. Operation-based rep-
resentation takes less time as the assignment of operations is easy
while a schedule is being generated.

A number of trial runs were effected for the sample problem
(shown in Tables 1 and 2) and the minimum make-span of 13
has been found only in the operation-based scheme and proposed
scheme and not in the job-based scheme.

Almost in all the 24 instances, the proposed method of sched-
ule deduction gives better solutions than the operation-based
scheme. In 19 of the 24 instances, proposed method gives the
best solutions, taking the least computational time. In four in-
stances, proposed method takes the second position in the so-

lution, with the best result given by job-based representation
and schedule deduction scheme. It is noted that for the four
instances (mt10, la37, abz9, and swv06) the CPU time taken
by job-based representation and deduction scheme is 3 to 9
times more compared to proposed schedule deduction scheme.
In one instance (orb07), the proposed method stands third in the
solution.

7 Conclusions

An attempt has been made to assess the performance of three
GA representation schemes to solve job shop problems. The pro-
posed representation scheme has been compared with job-based
and operation-based representation schemes for the make-span
objective for solving the job shop problem.
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The algorithms have been coded using C++ language. The
make-span and CPU time are presented in the form of tables and
charts. The ranking of the three schemes with reference to mini-
mum make-span in most instances is:

(1) Proposed scheme (19 instances)
(2) Job-based representation scheme (five instances)
(3) Operation-based representation scheme.

The ranking of the three schemes with reference to CPU time
for all instances is:

(1) Proposed scheme
(2) Operation-based representation scheme
(3) Job-based representation scheme.

It is suggested that the proposed representation and sched-
ule deduction scheme may be adopted as an acceptable alternate
scheme for solving job shop scheduling problems. The proposed
method may be called operation precedence-based scheme.
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