
DOI 10.1007/s00170-004-2399-6

O R I G I N A L A R T I C L E

Int J Adv Manuf Technol (2006) 28: 435–444

Y.L. Tian · H.J. Zou · W.Z. Guo

An integrated knowledge representation model
for the computer-aided conceptual design of mechanisms

Received: 15 May 2004 / Accepted: 31 August 2004 / Published online: 4 May 2005
© Springer-Verlag London Limited 2005

Abstract An integrated knowledge representation model,
namely the topology structure behaviour function (TSBF) model,
is presented for the computer-aided conceptual design of mech-
anisms (MCACD) in this paper. The model covers both qual-
itative and quantitative knowledge representations of generic
mechanisms. A class hierarchy consists of the abstract mech-
anism, the embryo mechanism, and the concrete mechanism is
then proposed for object-oriented modelling. Based on the TSBF
model, several reasoning techniques are integrated to achieve
a relatively comprehensive environment for MCACD. The cor-
responding reasoning process is mainly based on a backward
chaining of solutions representation and retrieval, a forward
chaining of compositional behaviour reasoning with constraint
propagation and satisfaction, and a forward chaining of type
synthesis. Coarse optimizations for certain mechanisms are also
integrated on the quantitative level. The applicability of the new
model is demonstrated by the conceptual design of a zigzag
mechanism.

Keywords Conceptual design · Knowledge representation ·
Mechanism · Object-oriented modelling · Type synthesis

1 Introduction

In the engineering design process, conceptual design is a very
important stage in which many critical elements of a product
or scheme are determined [1]. It is also called design syn-
thesis, which can be defined as the synthesis of new candi-
date design concepts [2]. Formalizing the conceptual design
of mechanisms has raised much interest in both the mechan-
ism community and the artificial intelligence (AI) community
for decades. Nevertheless it remains a challenge to develop

Y.L. Tian (�) · H.J. Zou · W.Z. Guo
School of Mechanical Engineering,
Shanghai Jiaotong University, Shanghai 200030, P.R. China
E-mail: tyl129@sjtu.edu.cn
Tel.: +86-21-62933054
Fax: +86-21-62932023

a general-purpose system for computer-aided conceptual design
of mechanisms (MCACD). The difficulties mainly arise from the
intrinsically complicated geometrical and topological character-
istics in a mechanism that are normally absent in a general phys-
ical device. Kota et al [3] summarized the research on MCACD
in depth about a decade ago. They stated that the conceptual
design of mechanisms is a mixture of art and science, and sug-
gested that several approaches are complementary. Since then,
new progress has been made. Nevertheless, some later literature
reviews (for instance [4]) only surveyed progress related to AI
and regretfully neglected the effective research in the mechanism
community. Therefore, an updated, brief review is worthy to be
presented first.

In the mechanism community, there has been a long line of
research considering number synthesis and type synthesis for the
conceptual design of mechanism structures. In the mid-1960s,
Freudenstein [5], the “father of modern kinematics”, researched
number synthesis to investigate the topology of mechanisms.
Since then, a significant effort has been made to solve the num-
ber synthesis problem (see [6] for a comprehensive review).
Meanwhile, various type synthesis methods employing number
synthesis results to generate practical kinematic structures have
been developed. Pioneering research includes Freudenstein’s dir-
ect kinematic structure enumeration methods [5], and Johnson’s
associated linkage methods [2]. Recently, Tsai [7] extended
Freudenstein’s work and developed a complete type synthesis
system that is especially powerful in the conceptual design of
complex gear trains. Yan [8] presented a rule-based system for
type synthesis using a generalization and regeneration process,
and exploited more applications. Number synthesis and type syn-
thesis are preferred for the creative and innovative design of
mechanisms with time-invariant contacts, since they can enumer-
ate topological structures exhaustively. However, the topological
specifications and structural constraints required for a design
task are not always available.

In the mechanism community, there has also been much re-
search on MCACD employing AI techniques to integrate exist-
ing domain expertise. Many knowledge-based systems (KBS)
and case-based reasoning (CBR) systems for mechanism selec-

436

tion and pattern matching was developed in the early-1990s.
Each system has typically been dedicated to a specific prob-
lem [3]. Nevertheless, not much progress on this aspect has been
made since then.

On the other hand, MCACD research emphasising general
knowledge representation and reasoning has become popular.
Stahovich [9] offers AI research in the conceptual design of
mechanical systems which can be broken into four categories:
search, KBS, machine learning, and qualitative physical reason-
ing. However, his classification didn’t distinguish the research on
generic mechanisms from that on physical devices with simple
mechanical components. In our opinion, the research consider-
ing the qualitative and semi-quantitative knowledge representa-
tion of existing mechanisms on kinematics and geometry, and
research in related reasoning are fundamental works for the con-
ceptual design of generic mechanisms. Joskowicz and Sacks [10]
established a kinematic analysis algorithm which can automat-
ically generate the input-output configuration space (C-space),
and the transmission region diagram of a given mechanism pro-
viding its CAD information. Their representation system was es-
timated to cover about 60 percent of over 3500 mechanisms and
kinematic pairs in Artobolevsky’s mechanism compendia [11].
Later, Joskowicz and Neville [12] presented a more compact and
expressive language in a Backus-Naur Form (BNF) to repre-
sent the qualitative behaviours of fixed axis mechanisms (includ-
ing those with time-variant contacts). However, no algorithms
for automated conceptual design were provided since the direct
reasoning of a complicate mechanism is generally intractable.
Therefore, many researchers have first tried to deal with the
conceptual design of serially-connected mechanisms with time-
invariant contacts only. Subramanian and Wang [13] presented
a qualitative motion language and utilized constraint propaga-
tion for the combinational synthesis of serially-connected kine-
matic chains. Other forms of qualitative motion languages can
be found in [14–17]. Among others, Chiou and Kota [16] made
a successful attempt to establish an automated conceptual de-
sign system of serially-connected mechanisms. They identified
43 generic kinematic building blocks from several famous mech-
anism sourcebooks, and introduced a multi-levelled qualitative
motion transformation matrix (MTM) to represent these mechan-
ism blocks. Task decomposition becomes much easier by utiliz-
ing basic matrix manipulations. More recently, Ye et al. [17] ap-
plied data standardization technology to improve the efficiency
of mechanism selections and kinematic behaviours reasoning.
Meanwhile interesting research towards the conceptual design
of mechanisms with time-variant contacts has also been carried
out [18–22]. Most efforts are related to the qualitative config-
uration space (QC-space) theory. Nevertheless, currently, those
approaches can only deal with very simple devices.

With qualified behaviour representations, comprehensive
knowledge representation models of mechanisms can be then
established. Kannapan and Marshek [14] presented a structure
behaviour function (SBF) model. However, the definitions in
their models are descriptive rather than formal. A SBF model
with formal definitions of structure, behaviour and function
for representing mechanisms, mainly based on C-space theory,

was first suggested by Subramanian and Wang [13]. But their
model was limited to represent simple open-looped kinematic
chains. More recently, Roy et al. [23] presented a similar but
more detailed model using the UML language attempting to deal
with both the conceptual design and parameter optimization of
generic mechanisms. Their model was not well organized, how-
ever, and its applications are limited to simple kinematic chains.
It should be noted that all these models didn’t explicitly consider
the topological aspect of mechanisms.

In this paper, we extend our previous research of quali-
tative reasoning in kinematic behaviours [17] by integrating
a topological reasoning. Meanwhile, the geometry reasoning in-
terface is also considered. An integrated knowledge representa-
tion model called topology structure behaviour function (TSBF)
model is presented for combined reasoning. The TSBF model
has an additional topology level that is able to provide topo-
logical reasoning. Based on the TSBF model, a MCACD system
capable of both qualitative behaviour reasoning and topological
reasoning have been developed. Object-oriented modelling tech-
niques are employed to establish the knowledge base and the
reasoning process. Moreover, a mechanism simulator is inte-
grated in the system in order to provide an early assessment of
the obtained solutions. The system is also intended to extend
the applicability of some existing software for conceptual de-
sign of mechatronic systems (e.g. the Schemebuilder [24]) that
are quite weak in terms of the conceptual design of mechanism
subsystems.

This paper is organized as follows: in Sect. 2, the conceptual
design process model and the architecture of the MCACD system
are illustrated; in Sect. 3, the TSBF knowledge representation
model is defined and the object-oriented representation scheme
for case representation is presented; in Sect. 4, the details of the
reasoning process are presented; in Sect. 5, a design example is
presented; and in Sect. 6, we offer our conclusions.

2 The MCACD system

2.1 Integrated conceptual design process model

A conceptual design process model describes when and how
a reasoning mechanism works in a conceptual design process.
A proper conceptual design process model is necessary to iden-
tify the required knowledge representations and to guide the
development of a MCACD system. There are typically four de-
sign paradigms in the conceptual design process of mechanisms:
forward chaining, backward chaining, step-wise refinement, and
constraint propagation [1]. Generally, the first two are most rel-
evant: forward chaining reasoning starts with problem specifi-
cations and proceeds forwards through intermediate states to-
wards a solution. In contrast, backward chaining reasoning starts
with a finite set of predefined solutions and proceeds backwards
though intermediate states towards the initial specifications. The
primary advantage of a forward chaining strategy is its ability
to exhaustively enumerate solutions in a systematic and unbi-
ased manner. However, the enumeration could lead to a prob-

437

lem of combinatorial explosion. The backward chaining strategy
tends to mimic the typical reasoning steps of human design-
ers. Domain experts must provide the solutions of many specific
problems beforehand, which guarantees that there is a certain
possibility for a given problem to fall under these solutions. In
practice, type selection and pattern matching are the most com-
monly applied backward chaining techniques in the mechanism
community [1, 2, 25–27]. However, type selection and pattern
matching only consider the steps of case representation and re-
trieval in CBR. Though mechanism experts have also provided
some redesign strategies for specific simple mechanisms, such
as rewrite-rules for the redesign of couplings between adjacent
pivots [14], rules for adaptive redesign are still lacking in the
literature of mechanism conceptual design.

In view of the advantages and disadvantages of forward
chaining and backward chaining, some researchers have adopted
both chaining strategies in knowledge-based systems. Typical
examples are rule-based systems for the compositional reasoning
of compiled kinematic building blocks. However, the kinematic
building blocks are always fixed and only simple solutions will
be produced. Therefore, it is desirable to integrate a topological
enumeration routine as another forward chaining reasoning to
generate candidate sub-structures with new topologies. The new
conceptual design process model is illustrated in Fig. 1. In the de-

Fig. 1. Process model of mechanism concep-
tual design

sign process model, a CBR subsystem (located on the top) assists
a designer in retrieving information and prototypes. The princi-
pal part is a KBS, namely a rule-based system for compositional
reasoning. It takes motion specifications and topological speci-
fications as input, and can recognize constraints. KBS solves
the constraints by constraints propagation and satisfaction. There
is a systematic type synthesis routine which acts as a topo-
logical forward chaining, and it offers transformational rules in
the principal KBS through the generalization and regeneration of
obtained sub-structures. In Fig. 1, the procedure of the forward
chaining of type synthesis are marked by hollowed arrows. The
type synthesis routine can also run independently. Details will be
discussed in Sect. 4.

2.2 Architecture of the MCACD system

The architecture of a MCACD system, with respect to the pro-
posed conceptual design process, is shown in Fig. 2. There are
four parts to the system: a main program, an inference pro-
gram, a simulation program, and an external database. The main
program has three modules: a console module, a module for in-
formation searching and editing, and a module for mechanism
evaluation and coarse optimization design. The inference pro-
gram was developed using a professional logic program devel-

438

Fig. 2. Architecture of the MCACD system

oping system, SICStus Prolog [28]. The details of the reasoning
mechanism will be discussed in later sections. The simulation
engine was built on Matlab and SimMechanics (products of
MathWorks Corporation). SimMechanics is a toolbox in Mat-
lab for the kinematic and dynamic simulation of mechanisms.
The main program can automatically generate and manipulate
the SimMechanics models of most mechanism concepts, and can
produce schematic sketches of mechanisms employing Matlab
scripts and Matlab external programming interfaces [29]. The
external database includes a number of mechanism catalogues
with various indexes (e.g. usage, kinematic pairs, motion be-
haviours and curve patterns) for case retrieval. Moreover, mech-
anism drawings, qualitative motion descriptions and abstracted
topological descriptions have been provided for some mechan-
isms in the external database. The operational details can be
briefly introduced as follows:

1. A designer first uses the search engine to find desirable
mechanism prototypes or curve patterns from the external
database. Given the prototypes and related information, the
designer edits the desired qualitative motion specifications
and abstracted topological requirements. Other requirements
can be input as heuristics to limit the search scope in the in-
ference process.

2. These specifications and requirements are then parsed by the
console module to construct a number of prolog predicates
for reasoning. The console then loads the predicates into the
SICStus prolog and runs the program to query solutions.
The SICStus Prolog program collaborates with the console to
complete the conceptual design process. The console also in-
teracts with the designer by asking for selections during the
conceptual design process.

3. When a concept is obtained, the console constructs its math-
ematic model file and then passes it to the Matlab simulation
engine for simulation.

4. The simulation results are then evaluated by the evaluator
module where some fast coarse-fine optimization routines

have been provided to refine the design of specific mechan-
isms, such as dwell linkages. The designer can also provide
his or her own optimization algorithms in Matlab scripts.

3 TSBF knowledge representation model

3.1 Formal definitions

To achieve a relatively comprehensive MCACD system, the es-
tablishment of a proper and compact model for both knowledge
representation and the reasoning of mechanisms is fundamental.
Formal definitions of the elements in a knowledge representation
model are in turn the foundation for constructing the model. In-
formal definitions generally leads to unqualified models. For in-
stance, the term function is semantically overloaded having both
operational and purposive meanings as a relational concept. Con-
sequently, considerable confusion exists in the literature about
the use of the terms “function” and “behaviour”, and the con-
fusion hinders clarifying the related reasoning. To express the
TSBF model explicitly, a number of formal definitions and ne-
cessary explanations are given as follows:

• Configuration of a body: a configuration of a body B is de-
fined as an isolated image point x in a n dimensional image
space, with its state variables xi , i = 1, . . . , n as the coordi-
nates. Typical state variables include displacement and orien-
tation for rigid bodies, and dimensions for elastic bodies. The
configuration space of body B is formed by all its possible
configurations. A configuration is generally dependent on the
choice of reference frame, while the configuration space is
generally frame-independent.

• Motion: the motion of a body is a function of time to its
configuration space; in other words, the motion describes the
changes of configuration with respect to time. The function
is first order continuous but not necessary first order differen-
tiable. A motion is intrinsically a function vector and can be
represented by a screw, a quaternion, or a D-H matrix.

439

• Configuration of a mechanism: a configuration of a mech-
anism M consists of: (1) an aggregation of all the simultan-
eous body configurations of its members with all kinematic
and geometrical constraints satisfied; and (2) contact states
between these members. The configuration space of M is
formed by all its possible configurations. In practice, gener-
ally only the contact states and the body configurations of the
input members and output members are important; thus, the
configuration space can be reduced to a simplified form, such
as the input-output C-space [10].

• Quantitative behaviour: the quantitative behaviour of a mech-
anism is a function of time to its configuration space. The
term “behaviour” is used because it implicitly indicates
a function mapping from the input motions to the output mo-
tions. Note that the behaviour of a mechanism may be first
order discontinuous, since the contact states are discrete vari-
ables. In others words, the mechanism can be a so-called
“multiple-state mechanism”, or a mechanism with time-
variant contacts.

• Qualitative behaviour: there are two levels of qualitative be-
haviour. In the first level, C-space representation is replaced
by QC-space representation, or all design variables in the
quantitative behaviour equations are replaced by symbols.
In the second level, only descriptive language (e.g. the first-
order predicates logic) is used. Besides descriptions for the
basic motion characteristics which decide the types of coor-
dinates of C-space, other descriptions are called “operational
constraints”, which abstract the operational characteristics of
the C-space with respect to time.

• Structure: structure is the concrete form of a mechanism. The
structure of a mechanism can be presented as a pair (K, C),
where K is the kinematic diagram of the mechanism and C
is a set of geometric and kinematic constraints on K . The
kinematic diagram K is often represented by a link adjacency
matrix with specified kinematic pairs.

• Topology: the topology of a mechanism is an abstraction of
its kinematic diagram. There are three levels of abstractions:
the first level includes the global relationships between sub-
structures, if the structure is decomposable; the second level
includes the generalized kinematic chains without ground
links and with only generalized revolute joints; and the third
level includes the topological graphs. The first level is suit-
able for constructing a compound mechanism; the second
level is suitable for type synthesis; and the third level is suit-
able for number synthesis.

• Function: generally, function relates to how the mechanism
interacts with the environment. It is frequently expressed as
a purpose predicate. However, a number of kinematicians ar-
gued that purpose is not an intrinsic property of a mechanism,
and a mechanism can interact with the environment by arbi-
trary means. On the other hand, a sub-mechanism in a large
mechanism may not interact with the environment, but it
still has an intrinsic purpose, such as providing a required
motion transformation. Nevertheless, purposes or usages are
necessary since it is not always able to express explicitly the
abstract operational characteristics. Thus, in our opinion, the

functions of a mechanism can be its abstracted purposes or
most abstract operational characteristics. While this defin-
ition is not formal, the domain is a set of well-defined func-
tion vocabularies.

Based on the above definitions, different levels of abstrac-
tions of a mechanism can be established. Namely, these are
concrete mechanisms, abstract mechanisms, and embryo mech-
anisms. The multi-level representation of a mechanism will be
much more efficient for qualitative reasoning. The architecture is
also suitable to be represented by object-oriented languages.

• Concrete mechanism: a concrete mechanism is a physical ob-
ject which includes four aspects: function, behaviour, struc-
ture and topology. Its name can be a string or a mechanism
ID number. Additional properties are useful to assess its ap-
plicability, such as its advantages, disadvantages, efficiency,
dexterity index, and limitations.

• Abstract mechanism: an abstract mechanism is an abstracted
object with two aspects: function and qualitative behaviour.
The qualitative behaviour normally includes qualitative input
motions, qualitative output motions, and their relationship. It
should include at least qualitative output motions.

• Embryo mechanism: an embryo mechanism is an abstracted
object with generalized topological properties. It includes
topology information and links to type enumeration strate-
gies for generation of structure.

The object hierarchy features multiple layers: an abstract
(embryo) mechanism can be a super class of abstract (embryo)
mechanisms; an abstracted mechanism object can be a super
class of concrete mechanism objects with equivalent qualitative
behaviours and functions; and an embryo mechanism object can
be a super class of concrete mechanism classes with equivalent
topological properties. A concrete mechanism can inherit proper-
ties and methods from several abstract mechanisms and embryo
mechanisms. Finally, coarse or fine parametric design proced-
ures should be provided for a concrete mechanism whenever
possible.

3.2 Qualitative representation

To represent the TSBF model in detailed forms, qualitative vo-
cabularies and symbolic equations are necessary to be abstracted
from applications of concrete mechanisms. Table 1 illustrate
a number of qualitative vocabularies. Some details are omitted
due to the space limits.

Based on the above qualitative vocabularies, definitions in
the TSBF model can be represented in an extended Backus-Naur
form (BNF). For example, a stacked double input–single out-
put (DISO) concrete mechanism can be represented as shown in
Table 2.

In the extended BNF description, symbols enclosed by angle
brackets are non-terminals. Bold symbols are terminals. Capital
symbols stand for terminals defined in a separate dictionary or
catalogue. Other symbols (e.g. Qc-space, Symbolic-equation) in-
dicate items from a non-finite domain. The suffix “+” is an abbre-
viation for one or more of an item. The suffix “2” indicates two

440

Table 1. Some qualitative descriptions

function Operational characteristics and physical usage:
rigid body guidance, function generation, general path
generation, straight line path generation, axis transform-
ation, enlarging motion range, indexing; escapement, dif-
ferential, positioning, increase force, coupling, clamping,
speed conversion, feeding, etc.

behaviour Quantitative behaviour:
C-space, equations, transmission region diagrams
Qualitative behaviour:
level 1: Qc-space, qualitative timing curves,
symbolic equations
level 2: Motion transformation classified by a triplet:
(input-motion, output-motion, operational-constraints)
Motion:
rotation, translation, planar path (15 basic groups), planar
motion, helix, spherical path, spatial path, etc.
Operational constraints:
axis direction, axis-transformation (six types), linear, non-
linear, continuous, intermittent, interchangeable, one-way
driving, oscillation, dwell, double dwell, etc.

structure Model files, link adjacency matrix, geometrical
constraints,
kinematic properties, geometrical properties, dimensions,
degree of freedom, etc.

topology Level 1: global layout type
serial-chain, parallel (parallel-serial, serial-parallel), com-
pound (11 groups)
Level 2: generalized kinematic chain
Level 3: line graph, contracted line graph

Table 2. EBNF description of DISO mechanism

<DSOMech> ::= <Function><DISOBehaviour>
<DISOStructure><DISOTopology>

<Function> ::= <Function-Name>+
<Function-Name> ::= FUNCTIONVOCABULARY
<DISOBehaviour> ::= <Input-motionL3>2<Output-motionL3>

<ConstraintsL3>+
<ConstraintsL3> ::= <MotionConstraintsL3> |

<TransformationConstraintsL3>

<Transformation ::= <Degree-of-Freedom>,
ConstraintsL3> · · · <Axes-Relationships>
<DISOTopology> ::= <TopologyL1>

<TopologyL1> ::= (<SISOMech>, <SISOMech>,
<LayoutTypeID>)

<SISOMech> ::= <UnitMech>| <ChainMech>

<ChainMech> ::= <UnitMech>then<ChainMech>

<UnitMech> ::= <Name><Function><UnitBehaviour>
<UnitStructure><UnitTopology>

<UnitBehaviour> ::= <UnitBhrL1><UnitBhrL2><UnitBhrL3>

< UnitBhrL3> ::= <Input-motionL3><Output-motionL3>

<OperationalConstraintsL3>+
<Input-motionL3> ::= rotation|translation|planarpath|planar

motion|helix|sphericalpath|spatialpath
< UnitBhrL2> ::= Qc-space, Qualitative-Timing-Curve,

Symbolic-equation+
· · ·

occurrences. Compared to the BNF syntax for representing fixed
axis mechanisms presented by Joskowicz and Neville [12], the
syntax of the TSBF model has more specifications and can also
represent compound mechanisms explicitly. However, though
BNF is quite useful for specifying the syntax of mechanism rep-

resentation models, utilizing an executable language rather than
developing a new language should be considered to realize the
syntax. The choice of a suitable executable language is discussed
in next subsection.

3.3 Object-oriented representation

Plain prolog languages with the first-order predicate logic are
widely used for knowledge representation and logic program-
ming. Recently, many new features have been introduced to
extend the capability of prolog language, such as higher-order
logic and object-oriented programming. SICStus Prolog pro-
vides object-oriented logic programming grammar for modelling
a large knowledge system with complex structures and relation-
ships. In SICStus Prolog, an “object” is a collection of predicate
definitions. Objects can be defined in a file, or dynamically cre-
ated during the execution of a program. Moreover, the system au-
tomatically maintains a table of the object hierarchies and tables
of class-instances. These characteristics afford greater flexibility
for knowledge modelling and management. On the other hand,
SICStus Prolog provides extended logical programming capabil-
ity, including constraint logic programming (CLP) and constraint
handling rules (CHR). And it supports external predicates writ-
ten in C language.

Since object-oriented prolog is ideal for documenting both
logic programming and object-oriented programming, we pre-
fer to illustrate the modelling of mechanisms using the object-
oriented prolog syntax provided by SICStus Prolog. We assume
the reader is familiar with basic prolog predicates and the mode
specification of prolog predicates.

A general class of object is defined as:

object class-identifier :: {
sentence 1. % Class hierarchy
...
sentence i. % Facts
...
sentence m. % Methods
...

}.

We first illustrate the class definitions of a single input–single
output (SISO) abstract mechanism. In practise, elements of the
TSBF model are classified and encapsulated as importable pred-
icate modules for clear code reuse. Here, we put those predicates
together for clarity.

abstractsisomechclass_1 :: { % abstract class
super(abstractmechclass). % class hierarchy
:- public(cousinabtractclass_/1). % public data
:- public(rankedchildlist_/1).
:- private(functionattr_/2). % private data
:- private(outputmotionattr_/2). % level 3 output motion
...
:- initialization(init/0). % method protocols
:- public(set_functionattr/2).
:- public(get_functionattr/2)
:- public(retractrankedsub/1).
:- public(getnextcousin/1).
...
init :- % method implementations
predicates_for_initialization.

...
}

For SISO mechanisms, we also abstract several embryo
mechanism classes.

441

embryosisomechclass_1 :: { % abstract class
super(embryomechclass). % class hierarchy
:- :use_module(structure). % import modules
:- public(cousinembryoclass_/1). % data
:- private(topologicattr_/2).
:- private(isbkc_/1).
...
:- public(typesynthesis/2). % method protocols
...
typesynthesis (Structure, Constraintlist) :-% method

% implementations
isbkc(BKC),
:getnewstructure(BKC, Structure),
:satisfyconstraint(Structure, Constraintlist).
...

}

The bottom level of the class hierarchies consists of all in-
stantiable concrete mechanism prototypes. A prototype inherits
predicates from its parent classes and also extends its parent
classes with specific attributes and strategies. Most prototypes
can be discretized precisely or approximately into a small num-
ber of instances for instance selection. For prototypes requiring
a large number of instances, design strategies are preferred for
coarse parametric selection. A prototype is demonstrated as:

concretesisomechproto_1 :: { % instantiable class
super(abstractsisomechclass_1). % class hierarchy
super(abstractsisomechclass_m).
super(embryosisomechclass_1).
super(embryosisomechclass_n).
...
% extended attributes
:- public(mechanism_id_/1).
:- public(cousinprotolist_/1).
:- public(hasdesignstrategy_/2).
:- private(inputexpression_/1). % level 2 expressions
:- private(outputexpression_/1).
:- private(constraintexpression_/1).
:- private(structureattr_/2).
:- private(structureparam_/2).
:- private(topologyattr_/2).
...
:- initialization(init/0). % method protocols
:- public(findinstance/1).
:- public(regeneratestructure/2).
:- public(displayprotoinfo/0).
:- public(generatemdlfile/1). % external predicate
:- public(applydesignstrategy/1). % external predicate
:- public(set_structureparam/2).
:- public(insertconstraints/0).
:- public(retractconstraints/0).
...
init :- % method implementations
set_inputmotionattr(type, rotate),
set_inputmotionattr(raxis, (0, 0, 1)),
set_inputmotionattr(sense, ccw),
set_outputmotionattr(continuous, reciprocating),
...
regeneratestructure(Structure, Constraintlist) :-
super(Super),
Super::typesynthesis (Structure, Constraintlist),
hasdesignstrategy(function_id,Strategy),
applydesignstrategy(Structure, Strategy).
...

}

Mechanism instances can be created either statically or dy-
namically. Dynamic creation is preferred for creating and storing
instances, since most properties of its prototype are inherited.
The dynamic creation of a crank-rocker mechanism is given as
follows:

% create a new instance
instance(crankrockerinstance_1, crankrockerproto).
% specialize the prototype
crankrockerinstance_1::set_structureparam(linklength1,0.4).
crankrockerinstance_1::set_structureparam(linklength3,1.5).
crankrockerinstance_1::set_outputmotionattr(extent, 50).
...

4 Reasoning in MCACD

The TSBF model and its multiple-layer, object-oriented repre-
sentation provide a clear architecture for integrated reasoning in
MCACD. We have extended the behavioural reasoning demon-
strated in our previous research [17], and implemented topo-
logical reasoning in the SICStus Prolog system. We do not apply
geometrical reasoning, but it can be realized as design strategies
using external predicates for specific mechanism prototypes. The
reasoning mechanism of the prolog language is basically back-
tracking and unification. The reasoning mechanism is simple but
powerful. In our research, the abstraction of mechanisms and
various constraints are adopted to improve the efficiency of plain
backtracking.

4.1 Behaviour reasoning of mechanisms

There are typically three types of mechanisms requiring be-
havioural reasoning: single input–single output (SISO) mech-
anisms, single input–multiple outputs (SIMO) mechanisms, and
multiple inputs compound (MIC) mechanisms. Synthesis of
SISO mechanism is a fundamental reasoning task. The output
motion-oriented behaviour decomposition is preferred since the
types of output motions are more specific than that of input mo-
tions. The synthesis algorithm can be expressed as follows:

SISO_Syn(inputmotion, outputmotion, constraintlist, Mech)

1. If “inputmotion” = “outputmotion”, then “Mech” is uni-
fied with a utility machine and returned. Else, select an ab-
stract mechanism “AM” with “AM::outputmotionattr” con-
tains the principal motion properties (including operational
constraints) of the required output motion “outputmotion”.

2. If no “AM” is found, then the task fails. Else, “AM” selects
a child “CM” using a built-in predicate “sub/1” of the object-
oriented prolog.

3. If “CM::inputmotionattr” contains the principal motion prop-
erties of the required“inputmotion”, and corresponding con-
straints in “constraintlist” are satisfied, then “CM” is in-
serted to a candidate mechanisms list. If the query is set
as non-terminal, then the algorithm continues to find new
candidates.

4. If “AM” can’t find any child that suits the requirements, then
the design task is decomposed into:

AM::sub(CM),
SISO_Syn(inputmotion, CM::inputmotionattr, constraints,

Mech1),
append(Mech1, CM, Mech).

5. The above qualitative reasoning generally feedbacks a large
number of solutions even with a small decomposition level.
After the qualitative reasoning, the algorithm continues to
a quantitative reasoning if there are quantitative design re-
quirements. Candidate mechanism “CM” will be retracted
from the candidates list. Then, “CM” will insert a set of
transformation expressions (translation, rotation, and scal-
ing), and all the symbolic expressions of “CM” (if there
are any) with undetermined variables are placed in a con-
straint store in the SICStus Prolog for constraint satisfaction.

442

When a constraint is inserted, constraint handling rules are
fired to simplify or propagate the constraints in the con-
straint store. After all constraints are inserted, “CM” instan-
tiates design parameters obtained from its instance and calls
corresponding CLP optimization predicates to obtain feed-
backs and asks for a decision from the designer, and then
“CM” will remove the constraints inserted by itself from
the constraint store. If there are solutions fitting the required
motion parameters of both “inputmotion” and “outputmo-
tion”, then “Mech” is unified with “CM”, and the detailed
information of “Mech” is displayed through a predicate “dis-
playprotoinfo/0”. Otherwise, “CM” is ranked by the user and
inserted into a ranked child list of “AM”, and “AM” con-
tinues to check the next candidate child.

6. If “AM” cannot find any child that can be transformed to suit
the requirements, then the design task is decomposed into:

AM::retractrankedsub(CM),
CM::insertconstraints,
SISO_Syn(inputmotion, CM::inputmotionattr, constraints,

Mech1),
append(Mech1, CM, Mech).

The predicate “retractrankedsub/1” retracts a child “CM”
with the highest rank from the ranked child list of “AM”. “CM”
then inserts its constraints into the constraint store. These con-
straints will not be removed until the backtracking returns to
the point where “CM” is retracted. Now, the constraints in the
constraint store will be populated as the decomposition level
increases. Note that either a specific decomposition level or
a specific optimization standard can be used to stop undesirable
decomposition and force a backtracking. Since the current CLP
is still weak at solving non-linear constraints, the algorithm will
prompt the user whether or not it is necessary to insert a non-
linear. Further, some heuristics are embedded in the algorithm to
prevent composition explosion, such that the number of similar
primitive mechanisms with interchangeable motion transfer di-
rection is limited to a predefined number. The algorithm extends
our previous algorithm with constraint solving capability.

The synthesis of SIMO mechanism can be solved by ap-
plying the SISO_Syn algorithm for each pair of output mo-
tion and input motion, and then combining these solutions. The
method is not optimum but is still acceptable, since the number
of outputs in most SIMO mechanisms is smaller than four. Note
that there may be redundant components, since the topological
branch point is limited to the root input. Therefore, another algo-
rithm is provided to enumerate non-redundant structures for each
solution.

In our approach, while the synthesis of the MIC mechanism
is still derived from the synthesis of the SISO mechanism, it is
much different from traditional approaches. It is strongly related
to the global layout type of the mechanism structure. Indeed,
few approaches have considered the conceptual design of such
mechanisms. Direct forward reasoning without considering the
global layout is generally impossible due to the combinatorial
explosion. We prefer a prototype-based synthesis. The designer
selects an existing prototype and abstracts its global layout. Each
serially-connected sub-mechanisms chain in the prototype is col-

lected as a single abstract SISO mechanism. The corresponding
motion constraints and transformation constraints between the
abstract SISO mechanisms are described when possible. For the
synthesis of a compound mechanism with complicate spatial
constraints between its abstract SISO mechanisms, there are still
many difficulties. Fortunately, in many cases, the output motion
of each abstract SISO mechanism and the transformation con-
straints between the abstract SISO mechanisms are qualitatively
describable. Therefore, the synthesis of the MIC mechanism can
be carried out by the parallel synthesis of those constraints. Note
that it is possible to produce a single input compound (SIC)
mechanism by concatenating a MIC mechanism with a corres-
ponding SIMO mechanism.

4.2 Topological reasoning of structures

An important task in the synthesis of MIC mechanisms and SIC
mechanisms is the innovative design of its structure and sub-
structures. Such a task is generally not important in the synthesis
of SISO mechanisms. This design task leads to the topological
reasoning of structures.

As aforementioned, type synthesis techniques are relatively
well-developed. We adopt the type synthesis algorithm presented
in [8]. The algorithm employs Polya’s theory for the enumera-
tion of structure types. A modification is that the kinematic pair
types of the inputs and outputs in the original prototype will not
be changed; this means that a prismatic pair will not be changed
to a revolute pair. Nevertheless, newly grounded members with
arbitrary kinematic pair types can still be added. The drawback
of the modification is that the enumeration may miss some in-
novative structures. On the other hand, the synthesis algorithm
becomes more tractable in the entire synthesis process. The enu-
merations of sub-structures are carried out after the behavioural
reasoning of the MIC mechanisms. Currently, we assume that
only the last sub-mechanism of each abstract SISO mechanism
in the MIC mechanism requires topological reasoning. Motion
constraints and transformation constraints will be checked again
when a new sub-structure is generated. Each successful new sub-
structure will be instantiated as a new prototype and inserted as
a cousin of the current prototype mechanism being synthesized.

The above reasoning can solve a number of mechanism syn-
thesis problems. It has yet to be noted that the efficiency and
flexibility of the above synthesis algorithms are still not desirable
for large systems due to the nature of plain backtracking. We are
currently conceiving corresponding dependency-directed back-
tracking algorithms to address the efficiency problem. Moreover,
we are investigating how to integrate the above reasoning tech-
niques for designing multiple inputs–multiple outputs (MIMO)
mechanisms with coordinated motions.

5 Case study

We selected the conceptual design of a zigzag sewing machine to
demonstrate the performance of the integrated knowledge repre-
sentation model and its reasoning mechanism. A zigzag sewing

443

Fig. 3. A prototype of a zigzag mechanism and its global topology

machine has a zigzag mechanism whose performance is crucial
to decide the sewing quality. In our early research, a number of
sewing machine patents have already been analyzed and their
kinematic information and topology information have been en-
coded into the external database. A designer can retrieve zigzag
mechanism prototypes by keywords. Note that the global layouts
of all the zigzag mechanisms are the same. There are two main
sub-mechanisms: a positioning mechanism oscillating from side
to side, and a feeding mechanism reciprocating the needle up and
down. A typical zigzag prototype is illustrated in Fig. 3. There
are two problems with this prototype: (a) there is a needle deflec-
tion if the swing angle of the positioning mechanism is large -
this is a minor problem; and (b) the dwell time of the positioning
mechanism on both sides of the needle trace is not long enough.
Thus, the major design task is to redesign the positioning mech-
anism which satisfies the geometrical and operational constraints
between itself and the feeding mechanism. Other design con-
straints are added, such as the fact that cams and gears are not
used, since the sewing machine will run at a very high speed. The

Fig. 4. Detailed block diagram of
a new zigzag mechanism

Fig. 5. Sketch of a new zigzag mechanism

sub-mechanism of the needle reciprocating mechanism is fixed
as a crank-slider. The topology information and kinematic infor-
mation of the prototype and the design constraints are processed
to obtain a series of prolog predicates. The console loaded the
predicates to the SICStus Prolog, and after a series of interac-
tions the prolog system returned a number of concepts including
four existing prototypes of four-bar linkages, six existing proto-
types of six-bar linkage, two new prototypes of six-bar linkages,
and 18 new prototypes of eight-bar linkages. All the existing
prototypes have design strategies for designing dwell motions,
while those design strategies cannot be applied to the new pro-
totypes. Hence, coarse optimizations are necessary. Among all
these linkages, we selected a Stephenson-II-type six-bar link-
age and a double butterfly-type eight-bar linkage as examples of
coarse dimensional design employing hybrid genetic algorithms.
The coarse optimization of the six-bar linkage fails without ob-
taining qualified solutions, while the coarse optimization of the
eight-bar linkage obtains eight solutions with dwell motions ap-
proximating that of the existing Stephenson-III type prototypes,
and can be used for future dimensional synthesis. Finally, con-
straints checking is successful, since the motion constraints and

444

transformation constraints are all simple planar constraints. Fig-
ures 4 and 5 offer a detailed block diagram and the sketch of
an obtained eight-bar linkage, respectively. Note that there are
another two types of zigzag prototypes with different transform-
ation constraints. The same procedures are repeated, and another
14 candidates are obtained.

6 Conclusions

An integrated knowledge representation model for the computer-
aided conceptual design of mechanisms was presented in this
paper. Besides modelling the functional, behavioural, and struc-
tural aspects of mechanisms, the model also considers the com-
plex topological characteristics of mechanisms that are normally
absent in general physical devices. The model has a multi-level
architecture to improve its reasoning efficiency, and allows for
a clean integration of a qualitative reasoning with a quantita-
tive reasoning and simulation. Compositional behaviour reason-
ing and automatic topology generation have been integrated to
develop a relatively complete system for the computer-aided
conceptual design of mechanisms. Nevertheless, current reason-
ing in the functional level is still limited to prototype retrieval.
Furthermore, the interface of the geometrical reasoning of the
configuration space for the design of multiple-state mechanisms
was considered, but not realized due to the challenges of geo-
metrical reasoning. These problems will be investigated in future
research.

Acknowledgement The research is supported by the Chinese National Sci-
ence Foundation (Grant No. 50275092), and was partially sponsored by the
Shanghai Industrial Sewing Machine Co. Ltd.

References

1. Zou HJ (2002) Conceptual design of mechanical systems. Mechanical
Engineering Publisher, Beijing (in Chinese)

2. Johnson RC (1978) Mechanical design synthesis – creative design and
optimization. Krieger, Melbourne, Florida

3. Kota S (1993) Type synthesis and creative design of mechanisms. In:
Erdman AG (ed.) Modern kinematics, developments in the last forty
years. Wiley, New York, pp 27–74

4. Hsu W, Woon IMY (1998) Current research in the conceptual design of
mechanical products. Comput Aided Des 30(5):377–389

5. Freudenstein F, Dobrjanskyj L (1964) On the theory for the type synthe-
sis of mechanisms. In: Proceedings of the 11th International Conference
on Applied Mechanics, pp 420–428

6. Mruthyunjaya TS (2003) Kinematic structure of mechanism revisited
(review). Mech Mach Theory 38:279–320

7. Tsai LW (2001) Mechanism design — enumeration of kinematic struc-
tures according to function. CRC Press, Boca Raton, Florida

8. Yan HS (1998) Creative design of mechanical devices. Springer,
Singapore

9. Stahovich TF (2001) Artificial intelligence in design. In: Antonsson
EK, Cagan J (eds) Formal engineering design synthesis. Cambridge
University Press, Cambridge, pp 228–269

10. Joskowicz L, Sacks E (1991) Computational kinematics, Artif Intell,
51(1–3):381–416

11. Artobolevsky I (1979) Mechanisms in modern engineering design, vol-
ume 1–4. MIR Publishers, Moscow (English translation)

12. Joskowicz L, Neville D (1996) A representation language for mechani-
cal behaviour. Artif Intell Eng 10(2):109–116

13. Subramanian D, Wang CS (1995) Kinematic synthesis with configura-
tion space. Res Eng Des 7:193–213

14. Kannapan S, Marshek K (1990) An algebraic and predicate logic ap-
proach to representation and reasoning in machine design. Mech Mach
Theory 25:335–353

15. Li CL, Tan ST, Chan KW (1996) A Qualitative and heuristic ap-
proach to the conceptual design of mechanisms. Eng Appl Artif Intell
9(1):17–31

16. Chiou SJ, Kota S (1999) Automated conceptual design of mechanisms.
Mech Mach Theory 34(3):467–495

17. Ye ZG, Zou HJ, Wang SZ (2004) The establishment and reasoning of
knowledge base system for mechanism kinematic schemes. Int J Adv
Manuf Technol 23:295–300

18. Forbus KD (1980) Spatial and qualitative aspects of reasoning
about motion. In: Proceedings of the AAAI-80, AAAI Press, Menlo
Park, CA

19. Faltings B (1990) Qualitative kinematics in mechanisms. Artif Intell
44(1–2):89–119

20. Faltings B, Sun K (1996) FAMING: supporting innovative mechanism
shape design. Comput Aided Des 28(3):207–216

21. Stahovich TF, Davis R, Shrobe H (1998) Generating multiple new de-
signs from a sketch. Artif Intell 104:211–264

22. Li CL, Chan KW, Tan ST (1999) A configuration space approach to the
automatic design of multiple-state mechanical devices. Comput Aided
Des 31:621–653

23. Roy U, Pramanik N, Sudarsan, R, Sriram RD, Lyons KW (2001)
Function-to-form mapping: model, representation and applications in
design synthesis. Comput Aided Des 33:699–719

24. Bracewell RH, Sharpe JEE (1996) Functional descriptions used in com-
puter support for qualitative scheme generation – “Schemebuilder”.
Artif Intell Des Anal Manuf 10(4):333–346

25. Molian S (1969) Storage and retrieval of descriptions of mechan-
isms and mechanical devices according to kinematic type. J Mech 4:
311–323

26. Hoeltzel DA, Chieng WH (1990) Pattern matching synthesis as an auto-
mated approach to mechanism design. J Mech Des 112:190–199

27. Kota S (1992) Automatic selection of mechanism designs from a three-
dimensional design map. J Mech Des 114:359–367

28. Swedish Institute of Computer Science (2003) SICStus Prolog 3.11.0
User’s Manual. Swedish Institute of Computer Science, Kista, Sweden

29. Tian YL, Zou HJ, Guo WZ (2003) Study on modelling and simula-
tion methods for constitution objects of mechatronic products based on
Matlab-SimMechanics. Mach Des Res 19(5):10–14 (in Chinese)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

