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A b s t r a c t  As the result of vibration emission in air, a machine 
sound signal carries important information about the working 
condition of machinery. But in practice, the sound signal is typ- 
ically received with a very low signal-to-noise ratio. To obtain 
features of the original sound signal, uncorrelated sound sig- 
nals must be removed and the wavelet coefficients related to 
fault condition must be retrieved. In this paper, the blind source 
separation technique is used to recover the wavelet coefficients 
of a monitored source from complex observed signals. Since 
in the proposed blind source separation (BSS) algorithms it is 
generally assumed that the number of sources is known, the 
Gerschgorin disk estimator method is introduced to determine 
the number of sound sources before applying the BSS method. 
This method can estimate the number of sound sources under 
non-Gaussian and non-white noise conditions. Then, the partial 
singular value analysis method is used to select these signifi- 
cant observations for BSS analysis. This method ensures that 
signals are separated with the smallest distortion. Afterwards, 
the time-frequency separation algorithm, converted to a suit- 
able BSS algorithm for the separation of a non-stationary signal, 
is introduced. The transfer channel between observations and 
sources and the wavelet coefficients of the source signals can be 
blindly identified via this algorithm. The reconstructed wavelet 
coefficients can be used for diagnosis. Finally, the separation 
results obtained from the observed signals recorded in a semi- 
anechoic chamber demonstrate the effectiveness of the presented 
methods. 
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1 Introduction 

Most fault diagnosis technologies are based on vibration sig- 
nal analysis. However, while it is difficult to detect vibration 
signal and it is ineffective to make fault diagnosis based on vi- 
bration signal analysis, the machine sound signal is observed 
and the sound features can be obtained to make fault diagno- 
sis. This is an acoustic based diagnosis (ABD) technique [1]. 
The ABD method possesses many advantages, such as provide 
easy measurement and having no effect on the working con- 
dition of machine. The fundamental problems for ABD tech- 
nique is that the sound signal has very low signal-to-noise 
ratio (SNR) and it is not effective in obtaining sound fea- 
tures via traditional Fourier analysis [2]. In the acoustic field, 
the interference of other sound sources is often strong and 
sometimes it is even stronger than the monitored source it- 
self. The sound signal of the monitored source is usually im- 
mersed in the complex observed signal. Thus, to obtain the 
useful information regarding the monitored system, an effective 
method for removal of interference and feature extraction must 
be designed. 

In [3], blind source separation (BSS) is used to remove the 
spectral interference of uncorrelated sources and to recover the 
spectra of sources. Though the spectrum of the monitored source 
can be recovered via this method, the fast Fourier transform 
(FFT) analysis is proved to have little effect in sound feature ex- 
traction. In [2] and [4], the wavelet transform is shown to be an 
effective method for sound feature extraction. In reconstructing 
the wavelet coefficients, the sound features are obtained as a pu- 
rified sound signal or a symmetrised dot pattern. But the validity 
of this method is reduced while there exists a strong interference 
of uncorrelated sources. In this paper, the above techniques are 
combined. The blind source separation method is used to remove 
the interference of uncorrelated sources and to recover wavelet 
coefficients of the sources. Then, using the aforementioned re- 
constructing techniques for recovered wavelet coefficients, the 
specific features of sources can be obtained for diagnosis. Since 
each source is recovered by the BSS method, this approach is 
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even suitable to multi-systems condition monitoring and fault di- 
agnosis. 

In previous BSS algorithms, the number of sources is typ- 
ically assumed to be known [5-10]. In practice, however, the 
number of sound sources is usually unknown at first. So this pa- 
per proposes the modified Gerschgorin disk estimator method for 
determining the number of sound sources [11]. For the purpose 
of estimating the number of sources, the number of observed sig- 
nals is chosen to be as great as possible, since it must be larger 
than the number of sources. But for BSS analysis, only the same 
number of observations as the number of sources is required, 
theoretically. In previous BSS algorithms, all observations are 
used and those that are significant for BSS analysis are not con- 
sidered. Thus, the partial singular value analysis technique is 
developed in this paper [12]. This method is applied to selecting 
the most significant signals among all observed signals for BSS 
analysis. Then, the BSS algorithm suitable to recovery of wavelet 
coefficients of source signals is investigated. The time-frequency 
separation algorithm, an effective algorithm for the blind sepa- 
ration of non-stationary signals, is used to identify the transfer 
channel between the sources and the observations [8]. While the 
transfer channel is blindly identified, the wavelet coefficients of 
each source signal can be recovered via the traditional source- 
identification technique. Finally, the experiments are conducted 
in semi-anechoic chamber and experimental results demonstrate 
the effectiveness of the proposed methods. 

This paper is organized as follows: in Sect. 2, the problem 
model and blind source separation technique are discussed; in 
Sect. 3, the modified Gerschgorin disk estimator method is em- 
ployed to estimate the number of sound sources, and then the par- 
tial singular value analysis method is developed to select signifi- 
cant observations for BSS analysis; in Sect. 4, the time-frequency 
separation algorithm is introduced to identify the transfer chan- 
nel and to recover the wavelet coefficients of sources; in Sect. 5, 
the experimental results and analysis are given; finally, Sect. 6 
offers our conclusions. 

xi(t) (i = 1 . . . . .  iV), the source signals sj(t)(j = 1 . . . . .  M) 
and the mixing coefficients aij (i = 1 . . . . .  N; j = 1 . . . . .  M) 
are expressed in vector or matrix form, and there are X(t) = 
(Xl (t), XE(t), - �9 �9 , XN(t)) r, and A = (aiJ)Nx M. Eq. 1 is rewritten 
in matrix form as: 

X(t) = AS(t) (2) 

where matrix A is referred to as the "mixing matrix". 
Blind source separation was originally introduced by Jutten 

and Herault [5]. It is a fundamental technique for signal process- 
ing and data analysis that allows for the recovery of unknown 
source signals from observed signals under the condition of un- 
known transfer channel The only prior information utilized for 
BSS is the mutual independence of sources and the linearity of 
transfer channel [5-10]. Thus, the BSS technique is especially 
suitable to resolve the problem of machine sound separation, 
for which it is very difficult for machine sound propagation to 
establish the model of transfer channel between sources and 
observations. 

The problem of BSS includes the reconstruction of inde- 
pendent source signals from observations. The general process 
of BSS is shown in Fig. 1. Under the restriction of a contrast 
function that serves as an objective function that weighs the in- 
dependence of signals, and the unknown mixing matrix A or 
separating matrix B, that is the Moore-Penrose pseudo-inverse of 
mixing matrix, is estimated. Then the sources are recovered as: 

S(t) = BX(t) (3) 

Matrix B or A can be estimated via "closed-form" algorithms 
or "data-iterative" algorithms [9]. "Closed-form" algorithms col- 
lect some statistics of X(t) in a single pass, and then use these 
statistics to estimate the mixing matrix A. "Data-iterative" algo- 
rithms attempt to find the separating matrix B, such that some 
empirical statistics of the reconstruction S(t) minimize the con- 
trast function. 

2 Problem model and blind source separation 

Suppose there exist M sound sources, which may come from 
one or more machines. The source signals sj(t)(j  = 1 . . . . .  M) 
are assumed to be mutually independent and additive. The mi- 
crophones are arranged to record the sound signals. To achieve 
source separation, the number of microphones N must satisfy 
the condition of N > M [5, 6]. Generally, the observed signals 
xi(t)(i = 1 . . . . .  N) are the contribution of all source signals. 
In an acoustic-based monitoring process, the transfer channel 
between observations and sources may be considered to mix in- 
stantaneously [13]. Thus, the observed signals are written as: 

M 
Xi(t ) = ~ [aijsj(t)] + ni(t) for i = 1, L, N 

j = l  

(1) 

where aij is an unknown mixing coefficient between the j th  
source and the ith measuring position. The observed signals 
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Fig. 1. Position map of sources and microphones 
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The problem of blind source separation has two inherent am- 
biguities [9, I0]: first, it is not possible to know the original 
labeling of the sources; hence, any permutation of the estimated 
sources is also a satisfactory solution. The second ambiguity is 
that it is inherently impossible to uniquely identify the source 
signals. This is because the exchange of a fixed scalar factor 
between a source signal and the corresponding column of the 
mixing matrix A which does not affect the observations, as is 
shown by: 

1 . . . . .  N) are calculated as follows: 

N 

r i= y ~  I q / j l f o r i = l  . . . . .  N 

j = l  
j # i  

(5) 

The GDE criterion for estimating the number of sources is de- 
fined as [15]: 

N 

i=1 

N - 1  C(n) y~ 
(4) GDE(k) = rk - N -----'-~ ri (6) 

i=1 

where r is an arbitrary factor, and a i denotes the ith column 
of A. 

For feature extraction, it is shown that any permutation of 
the estimated sources only changes the labeling of source in 
vector S(t) .  The feature extraction of sources is not affected 
by this ambiguity. The second ambiguity results in the esti- 
mated sources being multiplied by an arbitrary amplitude fac- 
tor ci. But the relative amplitude of the waveform point and 
wavelet coefficients is invariable. Thus, for the purpose of fea- 
ture extraction, it is not affected by the ambiguities of BSS 
analysis. 

3 Determining the number of sources and selecting 
significant observations for BSS analysis 

3.1 Modified Gerschgorin disk estimator method for 
determining the number of sources 

The number of sources has to be determined before doing 
BSS analysis. In practice, since the number of sources is usu- 
ally unknown, the number of observed signals has to be big 
enough. This means that there should be as many micro- 
phones as possible. The hypothesis testing method, based on 
the confidence interval of the noise eigenvalue, can be used 
to determine the number of sources. But since a threshold 
value must be decided subjectively, this method is not cred- 
ible for real application. Thus, methods that are free of sub- 
jective judgment are sought. The Akaike information criterion 
(AIC) method, the minimum descriptive length (MDL) method 
and the Gerschgorin disk estimator (GDE) method are ef- 
fective for estimating the source number. Since the modified 
GDE method is a model-independent approach and is effective 
for both non-Gaussian and non-white noise models, we ap- 
ply modified GDE in this paper to determine the number of 
sources. 

The modified GDE method exploits the Gerschgorin radii of 
the transformed covariance matrix to determine the number of 
sources. By performing the unitary transformation on the esti- 
mated covariance matrix, the Gerschgorin radii ri  ( i  -~- 1 . . . .  N)  

of the transformed covariance matrix Q with element qij (i, J = 

where k is an integer in the closed interval [1, N - 2], and C ( n )  

is a non-increasing, adjustable factor function (between 0 and 
1). For the modified GDE method, N different unitary trans- 
formations are performed and the averaged criterion is written 
as:  

1 N 
MGDE(k) = ~ Z GDMi(k) 

i=1 

(7) 

where GDEi(k) is a GDE criterion for the ith transformed co- 
variance matrix. If MGDE(k) is evaluated from k = 1, the num- 
ber of sources is determined as k -  1 (i.e. M = k -  1) when 
the first non-positive value of MGDE(k) is reached for k 
{1, N - l ) .  

3.2 Partial singular value analysis technique for selecting 
significant observations 

In an acoustic-based monitoring process, the number of obser- 
vations is always larger than the number of sources. While the 
number (N) of observations is no less than the number (M) of 
sources, the source separation can be achieved theoretically via 
any combination of observations. It is obvious that the com- 
putational complexity can be reduced by using M observations 
for BSS analysis. Moreover, in practice the influence of noise 
on the observations is different. Therefore, it is interesting that 
M significant observations are selected for BSS analysis. In the 
process of data acquisition, the observations that are close to 
the real source usually possess smaller noise interference, and 
are considered to be significant. Under this criterion, the partial 
singular value analysis method is developed for choosing these 
observations. 

The partial singular value analysis method chooses signifi- 
cant observations via weighting the contribution of an obser- 
vation to the singular value of the spectral density matrix of 
observations [ 14]. The spectral density matrix of observations is 
denoted as P x ( f ) ,  and its singular value decomposition is ex- 
pressed as: 

Px = VxA xVx  H (8) 
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where V is a unitary matrix and the singular value matrix A x  is 
constituted by singular value ai (i = 1 . . . . .  N), as follows: 

A x  = (9) 

The matrix A x  indicates some characteristics of independent 
sources and it is known that the number of sources can be de- 
termined by testing the number of the non-zero, singular-values 
under a noise-free condition. Thus, it is reasonable that the sin- 
gular values t7 i (i = 1 . . . . .  N) of matrix Px( f )  can be considered 
as weight for checking the power ratio of independent sources 
contained in the observed signal vector X(t). 

While the ql th  observed signal Xql (t) is removed from the 
observation vector X(t), the modified observation signal vector 
X.ql (t) is written as: 

X . q l  ( t )  : -  ( x  l ( t ) , . . .  , X q l _  l ( t ) ,  O, x q l  + l ( t ) ,  . . . , x N ( t ) )  T 

f o r q l  = 1 . . . . .  N (10) 

The spectral density matrix of X.ql (t) is denoted as Px.q~ (f), and 
its singular value decomposition is given as: 

PX.ql  = "V[ql A . q l  V.qHI (1 1) 

The diagonal elements tri.ql (i = 1 . . . . .  N) of the singular value 
matrix A.ql are defined as the first order partial singular values. 
So, the first order partial singular values indicate the power ratio 
of independent sources contained in the modified signal X.q] (t). 
Then, the q2th observed signalxq2(t)(1 < q2 < N, q2 ~: q l )  is 
removed from X.ql (t) and the modified observation vector is de- 
noted as X.ql.q2(t). The spectral density matrix of X.ql.q2(t) is 
denoted a s  ex.ql.q 2 (j#), and its singular value matrix is denoted as 
A . q l . q 2 .  The diagonal elements O'i.ql.q2 ( i  : l ,  . . . , N )  o f  m a t r i x  

A.ql.q2 are defined as the second order partial singular values. 
So, the second order partial singular values indicate the power 
ratio of independent sources contained in the modified signal 
X.ql.q2(t). Similarly, any order partial singular value can be cal- 
culated in this way. 

The sum(Aa.ql)(ql = 1 . . . . .  N) is defined as the summa- 
tion of the decrement of singular values while signal Xql(t) is 
removed, and it is written as the trace difference between matrix 
A.ql andAx. For instance: 

sum(Aa.ql) = Tr(Ax) - Tr(A.ql) for q l  = 1 . . . . .  N (12) 

The sum(Aa.ql) indicates the contribution of signal Xql(t) to 
singular values of the spectral density matrix Px(f) .  The more 
significant that removed signal is, the more the singular values 
will be reduced. Similarly, the sum(Ao-.ql.q2 ) is written as the 
trace difference between matrix A.ql.q2 and A x. For instance: 

s u m ( A O . q l . q 2 )  : Tr(A x) - T r ( A . q l . q 2 )  

for q2 = 1 . . . . .  N and q2 ~ ql  (13) 

Other sum(o) can be also calculated in this way. The sum(e) is an 
optimal criterion for the selection of the most significant signals 
among all observations. 

First, the observation Xql (t) that results in the corresponding 
sum (Aa.ql)  which has the largest value is selected as a key sig- 
nal. The next key signal, assumed to be the Xq2(t), is decided 
by the largest sum(AtT.ql.q2 ). This procedure could be repeated 
M times, until M observations are completely determined. Ba- 
sically, these observations are an optimal set for BSS analysis 
among all candidate observations. 

4 lime-frequency separation algorithm 
for identifying mixing matrix 
and recovering wavelet coefficients 

There are various BSS algorithms developed for retrieving 
the time waveforms of various sources, such as non-Gaussian 
sources, Gaussian sources, stationary sources and non-stationary 
sources. In an acoustic-based diagnosis field, the source signals 
are usually non-stationary and more attention is paid to recover- 
ing the wavelet coefficients related to fault features. Therefore, 
as a suitable algorithm for the separation of non-stationary sig- 
nals, the time-frequency separation (TFS) algorithm is proposed 
to identify the mixing matrix of model [9]. Consequently, the 
wavelet coefficients of sources are obtained via the traditional 
source-identification method. 

The TFS algorithm belongs to the family of "closed-form" 
BSS algorithms and it is based on a joint diagonalisation of 
a combined set of spatial time-frequency distributions matrix. 
The spatial time-frequency distributions matrix of the source sig- 
nal vector S(t) is defined as: 

oo oo 

Ds(t, f) = Z Z q~(m,l)S(t +m + 1) 
I=--eo m = - o o  

S* (t + m - l)e -j4rrft (14) 

where t and f represent the time index and the frequency in- 
dex respectively, and superscript * denotes conjugate transpose. 
The kernel tp(m, l) characterizes the distribution and is a func- 
tion of both the time and lag variables. Since the off-diagonal 
elements of matrix Ds(t, f) are cross terms of Ds(t, f),  this ma- 
trix is diagonal for each t - f point that corresponds to a true 
power concentration, such as signal auto-term. Under the linear 
data model of (1), the spatial time-frequency distributions matrix 
of observations is given by: 

Dx(t,  f) = ADs(t, f )A  H (15) 

where superscript H denotes the Hermite transpose. 
The first processing step of the TFS algorithm consists 

of obtaining a whitened signal Y(t). This is achieved via ap- 
ply a whitening matrix W to the whitened signal X(t). For 
instance: 

Y(t) = WX(t) = WAS(t) (16) 



The whitening matrix W satisfies: 

lim 1 r ~-,~ ~ ~_, wx(t)x* ( t ) w  H = 

t = l  

WRx(O)W H = W A A H W  H = I (17) 

where Rx(O) is the covariance matrix of observed signals. It is 
noted for above equation that we take advantage of the second 
ambiguity of BSS analysis by treating the source signals as if 
they have unit power so that the dynamic range of the sources is 
accounted for by the magnitude of the corresponding columns of 
mixing matrix A. This is the covariance matrix of source signals 
that satisfies Rs(O) = I. From the above equation, we know that 
WA is a unitary matrix, and is defined by: 

U zx WA (18) 

Therefore, the whitening procedure converts the problem of 
identifying a mixing matrix A into a unitary matrix U. 

Similar to Eq. 8, the spatial time-frequency distributions ma- 
trix Dr( t ,  f )  of a whitened signal is given as: 0.14 

Dr(t ,  f )  = WDx( t ,  f ) W  H = UDs(t, j~U H (19) 0.12 

Since matrix U is unitary (i.e. U -1 = U H) and Ds)and(t, J~ is 0.1 
diagonal, the unknown unitary matrix can be obtained as a uni- 
tary diagonalising matrix of a whitened spatial time-frequency #, 0.08 
distributions matrix for some t - f points corres^ponding to a sig- 
nal autoterm. In this case, a unitary matrix U is obtained as ~0.06 
joint diagonalizer of the set {Dy(ti, ft) li = 1 . . . . .  K }. Here, the 
joint diagonaliser of the set {Dy(ti, ft-) li = 1 . . . . .  K } means 0.04 
minimizing the following joint diagonalisation criterion function 
C(U) over the set of all unitary matrices: 

K 
C(U) = E ~ Dy(ti '  f i )U)  (20) 

i=1 

where "off'  is the sum of non-diagonal elements of a matrix, (a) 
which indicates the extent of diagonalisation of a matrix. It is 

0.14 
defined as: 

o f f (Q)=  E q2. (21) 0.12 

l<i~=j<M 0.1 

where qij is the element of matrix Q. The joint diagonalisation 
criterion function C(U) is usually served as a contrast function ~ 0.08 
for identification. = 

While estimator U is obtained via minimizing the contrast ~ 0.06 
function C(U), BSS becomes a common source-identification 

0.04 
problem. The wavelet transform Wr(a, b) of whitened signals 

Y(t) is defined as: 0.02 

Wy(a,b)=lal-�89 (22) 0 

R 

where r is the basic wavelet function. The wavelet trans- (b) 
form is applied to Eq. 16. From Eq. 18, consequently, the wavelet 
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transform Ws(a, b) = (Wsl (a, b), . . . , WsM(a, b) ) r of sources 
are obtained as follows: 

VCs(a, b) = UHWy(a,  b) (23) 

Thus, the wavelet coefficients of each source are successfully 
recovered from observations and the sound features can be ob- 
tained via reconstructing the wavelet coefficients. The purified 
sound signal or symmetrised dot pattern can be used to make me- 
chanical fault diagnosis even in mutual interference condition of 
multi-sources. 

5 Feature separation of machine sound signals 

To check the availability of the second order blind identification 
(SOBI) method of spectrum separation version, experimental re- 
search was done in a semi-anechoic chamber. The sound sources 
are set up as two motors. Three microphones are placed to record 
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Fig. 2. The power spectra of sources 
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sound signals. The position map is shown in Fig. 1. For data ac- 
quisition, 65 536 samples per channel are stored at a sampling 
rate of 5 kHz. 

The first step in the experiment was to record the individ- 
ual source signal under the condition of keeping only one motor 
in working condition. The measured spectra of two motors are 
shown in Fig. 2. It is obvious that each source has distinct fea- 
tures. For example, the 500 Hz component and its harmonics 
(which is marked as 1,2,3 and 4) dominate the spectrum of the 
first source, as shown in Fig. 2a, and the 100 Hz, 200 Hz, 588 Hz, 
734 Hz, 880 Hz, 1020 Hz and 2055 Hz harmonic components 
(which are marked as a, b, c, d, e, f and g) dominate the spectrum 
of the second source, as shown in Fig. 2a. 

Then, we let the two motors run simultaneously and the 
sound signals are recorded with three microphones. The spec- 
tra of mixing signals are shown in Fig. 3. It can be seen that 
the features of the original spectra are mixed in all spectrum re- 
ceived, that is, the individual features of the motor cannot be 
distinguished easily. 

Therefore, BSS method is applied to separate the two 
sources. Firstly, the number of sources should be determined. 
According to the discussion in Sect. 3, the singular-value an- 
alysis method is used. The calculating result for singular-value 
matrix is received as that ,~x = diag (0.1478, 0.1241, 0.0296), 
where diag(.)  means diagonal matrix. As can be seen clearly that 
the 3rd value in singular-value matrix is relatively much smaller. 
Therefore, the number of sources is considered to be two. This 
means only the real number of sources are considered. 

Next, the partial singular-value analysis is introduced to re- 
duce the influence of the ill-conditioned problem on the sep- 
arated results. The first order partial singular-value of spectral 
density matrix Pxk (f) is obtained; that is, sum(A~rl ) = 0.1056, 
sum(An2) = 0.0769, and s u m ( A r t 3 ) =  0.1190. It can be seen 
that the sum(A~rl) and sum(Acr3) are the two largest values 
among sum (Atrk) (k = l, 2, 3). This means that the 1st and the 
3rd measuring signals are more significant. Therefore, these two 
measuring signals are selected for BSS analysis. The separated 
spectra are achieved via the spectral version of the SOBI algo- 
rithm, and the results are shown in Fig. 5. 

Comparing the separated results with its originals, it is eas- 
ily found that there exists a scaling factor between the separated 
sources and the original sources. But this does not affect the iden- 
tification to the features. As can be seen in Fig. 4a, the main 
features of the 1st separated spectrum will match the 1st source 
(motor 1). This means that the first source is successfully re- 
covered since the harmonic components (1), (2), (3) and (4) are 
almost same in features, even though the harmonics (d) and (e) 
of the 2nd source still appear here, as shown in Fig. 2. The 2nd 
separated source possesses the harmonic components (a), (b), 
(c), (d), (e), (f) and (g), as shown in Fig. 4. The influence of the 
harmonics (1), (2), (3) and (4) of the 1st source is significantly 
reduced. The separated result matches with the 2nd source very 
well. Therefore, in general, the overall quality of the separation 
can be evaluated as satisfactory in terms of feature separation. 

Finally, to further prove that the 1st and 3rd measuring sig- 
nals are more significant for BSS analysis, the 1st and 2nd meas- 
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Fig. 4a,b. The separated power spectra based on the 1st and 3rd measuring 
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uring signals are selected to estimate the spectra of sources. The 
separated spectra are also achieved via the spectral SOBI algo- 
rithm and the results are shown in Fig. 5. Here, it can be seen 
that the mutual interference of sources becomes stronger. The 
quality of separation is inferior to the quality of the above. The 
same trend exists when the 2nd and the 3rd measuring signals are 
selected to estimate the spectra of sources. 

The experiment was conducted in a semi-anechoic chamber 
to reduce sound reflection. The monitored system consists of two 
motors. The motors radiate machine sound and are considered to 
be sound sources. Three microphones are placed to record sound 
signals. The plan position map of monitored system and measur- 
ing microphones is shown in Fig. 2. 

While two motors run simultaneously, the machine sounds 
are disrupt each other and the signal received by each micro- 
phone is the contribution of two sources. Sound interference is 
inevitable in the process of acoustic measuring. Changing the 
measuring location will change the mixing coefficients of mixing 
model, but in practice there is a very limited potential of reduc- 
ing sound interference by changing the measuring location. BSS 
technique separates source without resorting to the mixing coef- 

(b) the second separated source 
Fig.5a,b. The separated power spectra based on the 1st and 2nd measuring 
signals a the first separated source b the second separated source 

ficient. This method does not depend on the mixing matrix and it 
is used to separate machine sound from observations. 

We have 65 536 samples of signals at 15 kHz. Each of these 
is resampled (after low-pass filtering) at a frequency of 5000 Hz 
to highlight the desired frequency band and to ensure that the 
mixing model is as instantaneous as possible. 

In order to check the separated results, each motor run indi- 
vidually at first. The spectra of two motors are shown in Fig. 3. 
It is obvious that each source has distinct features. For the first 
source, the 500 Hz harmonic component and its times (which are 
marked as 1,2,3 and 4) dominate the spectrum; and in the case of 
the second source, the 100 Hz, 200 Hz, 588 Hz, 734 Hz, 880 Hz, 
1020 Hz and 2055 Hz harmonic components (which is marked as 
a, b, c, d, e, f and g) dominate the spectrum. 

Then we let the two motors run simultaneously, the machine 
sounds being recorded with three microphones. The spectra are 
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shown in Fig. 4. It can be seen that the spectra are the mixings of  
the two sources and the features cannot be distinguished. 

The sources are separated with BSS method. First, to deter- 
mine the number of  sources, the singular value analysis of  the 
spectral density matrix is carried out and the singular value ma- 
trix E x  is constructed as ,~x = diag (0.1478, 0.1241, 0.0296), 
where diag(o) means a diagonal matrix. It is obvious in singular 
value matrix that the 3rd singular value is relatively smaller than 
the others. Therefore, the number of  sources is considered to be 
two. This consists with the real number o f  sources. 

Second, to reduce the influence of  the ill-conditioned prob- 
lem on separated results, a partial singular value analysis is 
carried out. The first order partial singular value of  spectral dens- 

ity matrix Pxk(f) is calculated, and the sum(A~rk) (k = 1, 2, 3) 
are obtained as sum(A~r]) = 0.1056, sum(Act2) = 0.0769, and 
sum(Act3) =0 .1190 .  It can be seen that the sum(Acrt) and 
sum(Act3) are the two largest values among s u m ( A a k ) ( k  = 
1, 2, 3). This means that the 1st and the 3rd observations are 
more significant. Therefore, those two observations are selected 

for BSS analysis. 
The separated spectra are achieved via the spectral SOBI 

algorithm. Results are shown in Fig. 5. From the separated am- 
plitudes, it is evident that there exists a scaling factor between 
the separated sources and the original sources, but this does not 
affect the separation of  features. In comparing these results to 
Fig. 3, it is obvious that the main features of  each motor are suc- 
cessfully separated. The harmonics (1), (2), (3) and (4) are well 
recovered to the I st separated source. Even though the harmonics 
(d) and (e) of  the 2nd source are also assigned to the 1st separated 
source, they are very weak and have little influence on the sep- 
arated result. The 2nd separated source possesses the harmonics 
(a), (b), (c), (d), (e), (f) and (g). The influence of  the harmon- 
ics (1), (2), (3) and (4) of  the 1st source is significantly reduced. 
The separated result is consistent in the case of  the 2nd source as 
well. Compared to the I st separated result, the remainder of  the 
1st source exists in the 2nd separated source. The may be caused 
by the fact that the 1st source possesses more power in observa- 
tions and as such, its influence on the separated results becomes 

stronger. In summary, the overall quality of  separation can be 
evaluated as being satisfactory with respect to feature separation. 

Finally, to prove that the 1st and the 3rd observations are 
more significant for BSS analysis, the 1st and the 2nd observa- 
tions are selected to estimate the spectra of  sources. The sepa- 
rated spectra are also achieved via the spectral SOBI algorithm, 
and the results are shown in Fig. 5. It can be seen that the mutual 
interference of  sources becomes strong. In this case, the quality 
of  separation is of  inferior quality. The same trend exists when 
the 2nd and the 3rd observations are selected to estimate the 
spectra of  sources. 

6 Conclusions 

Machine sound signals can be used in fault diagnosis. But the 
mutual interference of  sound signals could reduce the SNR of the 

observed signals, since the feature sound may be hidden. This 
paper suggests the BSS technique as an effective method for re- 
covering the feature sound signals from observed signals. In the 
application of  the BSS algorithm, the number of  sources must 
be determined. We were successful in applying the modified 
Gerschgorin disk estimator method to determine the number of  
sources. The partial singular value analysis method is developed 
and is proved to be effective for selecting significant observa- 
tions for BSS analysis. Finally, the t ime-frequency separation 
algorithm is shown to be useful in the recovery o f  the wavelet  co- 
efficients of  sources. The reconstructed wavelet  coefficients can 
be used to make fault diagnosis. 
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