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Abstract A numerically controlled (NC) machining verifica-
tion method is developed based on a formulation for delineating
the volume generated by the motion of a cutting tool on the
workpiece (stock). The motion of a cutting tool is modeled as
a surface undergoing a sweep operation along another geometric
entity where machine tool trajectory includes translational and
rotational movements. A rank-deficiency condition is imposed
on the Jacobian of the sweep to determine the singular surfaces.
Singular entities are then intersected to determine sub-entities
that may exist on the boundary of the volume. A perturbation
method is used to identify the boundary envelope of the material
volume to be removed. Numerical examples

illustrating the formulation are presented. Benefits of this
method are its ability to depict and visualize the manifold and to
compute a value for the volume.

Keywords Boundary envelope · Jacobian · Manifold ·
NC machining process · Volume

1 Introduction

Integrated computer-aided design (CAD), computer-aided manu-
facturing (CAM), and computer numerical control (CNC) manu-
facturing systems are widely used in today’s manufacturing in-
dustries to increase productivity and efficiency. Complicated part
geometry and the additional machining axes in five-axis NC
machining compared to three-axis tool paths generated by the
current CAM systems may generate some errors, such as cutter
gouging and tool interference. Traditionally, prototypes are used
to verify the tool paths before the actual machining, but that is
time-consuming and expensive.
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Numerically controlled (NC) verification refers to computer
modeling and simulation used in the validation of NC machining
programs before they are executed on a computer-controlled ma-
chine. Currently, most commercial NC simulation systems use
sampling points to represent the cutter geometry and a G-buffer
to represent the machined part surfaces. When the cutter moves
along the tool paths, the distance between the cutter and the part
surface is calculated and updated. However, calculating the dis-
tances between the hundreds of sampling points of the cutter
and the part surface is computationally expensive. While recent
advances in this field have been made in terms of speed and accu-
racy, formulations for verifying machining processes with more
than three axes have been very limited. Early work on this sub-
ject is due to Wang and Wang [1], and important works address-
ing the representation of the boundary of the removed material
have increased in recent years. For example, Boussac and Cros-
nier [2] suggest a representation of swept volumes generated by
the motion of deformable objects based on the topological prop-
erties of n-dimensional manifolds.

Methods of dual quad tree structures and boundary repre-
sentation were applied to modeling the parts cut by a wire for
electric discharge machining (EDM) verification [3]. The sweep-
envelope approach is used to address the NC verification is-
sues [4–6]. The sweep-envelope differential equation method is
probably the most elegant method to date that has proven to
be suitable for NC verification [7, 8]. Some of the works that
have addressed NC verification but have not used swept vol-
ume methods include Voelker and Hunt [9], Menon and Voel-
cker [10], Oliver and Goodman [11], Narvekar et al. [12], Takata
et al. [13], Jerard and Drysdale [14, 15], Koren and Lin [16],
Menon and Robinson [17], Oliver [18], Liang et al. [19], Liu et
al. [20], Lee [21], Lo [22], Chiou et al. [23, 24], Elber and Co-
hen [25], Balasubramaniam et al. [26, 27], Rao and Sarma [28],
Jensen et al. [29], Bohez [30], Mann and Bedi [31], Yoon et
al. [32], Bedi et al. [33], Gray et al. [34, 35], Fussell et al. [36],
Lauwers et al. [37], Jun et al. [38], Bohez et al. [39], and
Langeron et al. [40].

The report by Abdel-Malek and Yeh [41] presented the first
introduction of the Jacobian rank-deficiency method as an ap-
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plication for treating consecutive sweep operations of up to four
parameters. Abdel-Malek et al. [42] expanded this method, pre-
senting a complete rigorous mathematical formulation adapted
from kinematics to study the acceleration function on singular
surfaces.

This paper presents the extension of that work into a broadly
applicable formulation using swept volume theory and pertur-
bation method. This is a closed formulation of sweeps with
n-parameters. Furthermore, adapting this work to numerically
controlled verification proves that the formulation is suitable for
a variety of fields where sweeping is the underlying action.

There have been many works that have treated the topic of
swept volumes (refer to the references surveyed by Abdel-Malek
and Yeh [43] and by Blackmore et al. [44]). Other recent works
that have demonstrated analytic methods for computing swept
volumes are Ahn et al. [45], Elber [46], Ling and Chase [47], and
Sourin and Pasko [48].

We shall first present a formulation for characterizing the
topological space produced as a result of the sweep of a geomet-
ric entity (representing the cutting tool) in space along its cutting
path, and due to multiple axes motion. The goal is to identify
the boundary to this manifold with singularities. The resulting
boundary of the space that is nearly a manifold with singularities
will be identified and its volume computed. A perturbation algo-
rithm will be applied to determine the boundary of the manifold.
It will be shown that this formulation allows for an exact com-
putation of the volume, and thus the accuracy of the verification
process is very high.

2 Formulation

2.1 Determination of singular surfaces

The motion of a cutting tool in an NC milling or EDM process
can be characterized as the sweep of a surface (enveloping the
tool) along some path. Consider a geometric entity that envelops
the cutting tool and is parametrized in terms of one or more vari-
ables as a (3×1) vector given by k(u), where u = [u1 . . . un]T ,
and where the tool can be represented as a curve, a surface, or
an entity in n-dimensional space. In order to generalize the for-
mulation, we shall also consider boundaries imposed on k(u) in
the form of constraints on the parameters ui characterized by in-
equality constraints in the form of uL

i ≤ ui ≤ uU
i . Because of the

multi-axis operation of NC machines, the tool surface will be
swept several times, each along or about an axis. This path will
be considered as a second geometric entity parametrized in terms
of one or more variables as a (3×1) vector Ψ1(v1). This entity
also has a boundary defined by vL

1 ≤ v1 ≤ vU
1 . The manifold gen-

erated by the sweep of k(u1, . . . , un) on Ψ1(v1) is defined by the
vector

N1(q) = [x(q) y(q) z(q)]T = R1(v1)k(u)+Ψ1(v1) , (1)

where N1(q) = [x y z]T , q is the vector of generalized coordi-
nates defined by q = [q1 . . . qn]T = [u1 . . . un v1]T , and R1(v1)

is the (3×3) rotation matrix defining the orientation of the cut-
ting tool. In fact, ξ(q) characterizes the set of all points that
belong to the manifold. Another axis motion yields an expanded
swept volume in the form of

N2(q) = R2(v2)N1(q)+Ψ2(v2) = R2 R1k+ R2Ψ1 +Ψ2 , (2)

where now q = [u1 . . . un v1 v2]T . Another axis motion yields
a modified set defined by

N3 = R3 R2 R1k+ R3 R2Ψ1 + R3Ψ2 +Ψ3 . (3)

The generalized case yields a space characterized by the vector
function ξ = [ξ(x) ξ(y)ξ(z)]T , such that

ξ(q) =
m∏

i=1

Rik+
m−1∑

j=1

⎛

⎝
m∏

i= j+1

[Ri ] Ψj

⎞

⎠+Ψm , (4)

where q = [uT vT ]T , u = [u1 . . . un]T , and v = [v1 . . . vm ]T .
The aim is to identify this space and its boundary, and to compute
its volume, which is the removed material.

To impose inequality constraints, it was shown that a con-
straint of the form qmin

i ≤ qi ≤ qmax
i can be transformed into an

equation by introducing a new set of generalized coordinates λi

such that

qi = ai +bi sin λi i = 1, . . . , n +m , (5)

where ai = (qmax
i + qmin

i )/2 and bi = (qmax
i − qmin

i )/2 are the
mid-point and half-range, respectively. Equation 5 can be writ-
ten as q = Π(λ). At any point in the manifold, a vector constraint
equation H(q∗) with the parametrized inequality constraints can
be defined as

H(q∗)=

⎡
⎢⎢⎣

ξ(x)(q)− x
ξ(y)(q)− y
ξ(z)(q)− z

qi −0.5(qmax
i +qmin

i )−0.5(qmax
i −qmin

i ) sin λi

⎤
⎥⎥⎦ = 0,

i = 1, . . . , n +m , (6)

where q∗ = [uT vT λT ]T is the vector of all generalized coordi-
nates and λ = [λ1 . . . λn+m]T . Note that although (n +m) new
variables (li’s) have been added, (n + m) equations have also
been added to the constraint vector function without affecting the
dimensionality of the problem.

In order to have a well-posed formulation, constraints that are
used to model the geometry of this problem should be indepen-
dent, except at certain critical surfaces in the manifold (implicit
function theorem) when the Jacobian becomes singular. It is im-
portant, therefore, that there be no open sets in the space of
the generalized parameters in which the constraints are redun-
dant. Redundancy occurs when the Jacobian Hq∗ = ∂H/∂q∗, is
rank-deficient, and which will subsequently define varieties (sin-
gularity surfaces) in the manifold.
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The Jacobian is expanded as

Hq∗ =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ
(x)
q1 ξ

(x)
q2 . . . ξ

(x)
qn+m 0 0 0 0

ξ
(y)
q1 ξ

(y)
q2 . . . ξ

(y)
qn+m 0 0 0 0

ξ
(z)
q1 ξ

(z)
q2 . . . ξ

(z)
qn+m 0 0 0 0

1 0 0 0 −b1 cos λ1 0 . . . 0
0 1 0 0 0 −b2 cos λ2 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 1 0 0 . . . −bn+m cos λn+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
ξq 0
I qλ

]
, (7)

where the notation x(x)
q1 denotes the partial derivative of x(x) with

respect to q1, ξq = ∂ξ/∂q is the upper left corner sub-matrix
(only with respect to q), qλ = ∂q/∂λ is the diagonal lower right
corner matrix, and I is the identity matrix.

For an (n +m)-parameter verification, the Jacobian Hq∗ (q∗)
row-rank-deficiency yields the following three types of singular
behavior.

2.1.1 Type I singularity sets

When matrix ξq has rank-deficiency, the singularity sets are type
I. In order to make the matrix ξq rank-deficient of order (d), it is
necessary to determine all square sub-Jacobians, which are ana-
lytic functions. Equating the determinants to zero yields a num-
ber of analytic equations to be solved simultaneously. The zeros
of the resulting equations are sets of constant, generalized co-
ordinates, and type I singularity sets are characterized by the
following:

S(1) ≡ {
p ∈ q : Rank[ξq(u, p)] < 3,

for some constant subset of q
}

, (8)

where q = {uT pT }T , u∩ p = ∅.

2.1.2 Type II singularity sets:

If the matrix qλ is row-rank-deficient (i.e., bi cos λi is zero
for some i = 1, . . . , (n + m)), then qi has reached a limit,
and the corresponding xq is studied for row-rank-deficiency.
When certain parameters reach their limits, e.g., ∂qlimit =
[qlimit

i , qlimit
j , qlimit

k ]T , the corresponding diagonal elements in the
matrix qλ will be equal to zero. Therefore, the corresponding ma-
trix is subjected to the rank-deficiency criterion, where Hq∗ will
take on the following form:

Hq∗ ∼

⎡

⎢⎢⎣

ξq1 . . .ξqi ξqj ξqk . . .ξqn+m

0 . . . 1 0 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0

⎤

⎥⎥⎦ (9)

and where the three columns pertaining to ξqi , ξqj , and ξqk are
removed such that the rank-deficiency criteria are applied again.

The type II singularity set is defined as:

S(2) ≡ {
p = [ p̂∪ ∂qlimit] : Rank [ξq(w, ∂qlimit)] < 3,

for some p̂ ∈ q, dim(∂qlimit) ≤ (n −3)
}

, (10)

where q = {wT ∂qlimit}T , w∩ ∂qlimit = ∅, w = {uT p̂T }T .

2.1.3 Type III singularity sets

Type III sets are all sets that are composed of the combination of
joints at their limits and are defined by:

S(3) ≡
{

p ∈ R(n+m−2) , p ≡ ∂qlimit = [qlimit
i , qlimit

j , . . . ]
}

;
where i 	= j . (11)

2.2 Perturbation method

The singular set is a combination of the above three types of sin-
gularity sets: S(1), S(2), and S(3), such that

S = S(1) ∪ S(2) ∪ S(3) =
{

p1, p2, . . . , pns
}

, (12)

where ns is the total number of singular vectors p. Substitut-
ing these singular vectors into the manifold generated by n +
m-parameter machining in Eq. 4 yields ns parametric singular
entities:

χ i(ui |pi), for i = 1, . . . , ns . (13)

In general, unless otherwise stated, those entities are paramet-
ric surfaces and are denoted by singular surfaces. The vector ui

represents the joint coordinates used as the parameters of the sin-
gular surface i, and pi is the constant singular vector.

Intersections between these singular surfaces may exist.
The intersection curves, also called singular curves, partition
a singular surface into a number of sub-regions called sub-
surfaces, denoted by ψi . Singular curves are considered as
higher-order singularities. It is necessary to determine these
curves, such that every sub-surface can be defined, as shown in
Fig. 1.

Fig. 1. The intersection and partition of singular surfaces
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To compute the intersection curves between two parametric
singular surfaces defined by:

χ1(u, v), u1 ≤ u ≤ u2, v1 ≤ v ≤ v2 (14a)

χ2(s, w), s1 ≤ s ≤ s2, w1 ≤ w ≤ w2 . (14b)

The method proposed by Abdel-Malek and Yeh [49] is em-
ployed. Substitute the following equations

χ1(u1)−χ2(u2) = 0 (15)

and joint limitations of u1 and u2 into the augmented constraint
function H. The intersection curve can then be traced following
the procedure described by Abdel-Malek and Yeh [49].

Upon determining the intersections between all singular sur-
faces, each sub-surface can be identified. Sub-surfaces may exist
inside the manifold or its outer boundaries. It is important to
distinguish these two types of sub-surfaces, because the interior
sub-surfaces may represent some barriers to the motion of cutter
tools, while the outer sub-surfaces are boundaries of the mani-
fold. To determine whether sub-surface ψi is internal or on the
boundary, a perturbation of a selected point on the sub-surface
is carried out. The idea is that the points, perturbed along the
normal direction, on both sides of the sub-surface, should sat-
isfy the equation of constraints, Eq. 6, if the sub-surface is inside
the manifold, rather than on the boundary. Any point on the sub-
surface can be selected, provided that it is not on an intersection
curve.

For a sub-surface ψ i(ui) = ψ i(u, v), the variables u, v are
the parameters. At any point on the sub-surface, suppose the cor-
responding joint coordinate vector is z0, which can be partitioned
as:

z0 =
[
u0 v0 piT

]T
. (16)

The normal vector of a singular surface can be calculated as:

n0 =
(

∂ψi

∂u
× ∂ψi

∂v

)/ ∥∥∥∥
∂ψi

∂u
× ∂ψi

∂v

∥∥∥∥ . (17)

For a small perturbation ∂ε about this point and along the normal
vector n0, the coordinates of the perturbed point can be calcu-
lated as:

ξ p = ψi(u0, v0)± ∂εn0 . (18)

For the perturbed point to exist within the manifold, an admissi-
ble time vector should exist that satisfies Eq. 6, such that a solu-
tion to the following equations exists:
[
ξ p −Φ(q)

q −Π(λ)

]
= 0 . (19)

The modified Newton–Raphson method with the generalized in-
verse method is used to determine whether this nonlinear system
of equations has a solution. The sub-surface ψi is an internal sur-
face if and only if solutions to Eq. 19 exist for both perturbations
of ±∂ε. Otherwise, the surface will be on the boundary of the
manifold.

2.3 Calculation of the volume

Because this formulation yields closed-form surface equations
for describing the boundary of the manifold, it is now possible
to apply the divergence theorem to compute the material volume
removed that is essential to the NC verification. The contribution
of a variety χ(i)(u), where u = [q1 q2]T , to the volume of a mani-
fold with unit normal n̂(i) using the divergence theorem is given
by:

3V =
∫∫

A

χ(i)(u)n̂(i) d A . (20)

The area is given by d A = ‖χ(i)
q1 ×χ

(i)
q2 ‖dq1 dq2 and for a var-

iety that is a parametric entity, the normal vector is written as

n̂(i) = χ
(i)
q1 ×χ

(i)
q2

‖χ(i)
q1 ×χ

(i)
q2 ‖ . Substituting for d A and for n̂(i) into Eq. 20, the

volume V of a solid model enclosed by varieties is the summa-
tion of the contribution of all boundary varieties as (note that n is
not a unit vector):

V = 1

3

η∑

i

∫∫

A

χ(i)(q1, q2)n(i) dq1 dq2 . (21)

3 An introductory example

Consider the NC verification of a process involving the motion
of a cutting tool represented by the parametric vector Γ (u) =
[10 cos u 10 sin u 10]T . The first motion will be a rotational mo-
tion of Γ and the second motion will be translational along an
axis. The rotation matrix is

R2(v2) =
⎡

⎣
cos v2 0 − sin v2
sin v2 0 cos v2

0 −1 0

⎤

⎦ .

The translational path is Ψ2(v2) = [20 cos v2 20 sin v2 0]T fol-
lowed by another machining axis with

R1(v1) =
⎡

⎣
cos v1 sin v1 0
sin v1 − cos v10

0 0 1

⎤

⎦ ,

and Ψ1(v1) = [0 0 50]T is subject to the following constraints
0 ≤ u ≤ 2π, −π/4 ≤ v1 ≤ 5π/4, −π/4 ≤ v2 ≤ π/2 , as shown in
Fig. 2. The manifold is characterized by three parameters:

ξ(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 cos q1 cos q2 cos q3 −10 sin q1 sin q3
−10 cos q1 sin q2 +20 cos q1 cos q2

10 sin q1 cos q2 cos q3 +10 cos q1 sin q3

−10 sin q1 sin q2 +20 sin q1 cos q2

10 sin q2 cos q3
+10 cos q2 +20 sin q2 +50

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)
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Fig. 2. A three-parameter verifica-
tion

where q = [v1 v2 u]T = [q1 q2 q3]T . The Jacobian matrix is de-
rived as:

Hq∗ =
[
ξq 0
I qλ

]
, (23)

where

ξq =
[−10(c2(2+ c3)s1 − s1s2 + c1s3) −10(c1(c2 + (2+ c3)s2)) −10(c3s1 + c1c2s3)

10(c1(c2(2+ c3)− s2)) −10s1(c2 + (2+ c3)s2) 10(c1c3 − c2s1s3)

0 10(c2(2+ c3)− s2) −10s2s3 ,

]

ci = cos qi , si = sin qi ,

qλ =
⎡

⎣
− 3π

4 cos λ1 0 0
0 − 3π

4 cos λ2 0
0 0 −π cos λ3

⎤

⎦ ,λ = [λ1 λ2 λ3]T .

Type I Jacobian singularities

Since [ξq] is a (3×3) block matrix,
the determinant of this (3×3) matrix can be computed and

simplified as:

Det[ξq] = −2000(cos q2(2+ cos q3)− sin q2) sin q3 = 0 . (24)

Solving Eq. 24 yields q3 = 0 or q3 = π. Therefore, Jacobian sin-
gular sets are p1 = {q3 = 0}, p2 = {q3 = π}.

Type II singularities

For each parameter to reach its limit, there are only two variables
left that will define a parametric surface. Therefore, there is no
type II singularity set.

Type III singularities

Type III singular sets include p3 = {q1 = −π/4}, p4 = {q1 =
5π/4}, p5 = {q2 = −π/4}, and p6 = {q2 = π/2}.

Substituting those singularity sets into Eq. 22 yields six sin-
gular surfaces, denoted by χ1 to χ6 as shown in Fig. 3. There
are intersections between these six singular surfaces; the inter-
section curves will divide the singular surface into several sub-
surfaces.

For example, surface χ3 is parameterized by two variables,
q2 and q3. The intersection curves between surface χ3 and other
singular surfaces can be traced by the method proposed by
Abdel-Malek and Yeh [49]. All of the curves can be plotted in
the surface parametric space (q2,q3) shown in Fig. 4. The two
curves of c1 and c2 are the intersections with surface χ4. The
surface χ3 also intersects with surfaces χ6 and χ1 in curves c3

and c4, respectively. To determine whether each sub-surface is
a boundary or internal sub-surface of the workspace, the pertur-
bation method of Eq. 18 is applied. For example, consider the
point p1 on the sub-surface ψ1, which has the following set of
joint coordinates:

z0 = [q1 q2 q3]T = [−π/4 0.4 3.4]T .

Fig. 3. Singular surfaces
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Fig. 4. Singular surface is divided into several sub-surfaces

The normal vector at the point p1 to ψ1 can be calculated by:

n0 =
(

∂ψ1

∂q2
× ∂ψ1

∂q3

) /∥∥∥∥
∂ψ1

∂q2
× ∂ψ1

∂q3

∥∥∥∥

= [0.098 −0.452 0.887]T .

For a small perturbation ∂ε = +0.1, the coordinates of the per-
turbed point are computed as:

ξ p+ = ψ1(z0)+0.1n0 = [6.513 −1.812 63.418]T .

Solving Eq. 19 by the modified Newton–Raphson method, the it-
erations converge to a solution z = [2.321 1.222 −3.502]T . Sim-
ilarly, the other perturbed point xp−

due to ∂ε = −0.1 can be
computed as:

ξ p− = ψ1(z0)−0.1n0 = [6.494 −1.721 63.241]T .

The iterations also converge to a solution z = [2.393 1.231
−3.463]T . Thus, both perturbation points are inside the work-
space. Therefore, the sub-surface ψ1 is an internal sub-surface.
For example, select the point p2 on the sub-surface ψ2, which
has joint coordinates z0 = [q1 q2 q3]T = [−π/4 1.0 4.4]T . The
normal vector at this point is calculated as:

n0 = [0.671 0.653 0.351]T .

For a small positive perturbation ∂ε = +0.1, the perturbed point
is

ξ p+ = [−6.211 −7.245 69.646]T .

Solving the corresponding equation of Eq. 19, a convergence
solution is obtained as z = [2.276 1.114 1.882]T . However, a so-
lution cannot be found for the negative perturbation point with
∂ε = −0.1. This indicates that ψ2 is a boundary sub-surface of
the workspace.

Fig. 5. Two views of removed volume

Using this technique, the boundary sub-surfaces of each sin-
gular surface are identified. These surfaces are depicted in Fig. 5,
from two different points of view. The volume enclosed by these
surfaces is the workspace.

4 Four-parameter NC verification and volume

Consider the machining of a conical part shown in Fig. 6. The
accessible output set (swept volume) and its boundary of the
material to be removed has to be computed. The tool used has
a hemispherical tip (Fig. 7). The tool surface is given by the
equation of a sphere as:

Γ(q3, q4) =
⎡

⎣
2 cos q3 cos q4
2 cos q3 sin q4

2 sin q3

⎤

⎦ , (25)

Fig. 6. Machining operation with four parameters

Fig. 7. Cutter’s surface
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Fig. 8. Defining normal and tan-
gent vectors

and constrained as (−π/2) ≤ q3 ≤ 0 and 0 ≤ q4 ≤ 2π. The work-
piece is a conical section given by:

Ψ(q1, q2) =
⎡

⎣
q2 tan(π/6) cos q1

q2 tan(π/6) sin q1
q2

⎤

⎦ . (26)

The material to be removed is constrained to 0 ≤ q1 ≤ π and
15" ≤ q2 ≤ 25".

Two tangent unit vectors to the surface can be obtained by
∂Ψ
∂q1

= [− sin q1 cos q1 0]T and ∂Ψ
∂q2

= [ c cos q1√
c2+1

c sin q1√
c2+1

1√
c2+1

]T ,

where c = tan(π/6). A third orthonormal vector can be obtained
by computing the cross product of the two unit vectors as shown
in Fig. 8. The rotation matrix can then be written as:

R(q1) =

⎡
⎢⎢⎢⎣

− sin q1
c cos q1√

c2+1

c cos q1√
c2+c4

cos q1
c sin q1√

c2+1

c sin q1√
c2+c4

0 1√
c2+1

−c2√
c2+c4

⎤
⎥⎥⎥⎦ . (27)

The accessible set can be written as:

ξ(q) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.577q2 cos q1 −2 cos q3 cos q4 sin q1
+1.732 cos q1 sin q3 + cos q1 cos q3 sin q4

2 cos q1 cos q3 cos q4 +0.577q2 sin q1

+1.732 sin q1 sin q3 + cos q3 sin q1 sin q4

q2 − sin q3 +1.732 cos q3 sin q4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

subject to the inequality constraints defined above.

Fig. 9. Two views of the removed material

Table 1. Volume calculation

Variety Parametric limits Volume contribution

ζ (1) 15 ≤ q2 ≤ 25, −π/2 ≤ q3 ≤ 0 72.552
ζ (2) 15 ≤ q2 ≤ 25, −π/2 ≤ q3 ≤ 0 72.552
ζ (3) 0 ≤ q1 ≤ π, −π/2 ≤ q3 ≤ 0 626.142
ζ (4) 0 ≤ q1 ≤ π, −π/2 ≤ q3 ≤ 0 2879.08
ζ (5) 0 ≤ q1 ≤ π, 15 ≤ q2 ≤ 25 0
ζ (6) 0 ≤ q1 ≤ π, 15 ≤ q2 ≤ 25 0
ζ (7) 0 ≤ q1 ≤ π, 15 ≤ q2 ≤ 25 712.094
ζ (8) −π/2 ≤ q3 ≤ 0, π/2 ≤ q4 ≤ 3π/2 25.1327
ζ (9) −π/2 ≤ q3 ≤ 0, π/2 ≤ q4 ≤ 3π/2 25.1327
ζ (10) 15 ≤ q2 ≤ 25, 0 ≤ q4 ≤ 2π 0
ζ (11) −π/2 ≤ q3 ≤ 0, π/2 ≤ q4 ≤ 3π/2 25.1327
ζ (11) −π/2 ≤ q3 ≤ 0, π/2 ≤ q4 ≤ 3π/2 25.1327
ζ (12) 15 ≤ q2 ≤ 25, 0 ≤ q4 ≤ 2π 0

Total 4462.9508

Applying the same procedures as the introduction example,
28 singularity sets are obtained as:

p1 = {q1 = 0, q3 = −π/2}, p2 = {q1 = 0, q4 = 0},
p3 = {q1 = 0, q4 = π}, p4 = {q1 = π, q3 = −π/2},
p5 = {q1 = π, q4 = 0}, p6 = {q1 = π, q4 = π},
p7 = {q2 = 15, q3 = −π/2}, p8 = {q2 = 15, q4 = π/2},
p9 = {q2 = 15, q4 = −π/2}, p10 = {q2 = 25, q3 = −π/2},
p11 = {q2 = 25, q4 = π/2}, p12 = {q2 = 25, q4 = −π/2},
p13 = {q3 = 0, q4 = 0}, p14 = {q3 = 0, q4 = π/2},
p15 = {q3 = 0, q4 = π}, p16 = {q3 = 0, q4 = 3π/2},
p17 = {q3 = 0, q4 = 2π}, p18 = {q3 = −π/2, q4 = 0},
p19 = {q1 = 0, q2 = 15}, p20 = {q1 = 0, q2 = 25},
p21 = {q1 = 0, q3 = 0}, p22 = {q2 = 15, q3 = 0},
p23 = {q2 = 15, q4 = 0}, p24 = {q2 = 25, q3 = 0},
p25 = {q2 = 25, q4 = 0}, p26 = {q1 = π, q2 = 15},
p27 = {q1 = π, q2 = 25}, p28 = {q1 = π, q3 = 0}.

Using the intersection of the singular surfaces and perturbation
method, we obtain the final volume, which is the removed mate-
rial, shown in Fig. 9.

Boundary patches of material removed are presented in
Table 1. The volume of material removed is computed as
1487.6503.
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5 Five-parameter verification

Consider the NC verification of a process involving the motion of
a cutting tool represented by a surface given by:

Γ (u, v) = [5 cos v 5+u 5 sin v]T , (29)

with the following geometric constraints 5 < u < 10, and 0 <

v < π/2. The machining operation will sweep the surface Γ

along one axis with rotation matrix

R3(v3) =
⎡

⎣
sin v3 0 cos v3

− cos v3 0 sin v3
0 −1 0

⎤

⎦ and Ψ3 = [0 0 0]T , (30)

along another axis with rotation matrix

R2 =
⎡

⎣
1 0 0
0 0 1
0−10

⎤

⎦ and Ψ2(v2) = [0 0 v2 +7]T , (31)

followed by a translation

R1 =
⎡

⎣
10 0
00−1
01 0

⎤

⎦ and Ψ1(v1) = [0 0 v1 +10]T ,

subject to the following constraints10 ≤ v1 ≤ 20, 7 ≤ v2 ≤ 15,
and −π/2 ≤ v3 ≤ π/2, shown in Fig. 10. As this is a five-
parameter verification, the resulting Jacobian is (3×5). A total

Fig. 11. Singular surfaces

Fig. 12. Material removed for 5-axis
verification

Fig. 10. A five-parameter verification

of 90 singular sets exist. For example, singularities due to the
boundary singular behavior produced by the limits of v1, v3, u
are shown in Fig. 11. The complete swept volume of the five-
parameter sweep is shown in Fig. 12.

Because of the unique properties of the swept volume for-
mulation, variation effects due to machining amount changes of
different axes can be addressed. Consider, for example, introduc-
ing a change in the upper limits of the machining parameters:
a change in the upper limit of v3 from π/2 to π/4; a change in
the upper limit of u from 10 to 8; and a change in the upper limit
of v from π/2 to π/4. The verification can be readily updated as
shown in Fig. 13.

A note on accuracy

The formulation for swept volumes is exact and does not depend
on any approximation. The only approximation arises in comput-
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Fig. 13. The updated verification due to
machining parameter variations

ing sections through the manifold, since a numerical method is
implemented to obtain traces of each variety on a cutting plane.
In addition, volume computation involves a numerical integra-
tion algorithm that is inherently tolerance-dependent.

6 Conclusions

A formulation for representing material removed in a machining
verification process of up to n-parameters has been presented.
The material removed was formulated in terms of generalized
coordinates including inequality constraints imposed on the ob-
ject’s dimensions and sweep geometry. Inequality constraints
were transformed to equality constraints and included in the an-
alysis. It was observed that varieties produced from the swept
volume are characterized by a rank-deficiency condition. It was
also observed that the perturbation method can be used to deter-
mine the boundary surface: the swept volume. The strength of
this formulation lies in its ability (1) to simulate the verification
process, in terms of boundary surfaces, to the material removal
as parametric equations, (2) to identify the boundary, and (3) to
compute the volume of material removed.
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