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Abstract The production rates of manufacturing systems are
notoriously difficult to control, since such systems are dynamic,
uncertain and non-linear. However, the introduction of hedging-
point policies for such systems has led to much progress in
optimal production control. But the theoretical results so far ob-
tained for such hedging-point policies are still far from complete,
since the optimal hedging points (i.e., the optimal inventory lev-
els) are analytically available only for simple systems and under
restrictive assumptions. In this paper, an evolutionary stochas-
tic optimisation procedure is proposed to estimate the short-run
optimal hedging points for failure-prone manufacturing systems
under crisp-logic control. This methodology is illustrated by ex-
amples and is validated by comparing the evolutionary results
with the available analytical long-run solutions. The proposed
evolutionary methodology is also shown to be capable of gen-
erating optimal hedging points for unreliable systems produc-
ing multiple products with different priorities. In addition, the
relative merits of genetic algorithms, evolution strategies and
adaptive evolution strategies in hedging-point optimisation are
compared.

Keywords Evolutionary computation · Optimal inventory
levels · Production control · Unreliable manufacturing systems

1 Introduction

The control of production in manufacturing systems involves the
overall management of the production processes from the time
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an order is received until its disposition is completed, so as to en-
sure that goods are produced on time and at the lowest possible
cost. The ultimate objective of production control is accordingly
straightforward in theory – namely, to satisfy customer demands
and, at the same time, minimise production costs. However,
the actual achievement of such optimal production control in
practice is difficult, since manufacturing systems typically con-
tain many machines that simultaneously produce many product-
types. This difficulty of control is increased since manufacturing
systems invariably experience random disruptions such as ma-
chine breakdowns or unreliable material supplies. Furthermore,
since manufacturing systems are essentially complex discrete-
event systems, it has been necessary to develop suitable approx-
imate continuous-flow models to provide a simpler conceptual
framework for the determination of optimal production-control
policies for such systems [1, 2].

In order to deal with these difficulties, various forms of rule-
based production control – such as crisp-logic control or fuzzy-
logic control, often implemented in real-time by programmable-
logic controllers (PLCs) – have been proposed in recent years.
The optimal crisp-logic control of production rates in manufac-
turing systems has, in particular, attracted much attention follow-
ing the introduction by Kimemia and Gershwin [3] of so-called
hedging-point control policies. These hedging-point policies re-
quire that, in order to meet customer demands in a timely fash-
ion, manufacturing systems must produce more than the exoge-
nous demands when machines are operative in order to compen-
sate for the loss of production when machines are inoperative.
Thus, the hedging-point values are in fact the optimal inventory
levels for both work-in-progress and finished products that must
be held in order to counteract the potentially adverse effects of
the random disruption of the production process. Ever since the
introduction of the hedging-point concept, much research effort
has been devoted to obtaining optimal production-control poli-
cies for manufacturing systems. However, the implementation of
hedging-point policies obviously requires the availability of op-
timal hedging-point values, which are difficult to obtain using
traditional control theory. The chief difficulty is to solve sim-
ultaneously the relevant non-linear partial differential equations
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governing the production rates and inventory costs [4]. Different
optimisation techniques – for instance, dynamic programming
and linear programming – have been used in endeavours to solve
these equations analytically.

In the least difficult case of manufacturing systems con-
taining completely reliable machines, Yun and Bai [5] obtained
the required optimal control policies for such systems with
two product-types using Pontryagin’s minimum principle. In the
more difficult case of unreliable manufacturing systems contain-
ing machines that fail and are repaired randomly, the complete
analytical solutions have so far been obtained only for single-
machine single-product-type systems [6, 7]. Thus, when consid-
ering unreliable manufacturing systems with multiple product-
types, Srivatsan and Dallery [8] obtained a complete solution
for single-machine two-product-type systems in the special case
when the hedging points were assumed to be zero. Veatch and
Caramanic [9] derived necessary and sufficient conditions for
the existence of zero hedging points in two-product-type sys-
tems. Perkins and Srikant [10] solved this problem under a linear
switching curve approximation and provided a numerical solu-
tion for a prioritised hedging-point policy. Sethi and Zhang [11]
obtained optimal control policies for unreliable manufacturing
systems producing multiple product-types in the special case
when the production surplus and backlog have equal cost weight-
ings for all product-types. Moreover, in all this work, the analyt-
ical or heuristic results obtained for the optimal hedging points
of unreliable manufacturing systems are all restricted to long-run
cases (i.e., production control of systems under constant demand
for very long task times) in which the machine failure and repair
rates are assumed to be exponentially distributed.

In this paper, an evolutionary stochastic optimisation pro-
cedure is developed to estimate the optimal short-run hedging
points to be used in crisp-logic controllers for unreliable manu-
facturing systems. This evolutionary methodology is capable of
dealing with manufacturing systems containing multiple unreli-
able machines and producing multiple product-types with any
desired production priorities. However, in this paper, this general
methodology is illustrated for manufacturing systems contain-
ing single unreliable machines and producing single or multiple
product-types. Three evolutionary algorithms – namely, genetic
algorithms, evolution strategies and adaptive evolution strate-
gies – are used to estimate the optimal hedging points. The
general methodology and the structures of the different evolu-
tionary algorithms are described in Sect. 2. Illustrative examples
are provided in Sect. 3. The evolutionary estimates of the short-
run optimal hedging points are compared, in Sect. 4, with the
theoretical long-run optimal results obtained by Bielecki and Ku-
mar [7] for the case of single product-type systems and by Sethi
and Zhang [11] for the case of multiple product-type systems.
In Sect. 5, it is shown that the proposed evolutionary optimisa-
tion procedure can be used to obtain the optimal hedging points
for multiple product-types when such products have different
production priorities. Finally, the relative merits of genetic algo-
rithms, evolution strategies, and adaptive evolution strategies in
the optimisation of hedging points for the crisp-logic control of
unreliable manufacturing systems are compared.

2 Evolutionary stochastic optimisation procedure

2.1 System description

It is convenient, before the introduction of the evolutionary
methodology for the optimisation of hedging points, firstly to
describe the manufacturing systems to be investigated in this
paper. In the interests of brevity and clarity, the methodology
described in this paper relates to crisp-logic control policies
for single-machine multiple-product-type manufacturing sys-
tems (although it is important to note that this methodology
is directly applicable to multiple-machine systems [12]). The
manufacturing systems to be considered accordingly produce P
product-types (P ≥ 1), and satisfy the following assumptions:

(i) The manufacturing systems are “flexible” so that the ma-
chines can switch between different operations with negligi-
ble setup times.

(ii) The required raw materials and products are always avail-
able for loading into the systems. In other words, starvation
never occurs.

(iii) The systems can be adequately represented by continuous-
flow models.

(iv) The systems are failure-prone, and the constituent machines
are subject to random failures or repairs with rates that are
independent of utilisation.

(v) The various time constants are such that setup times � op-
eration times � mean times between failures and repairs �
planning horizon (task time T ).

These manufacturing systems are characterised by the fol-
lowing quantities:

u(t) production rate vector, [u1(t), u2(t), . . ., u P(t)], where ui(t)
denotes the production rate of the ith product-type at time t;

τ processing time vector, [τ1, τ2, . . ., τP ], where τi denotes
the processing time for the ith product-type;

x(t) finished-product inventory vector, [x1(t), x2(t), . . ., xP(t)],
where xi(t) denotes the inventory level of the ith finished
product-type at time t;

d demand rate vector, [d1, d2, . . ., dP ], where di denotes the
constant short-run demand rate for the ith finished product-
type over a finite planning horizon T ;

α(t) machine-condition variable denoting the machine condition
at time t, which is such that α(t) = 1 if the machine is oper-
ative and α(t) = 0 if it is under repair;

Tf machine mean-time-to-failure;
Tr machine mean-time-for-repair.

In the continuous-flow models of such manufacturing sys-
tems, x(t) is the vector of the system state variables, while u(t)
is the vector of the control variables. The system dynamics are
described by the following differential equations:

ẋi(t) = ui(t)−di (i = 1, 2, . . ., P ) . (1)

In these systems, the finished-product inventories, xi(t), can be
positive (production surplus) or negative (production backlog).
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The production rates, ui(t), must obviously be non-negative, so
that

ui(t) ≥ 0 (i = 1, 2, . . ., P ) . (2)

In addition, the production rates are evidently limited by the ca-
pabilities of the machine. Each operation takes a finite amount of
time, τi , and the machine clearly cannot be busy more than 100%
of the time. Therefore, the machine production rates, ui(t), must
be such that

P∑

i=1

ui(t)τi ≤ α(t) , (3)

where α(t) is the machine-condition variable. This implies that
when the machine is “down” (α(t) = 0), then obviously no pro-
duction is possible; but that when the machine is “up” (α(t) = 1),
then the production of all product-types must be within the ma-
chine’s total capacity. Thus, for example, in a manufacturing
system producing three product-types, the production rates of the
three product-types must at every instant be within the pyramid
of capacity constraints shown in Fig. 1.

The demand, d = [d1, d2, . . ., dP ], must be feasible, so that

P∑

i=1

diτi ≤ E(α) = Tf

Tf + Tr
, (4)

where E(α) is the average system capacity.

2.2 Evolutionary methodology

The crisp-logic controllers are to be designed so as to generate
the control variables in accordance with the current values of the
system state variables, and thus form a closed-loop control sys-
tem for the manufacturing system. The fundamental objective of

Fig. 1. Machine production capacity constraint diagram for a three-product-
type manufacturing system

the production control problem is, of course, to satisfy the ex-
ogenous customer demand rates, d, for the various product-types.
Therefore, with reference to Eq. 1, the satisfaction of the cus-
tomer can be revealed by the magnitude of the finished-product
inventories, xi(t). If xi(t) is positive, then more material has been
produced than is currently required, thus generating a surplus. If
xi(t) is negative, then not enough material has been produced,
thus generating a backlog. The existence of production surplus
as safety stock helps to ensure that material is always available
over the planning horizon. However, surplus inventories generate
costs since expensive floor space and material-handling systems
must be devoted to the storage of finished products. But it is even
more costly when a system is backlogged, since backlogs rep-
resent unsatisfied customers – implying that sales and goodwill
may be lost. It is therefore important to control production so as
to satisfy customer demands and minimise production costs.

The relevant production cost for single-machine unreliable
manufacturing systems can be defined as

J
(
x∗) =

T∫

0

(
P∑

i=1

g+
i x+

i (t)+
P∑

i=1

g−
i x−

i (t)

)
dt , (5)

where x+
i (t) = max(xi (t), 0) and x−

i (t) = max(−xi(t), 0) are the
respective surplus and backlog of the ith product-type, and g+

i
and g−

i are the corresponding inventory cost weighting param-
eters. It is assumed that a hedging-point policy [3] is used to
provide production control for such systems. The essential fea-
ture of such a control policy is to maintain the individual product
inventory as close to its hedging point (i.e., the target inventory
level), x∗

i , as possible. The hedging-point control policy can be
expressed as follows [11]:

ui(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 , if i ∈ I(x)

di , if i ∈ J(x)(
1− ∑

j∈J(x)
τjdj

)
di/τi

∑
k∈K(x)

dk , if i ∈ K(x)

(6)

where I(x) = {
i : xi > x∗

i

}
, J(x) = {

j : xj = x∗
j

}
, K(x) = {

k :
xk < x∗

k

}
are sets of product-types with inventory levels above,

at, or below the corresponding hedging points. In the hedging-
point policy, clearly, no production is possible if the machine
is “down”. However, when the machine is “up”, if the inven-
tory level of a product-type is above its hedging point, then that
product-type is not produced; if it is at its hedging point, then it
is produced at a rate equal to that of its demand; and, finally, if it
is below its hedging point, then it is produced at a rate that is pro-
portional to its demand rate. The analytical determination of such
optimal hedging points is very difficult. In fact, the only avail-
able analytical results for unreliable manufacturing systems are
all for long-run control (i.e., for control as the task time T → ∞).
Furthermore, in systems producing multiple product-types, the
available analytical results are based on the assumptions of equal
cost weightings for surplus and backlog and of constant demand
rates for all product-types [11]. However, such optimal hedging
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points can be estimated in the short-run by the use of evolution-
ary algorithms.

The crucial step in the evolutionary stochastic optimisation
procedure is the calculation of the expected value of the cost
function, J (x∗), defined in Eq. 5 for specified values of d and
x(0). It should be noted that constant long-run demand rates are
assumed in all the analytical solutions, and that the optimal hedg-
ing points obtained are, therefore, independent of initial states.
However, demand rates will never in practice be constant for in-
finite task times; and, if the task time is short, then the initial
state of the system will have a major influence on the optimal
hedging-point values. In the evolutionary stochastic optimisa-
tion procedure, the calculation of the expected value of the cost
function can be effected by introducing an appropriately large
set,

{
α(1)(t), α(2)(t), . . ., α(n)(t)

}
, of n scalar machine-condition

variables. The time-domain behaviour of each such variable,
α( j )(t) (1 ≤ j ≤ n), represents a particular history of machine
failure and repair over a given task time, T , and a typical α(t)-
trajectory is shown in Fig. 2.

In each of these machine-condition variables, the times for
the transitions (between unity and zero, or between zero and
unity) are instances of exponentially distributed times-to-failure
and times-for-repair with respective mean values Tf and Tr .
However, it is important to note that the present evolutionary
stochastic optimisation procedure differs from previous analyti-
cal procedures in not restricting such machine failure and repair
times to be exponentially distributed. Such an assumption is
made in the present investigations solely to facilitate the com-
parison of the evolutionarily optimised results with the avail-
able analytic results. In the case of any fixed hedging point,
x∗ = [

x∗
1 , x∗

2 , . . ., x∗
P

]
, in the control rule given by Eq. 6, the cost

function in Eq. 5 is evaluated for every machine-condition vari-
able in the entire set

{
α(1)(t), α(2)(t), . . ., α(n)(t)

}
, thus produc-

ing a set
{

J (1), J (2), . . ., J (n)
}

of n corresponding cost functions.
The expected value of the cost function over the entire set of n
machine-condition variables is then given by the equation

E
[
J

(
x∗)] = 1

n

n∑

j=1

J ( j ) (
x∗) . (7)

In the evolutionary stochastic optimisation procedure, the indi-
vidual hedging point, x∗

i (i = 1, 2, . . ., P), for each product-type
is represented by a substring of binary digits. These P sub-
strings representing the respective hedging-point values for the
P product-types are then concatenated to form a complete binary

Fig. 2. Typical machine-condition variable

string that represents the entire vector of inventory level settings,
x∗ = [

x∗
1 , x∗

2 , . . ., x∗
P

]
, as shown in Fig. 3.

The Darwinian fitness, Φ(x∗), of each such complete binary
string is defined as

Φ
(
x∗) = λ

E [J (x∗)]
, (8)

where λ > 0 is an appropriate constant.

2.3 Evolutionary procedure

In the evolutionary stochastic optimisation procedure, genetic al-
gorithms (GAs) [13], non-adaptive (µ+λ)-evolution strategies
(ESs) [14], and adaptive (µ+λ)-evolution strategies (AESs) [15]
are used to estimate the optimal short-run inventory levels
(hedging-point values). In each of these evolutionary algorithms,
the procedure begins by randomly generating an initial pop-
ulation of binary strings in which each such string represents
a hedging point, x∗, as illustrated in Fig. 3, in the control rule
given by Eq. 6.

Evolution is then caused to occur in this population of binary
strings in accordance with appropriate forms of crossover, mu-
tation and selection. In this evolutionary process, the Darwinian
fitness of each binary string is evaluated by substituting into
Eq. 8 the expected value, E

[
J (x∗)

]
, of the cost function over the

entire set of relevant machine-condition variables. This evolu-
tionary process is allowed to continue until no significant further
increase is obtained in the fitness of the fittest binary string. This
fittest binary string is then decoded, and thus provides the es-
timate of the optimal value of the hedging point, x∗

opt, for the
specified values of d and x(0). It is evident that this evolutionary
optimisation procedure can be repeated for any desired values of
d and x(0) within the operational envelope of the manufacturing
system.

In the case of genetic algorithms, evolution is caused to occur
by subjecting successive generations of µ parental binary strings
to mutation, crossover and biased roulette-wheel selection with
elitism to produce µ offspring binary strings. In the case of non-
adaptive (µ+λ)-evolution strategies without recombination, evo-
lution is caused to occur by mutating successive generations of µ

parental binary strings to produce λ(≥ µ) offspring binary strings
and by then selecting the µ fittest binary strings from the com-
bined population of parents and offspring as the µ parental bi-
nary strings for the next generation. In the case, finally, of adap-
tive (µ+λ)-evolution strategies without recombination, evolu-
tion proceeds just as for non-adaptive evolution strategies except
that the mutation probability associated with every individual bi-

Fig. 3. Binary string representation of inventory levels
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nary string is continuously adjusted on-line [15]. Figure 4 illus-
trates the general processes of (a) genetic algorithms, (b) evolu-
tion strategies and (c) adaptive evolution strategies.

3 Illustrative examples

3.1 Optimisation of short-run hedging points
for single-product-type systems

This evolutionary stochastic optimisation procedure for de-
termining the short-run optimal hedging points in unreliable
manufacturing systems can be illustrated by considering a par-
ticular system producing a single product-type for which τ =

Fig. 4a–c. Flow diagram of a genetic algorithms, b (µ+λ)-evolution strategies and c (µ+λ)-adaptive evolution strategies

0.2 s/piece, Tf = 5 s, and Tr = 1.5 s. In this case, it is assumed
that the task time T = 20 s and that the weighting parame-
ters for surplus and backlog of the single product-type are,
respectively, g+ = 1 and g− = 2. In this example, the evolu-
tionary stochastic optimisation procedure is used to estimate
the optimal short-run inventory levels, x∗

opt, in the control rule
given by Eq. 6 so as to minimise the expected cost function
given by Eq. 5 when the demand, d, has any value in the set
{2, 2.5, 3, 3.5} pieces/s, and the initial state, x(0), has any value
in the set {−4,−2, 0, 2, 4, 6} pieces. In each case, the optimal
hedging point is obtained over a set of 100 machine-condition
variables,

{
α(1)(t), α(2)(t), . . ., α(100)(t)

}
, representing failure

and repair histories with mean-time-to-failure, Tf = 5 s, and
mean-time-for-repair, Tr = 1.5 s, i.e., n = 100 in Eq. 7.
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This procedure for determining the hedging points is used
in connection with all three evolutionary algorithms. The best
hedging points obtained using genetic algorithms (GAs), non-
adaptive evolution strategies (ESs), and adaptive evolution strate-
gies (AESs) in each case are summarised in Table 1. It is ev-
ident from this table that the optimal hedging points obtained
from the three different evolutionary algorithms are almost
identical.

3.2 Optimisation of short-run hedging points
for multiple product-type systems

The evolutionary stochastic optimisation procedure for short-run
hedging points can also be illustrated by considering a particular
unreliable multiple product-type manufacturing system. In this
system, the processing times, τ1 and τ2, of the two product-types
are both 0.2113 s/piece, the mean-time-to-failure, Tf , and mean-
time-for-repair, Tr , are 4 s and 2 s, respectively, and the task time,
T , is 20 s.

x∗
opt d

2 2.5 3 3.5
x(0) GA ES AES GA ES AES GA ES AES GA ES AES

−4 0.22 0.29 0.22 0.95 1.25 0.95 1.76 1.76 1.76 2.52 2.52 2.59
−2 0.29 0.29 0.29 1.05 1.05 1.05 1.94 1.94 2.05 3.11 3.11 3.11
0 0.21 0.21 0.36 1.00 1.00 1.05 2.18 2.18 2.24 3.74 3.74 3.74
2 0.22 0.22 0.22 0.95 0.95 0.99 2.36 2.36 2.32 4.12 4.12 4.12
4 0.22 0.22 0.22 1.00 1.00 0.99 2.24 2.24 2.22 4.23 4.23 4.23
6 0.22 0.22 0.22 0.95 0.95 0.99 2.18 2.18 2.12 4.02 4.02 4.02

Table 1. Evolutionary estimates of
optimal short-run inventory levels
for single-product-type manuacturing
systems

x∗
opt d = [d1, d2]

x(0) [1, 1] [1, 1.5] [1, 2] [1.5, 1] [1.5, 1.5]

[−4, −4] [0, 0] [0, 0.01] [0.10, −0.01] [0.01, 0] [0.18, 0.21]
[−4, −2] [0, 0] [0.10, 0.01] [0.16, −0.01] [0.10, 0] [0.25, 0.01]
[−4, 0] [0, 0] [0.12, 0.01] [0.37, −0.01] [0.18, 0] [0.51, 0.01]
[−4, 2] [0, 0] [0.18, 0.10] [0.33, 0.29] [0.19, 0.05] [0.51, 0.27]
[−4, 4] [0, 0] [0.18, 0.06] [0.47, 0.72] [0.14, 0] [0.66, 0.47]
[−2, −4] [0, 0] [0, 0.10] [0.12, 0.29] [0.01, 0.10] [0.01, 0.25]
[−2, −2] [0, 0] [0.11, 0.08] [0.33, 0.35] [0.08, 0.11] [0.45, 0.53]
[−2, 0] [0, 0] [0.14, 0.01] [0.34, 0.30] [0.21, 0] [0.53, 0.06]
[−2, 2] [0, 0] [0.16, 0.14] [0.49, 0.87] [0.21, 0.10] [0.66, 0.66]
[−2, 4] [0, 0] [0.14, 0.06] [0.52, 0.80] [0.19, 0] [0.64, 0.53]
[0, −4] [0, 0.01] [0, 0.18] [0, 0.69] [0.01, 0.10] [0.01, 0.51]
[0, −2] [0, 0] [0, 0.21] [0, 0.66] [0.01, 0.14] [0.06, 0.53]
[0, 0] [0, 0] [0.18, 0.31] [0.47, 0.96] [0.31, 0.18] [0.71, 0.70]
[0, 2] [0, 0] [0.18, 0.23] [0.55, 1.03] [0.31, 0.10] [0.75, 0.68]
[0, 4] [0, 0] [0.14, 0.06] [0.51, 0.83] [0.16, 0] [0.70, 0.55]
[2, −4] [0, 0] [0.05, 0.19] [0.23, 0.71] [0.10, 0.18] [0.27, 0.51]
[2, −2] [0, 0] [0.10, 0.21] [0.34, 0.91] [0.19, 0.19] [0.66, 0.66]
[2, 0] [0, 0] [0.10, 0.31] [0.41, 0.90] [0.23, 0.18] [0.68, 0.75]
[2, 2] [0, 0] [0.15, 0.23] [0.38, 0.99] [0.23, 0.15] [0.73, 0.73]
[2, 4] [0, 0] [0.12, 0.08] [0.45, 0.87] [0.12, 0] [0.70, 0.55]
[4, −4] [0, 0] [0, 0.14] [0, 0.62] [0.06, 0.18] [0.47, 0.66]
[4, −2] [0, 0] [0, 0.19] [0.01, 0.78] [0.06, 0.14] [0.53, 0.64]
[4, 0] [0, 0] [0, 0.16] [0.03, 0.77] [0.06, 0.14] [0.55, 0.70]
[4, 2] [0, 0] [0, 0.12] [0.04, 0.91] [0.08, 0.12] [0.55, 0.70]
[4, 4] [0, 0] [0, 0.18] [0.01, 0.78] [0.18, 0] [0.60, 0.60]

Table 2. Evolutionary estimates of
optimal short-run inventory levels
for two-product-type manufacturing
systems

In order to facilitate the comparison (see Sect. 4) between
the evolutionary estimates of the optimal hedging points and
the theoretical results obtained by Sethi and Zhang [11], which
are the only available analytic results, it is assumed that the
cost weightings of surplus and backlog for both product-types
are equal, i.e., g+

1 = g−
1 = g+

2 = g−
2 = 1. In this case, a set of

100 machine-condition variables,
{
α(1)(t), α(2)(t), . . ., α(100)(t)

}
,

is again introduced to represent failure and repair histories with
the relevant mean-time-to-failure and the mean-time-for repair.
The expected value of the cost function for the corresponding
hedging point is then calculated according to Eq. 7. The Dar-
winian fitness of the binary string representing the hedging point
is finally obtained using Eq. 8.

This procedure for determining the hedging points is used
in connection with all three evolutionary algorithms. It is
again found that GAs, ESs, and AESs provide nearly identi-
cal results. The estimates of the optimal hedging points for
d ∈ {[1, 1], [1, 1.5], [1, 2], [1.5, 1], [1.5, 1.5]} when x(0) varies
from [−4,−4] to [4, 4], are summarised in Table 2.
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4 Comparative analyses

It is interesting to compare the evolutionary estimates of the
optimal short-run inventory levels with the corresponding theor-
etical solutions. In the case of manufacturing systems containing
single machines producing single product-types, Bielecki and
Kumar [7] obtained the complete optimal hedging-point values
for minimising the long-run average cost. These theoretical op-
timal hedging points are, unfortunately, therefore only available
for long-run cases when the task time, T , becomes infinite and
where the results are, consequently, independent of the initial in-
ventory level, x(0). In the case of the particular system described
in Sect. 3.1, the theoretical values of Bielecki and Kumar [7] for
the optimal hedging points, x∗

opt, are 0.54, 1.74, 4.49, 14.63, and
infinity when the demand rates are 2, 2.5, 3, 3.5, and 4 pieces/s,
respectively.

These long-run optimal values are evidently very different
from the short-run optimal values of the hedging points shown
in Table 1, but it is very interesting that these short-run optimal
values of the hedging points are found to approach the theor-
etical values of Bielecki and Kumar [7] as the task time, T ,
increases. This behaviour of the values for x∗

opt obtained by using
the adaptive evolution strategy, for example, is demonstrated in
Table 3, which lists the evolutionary estimates of the optimal
hedging points, x∗

opt, for T = 20 s, 40 s, 70 s, 100 s, 200 s, 300 s,
and 400 s, when (d, x(0)) are (2, 0), (2.5, 0), (3, 0), (3.5, 0) and
(4, 0), respectively. If the inequality Eq. 4 is not satisfied, then
the demand rate is unachievable, and the theoretical optimal
hedging point is infinite for such cases. Such an infinite theor-
etical hedging point for an infeasible demand implies that a ma-
chine should always produce at its maximum capacity whenever
it is operative. It is evident, from the case of the infeasible de-
mand rate d = 4 pieces/s in Table 3, that the evolutionarily opti-
mised hedging points increase as the task time, T , increases. This
phenomenon agrees with the theoretical results.

In the case of manufacturing systems producing multiple
product-types, the evolutionarily optimised results can be com-
pared to the theoretical long-run results obtained by Sethi and
Zhang [11], which are the only available analytical solutions for
multiple product-type systems. Thus, with reference to the manu-
facturing system described in Sect. 3.2, it is expected that the the-
oretical long-run optimal hedging points will be quite different

Task d = [d1, d2]
T [1, 1] [1, 1.5] [1, 2] [1.5, 1] [1.5, 1.5]

Evolutionarily 20 [0, 0] [0.18, 0.31] [0.47, 0.96] [0.31, 0.18] [0.71, 0.70]
optimised 40 [0.18, 0.19] [0.73, 1.09] [1.41, 2.88] [1.09, 0.74] [2.11, 2.16]
short-run 70 [0.3, 0.27] [0.89, 1.33] [1.64, 3.36] [1.35, 0.89] [2.54, 2.50]
inventory 100 [0.27, 0.25] [1.01, 1.46] [2.36, 4.76] [1.44, 0.99] [3.50, 3.56]
levels 200 [0.36, 0.34] [1.21, 1.87] [3.36, 6.76] [1.83, 1.23] [5.08, 5.03]

300 [0.32, 0.32] [1.22, 1.87] [4.07, 8.23] [1.83, 1.25] [6.11, 6.16]
400 [0.42, 0.42] [1.51, 2.11] [4.77, 9.58] [2.18, 1.42] [7.15, 7.20]

Theoretical
results ∞ [0.45, 0.45] [1.57, 2.36] [8.95, 17.91] [2.36, 1.57] [13.43, 13.43]

Table 4. Evolutionarily optimised
short-run hedging points with in-
creasing T versus theoretical long-
run hedging points (two-product-type
systems)

Table 3. Evolutionarily optimised short-run hedging points with increasing
T versus theoretical long-run hedging points (single-product-type systems)

Task time d
T 2 2.5 3 3.5 4

Evolutionarily 20 0.36 1.05 2.24 3.74 4.65
optimised 40 0.58 1.52 3.65 6.65 10.00
short-run 70 0.36 1.25 3.22 6.33 14.00
inventory 100 0.51 1.54 3.71 7.99 16.55
levels 200 0.49 1.67 4.06 10.01 22.69

300 0.44 1.62 4.10 11.48 32.00
400 0.45 1.53 4.00 11.13 39.22

Theoretical
results ∞ 0.54 1.74 4.49 14.64 ∞

from the short-run optimal values shown in Table 2, for which the
task time, T , is only 20 s. However, it can be anticipated that the
evolutionarily optimised short-run hedging-point values will ap-
proach the theoretical values of Sethi and Zhang [11] as the task
time, T , increases. This anticipation is substantiated by Table 4,
which compares the long-run theoretical hedging points with the
short-run optimal values with increasing task time, T , and zero
initial inventory levels, x(0) = [0, 0].

It is noted that the available theoretical results are all for un-
reliable manufacturing systems in which the demand rates are
constant for infinite time. Such an assumption is obviously un-
realistic in cases of actual production. However, the evolution-
arily optimised short-run inventory levels obtained in this paper
can be readily used to construct look-up tables for use in gain-
scheduled adaptive controllers for manufacturing systems with
variable demands [12, 16].

It is also noted that the results presented in this paper concern
unreliable manufacturing systems in which the machine failure
and repair times are assumed to follow exponential distributions.
Such an assumption is necessary (as mentioned previously) to
facilitate the comparison of the evolutionarily optimised results
with theoretical results. However, the properties of the expo-
nential distribution on which analytical methods heavily depend
are often not good models of the behaviour of well-engineered
workstations [17]. The evolutionary optimisation methodologies
proposed in this paper are not subject to such a restriction, but
are applicable to unreliable manufacturing systems in which
failure and repair times follow other random distributions. In-
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deed, this evolutionary stochastic optimisation procedure can
be readily used to deal with random disturbances caused by
events such as machine setups with various statistical distribution
characteristics [12, 18].

5 Product prioritisation

The investigation by Sethi and Zhang [11] is very important
because it provides the only available theoretical results for
multiple-product-type systems. However, in obtaining these re-
sults, it is assumed [11] that all product-types have equal cost
weightings for both surplus and backlog, and that they there-
fore have equal production priorities. In contrast, by using the
evolutionary methodology for the optimisation of hedging points
for multiple product-type systems, it is easy to specify any de-
sired priorities among different product-types by assigning ap-
propriate cost weightings to the different product-types. The
evolutionary optimisation of hedging points for different prior-
ity assignments can be conveniently illustrated by the follow-
ing two cases of a two-product-type unreliable manufacturing
system:

(i) the first and the second product-types have equal priority,
such that g+

1 = g−
1 = g+

2 = g−
2 = 1;

(ii) the second product-type has priority over the first product-
type, such that g+

1 = g−
1 = 1 and g+

2 = g−
2 = 10.

Table 5. Prioritised short-run hedging points for a system with d = [1.5, 1.5]

x(0) When both product-types When the second product-type
have equal priority has priority over the first

[−4,−4] [0.18, 0.21] [−5.62, 0.49]
[−2,−2] [0.45, 0.53] [−2.95, 0.76]
[0, 0] [0.71, 0.70] [0.45, 0.71]

Fig. 5. Time-domain behaviour when both product-types have equal priority

Fig. 6. Time-domain behaviour when the second product-type has priority
over the first product-type

Table 5 shows the estimates of the prioritised hedging points
when d = [1.5, 1.5] and x(0) = [−4,−4], [−2,−2] and [0, 0]
obtained using the adaptive evolution strategy.

The time-domain behaviour of the manufacturing sys-
tem under crisp-logic control when d = [1.5, 1.5] and x(0) =
[−4,−4] for these two cases of production priority is shown
in Figs. 5 and 6, respectively. In the case of equal priority, the
crisp-logic controllers evidently automatically generate the max-
imum permissible production rates for both product-types in
order to clear both backlogs simultaneously. However, when
the second product-type has priority over the first product-type,
it is clear from Fig. 6 that the crisp-logic controllers first gen-
erate automatically the maximum permissible production rate
for the second product-type in order to clear the associated
backlog and then automatically switch production to the first
product-type.

6 Performance of evolutionary algorithms

Evolutionary algorithms of three types – namely, genetic al-
gorithms, (µ+ λ)-evolution strategies and adaptive (µ+ λ)-
evolution strategies, were used in the procedures for optimising
hedging points. The relative effectiveness of these algorithms
can be conveniently illustrated by considering the multiple-
product-type manufacturing system described in Sect. 3.2 when
d = [1, 2] and x(0) = [0, 0].

In this case, the performance of the genetic algorithm
over 20 generations with a population size of 10 is shown in
Fig. 7a for different values of the probabilities of mutation,
pm , and crossover, pc. It is thus evident that, for this genetic
algorithm, the most rapid evolution occurred with pm = 0.03
and pc = 0.6, and that the best solution was obtained after
14 generations.

The corresponding results for the non-adaptive (10+ 10)-
evolution strategy without recombination over 20 generations
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Fig. 7a–c. Evolutionary optimisation performance comparison. a GA
minimum-of-generation cost. b ES minimum-of-generation cost. c GA, ES
and AES minimum-of-generation cost

are shown in Fig. 7b for different values of the probability of
mutation, pm . It is thus evident that, for this non-adaptive evo-
lution strategy without recombination, the most rapid evolution
occurred with pm = 0.1, and that the best solution was obtained
after 8 generations.

The corresponding results for the adaptive (10+ 10)-evolu-
tion strategy without recombination over 20 generations are
compared with these best results for the genetic algorithm and
the non-adaptive (10+ 10)-evolution strategy in Fig. 7c. It is
thus evident that, for this adaptive evolution strategy with-
out recombination, the best solution was obtained after four
generations. Indeed, it is clear from Fig. 7c that the adap-
tive (10 + 10) evolution strategy is more effective than the
other evolutionary algorithms in estimating the optimal hedging
points for this unreliable manufacturing system under crisp-logic
control.

In this particular case, it thus transpires that the adaptive
evolution strategy is the most effective evolutionary algorithm
among the three alternatives for estimating the optimal hedging
points for unreliable manufacturing systems under crisp-logic

control. However, it is also important to note that even though
the adaptive evolution strategy without recombination may not
always provide the most rapid evolution, it is the simplest evolu-
tionary algorithm to use since it requires no a priori selection of
either mutation probability or crossover probability.

7 Conclusion

In this paper, an evolutionary stochastic optimisation procedure
has been proposed to estimate the optimal hedging points (i.e.
optimal inventory levels) for unreliable manufacturing systems
producing either single product-types or multiple product-types
under crisp-logic control. The methodology has been illustrated
by examples, and has been validated by comparing the hedging
points produced by evolutionary algorithms with those obtained
from the theoretical long-run solutions. It has been also shown
that the evolutionary stochastic optimisation procedure can be
used to obtain prioritised optimal hedging points, i.e. hedging
points when the cost weightings are different among the dif-
ferent products. The proposed methodology is not restricted to
unreliable manufacturing systems with exponentially distributed
random machine failures and repairs, but is applicable to such
random events with other distribution characteristics. It has also
been pointed out that the evolutionarily optimised short-run in-
ventory levels can be readily used to construct look-up tables
for adaptive gain-scheduled controllers for unreliable manufac-
turing systems with variable demands. Finally, the relative merits
of genetic algorithms, evolution strategies, and adaptive evolu-
tion strategies have been compared in the optimisation of hedg-
ing points for unreliable manufacturing systems. Indeed, it has
thus been indicated that the adaptive evolution strategy with-
out recombination is the simplest algorithm to use since it re-
quires no a priori selection of mutation probability or crossover
probability.
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