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Abstract An approach for determining parameter values in melt
spinning processes to yield optimal qualities of denier and tenac-
ity in as-spun fibers is presented. The approach requires a fewer
number of experiments than conventional methods. An orth-
ogonal array in the Taguchi method determines the minimum
number of experiment trials to be conducted. Whether the experi-
mental data are adopted to train a neural network is justified by
an analysis of variance(ANOVA) and confirmed by experiments.
A neural network relating 11 process parameters and two qual-
ity characteristics is constructed. The genetic algorithm is aimed
at finding parameter values in a continuous solution space to op-
timize a performance measure on denier and tenacity qualities,
based on the neural network. The performance measure is eval-
uated by the technique for order preference by similarity to ideal
solution (TOPSIS). To expand the solution space, three different
sets of level values for the orthogonal array are chosen from the
ranges where the melt spinning will properly work. The results
demonstrate that the proposed approach gives the smaller denier
and the larger tenacity of polypropylene(PP) as-spun fibers than
the Taguchi method.

Keywords Denier · Genetic algorithm · Melt spinning ·
Neural networks · Taguchi method · Tenacity

1 Introduction

In melt spinning, the qualities of denier and tenacity in as-spun
fibers play a critical role in final product quality. The denier and
tenacity are mainly influenced by process parameters, such as
the speed of an extruder screw, spinning temperature and take-
up speed. In practice, the values of the process parameters are
determined by engineer experience or trial and error to achieve
good quality as-spun fibers. As a consequence, it is easy to suffer
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from subjective and inaccurate drawbacks, and excessive much
time and effort is required. As a solution, this paper develops
a decision-making system for parameter values in melt spinning
to arrive at the optimal denier and tenacity of as-spun fibers.

Many papers have investigated process parameters that af-
fect qualities of as-spun fibers in melt spinning. Wilczynski et
al. [1] analyzed mixing degrees, throughput rates, temperature
fluctuations, and viscoelastic properties by changing the screw
speed and barrel temperature in an extruder-die section. Gupta et
al. [2] described influence of the speed of a metering pump on
throughput rates. Dutta et al. [3] used various materials, through-
put rates, spinning temperatures, quench air speeds, quench air
temperatures, and take-up speeds to yield different properties of
as-spun fibers. Ziabicki [4] suggested that the process param-
eters acting on properties of as-spun fibers include the chem-
ical compositions, molecular structures and physical behaviors
of materials; spinning temperatures, dimensions and number of
spinneret orifices; and throughput rates, take-up speeds, quench
air temperatures, and lengths of spinning paths. Based on the
above literature, this study focuses on 11 process parameters,
such as speeds in an extruder screw, metering pump, quench air
and take-up, temperatures in an extruder barrel, die, metering
pump, spinning and quench air, etc., to evaluate the denier and
tenacity of as-spun fibers in our melt spinning setup.

A Taguchi experimental design is often used to seek the
values of process parameters that optimize a product quality
in a much smaller number of experiments, and has been suc-
cessfully applied in submerged arc welding [5], plasma en-
hanced chemical vapor deposition [6], rotational molding [7],
coat hanger manifolds [8], and injection molding [9, 10]. How-
ever, the Taguchi method simply finds optimal values in a dis-
crete solution space constrained by levels of parameters [11],
and usually deals with a single quality characteristic. The genetic
algorithm, together with a neural network, can be used to find op-
timal values in a continuous solution space. Hence, the parameter
values are optimal in a more extensive solution space than the
Taguchi method. In order to resolve multiple qualities problems,
the technique for order preference by similarity to ideal solution
(TOPSIS) gives a performance measure on the qualities to be op-
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timized. For example, Sette [12] employed a neural network and
genetic algorithm for 2160 samples to optimize the yarn tenacity
and elongation; and Su [11] used the Taguchi method to deter-
mine training samples for constructing a neural network, and
then applied the genetic algorithm to optimize a single quality of
injection molding.

To yield good qualities of denier and tenacity in polypropy-
lene (PP) as-spun fibers, this paper investigates the choice of 11
parameter values in melt spinning, using the smallest number
of experiments. The process parameters include temperatures in
three extruder barrel sections, a die, a metering pump, and a spin-
neret, speeds of a extruder screw and a metering pump, cooled air
temperature and speed, and take-up speed. We used a L12 orth-
ogonal array in the Taguchi method to determine the minimum
number of experiment trials when optimizing a quality character-
istic. To find optimal parameter values in a continuous solution
space, we constructed a neural network relating 11 process pa-
rameters and two quality characteristics, which is trained by the
experimental data in the Taguchi method, and applied the ge-
netic algorithm to optimize performance measures on denier and
tenacity. The solution space is constrained by the level values in
the Taguchi method. Thus, in order to expand the solution space,
three different sets of level values are chosen from the ranges
where melt spinning will properly work. By means of the analy-
sis of variance (ANOVA) and confirmation experiments, whether
or not the experimental data for each set of level values can be
used to train the neural network is justified. The performance
measure of denier and tenacity is evaluated by the TOPSIS. The
results show that compared to the Taguchi method, the proposed
approach can yield the smallest denier and the largest tenacity in
PP as-spun fibers.

2 Methodology

2.1 Taguchi design of experiments [13]

A conventional experiment design, such as full factorial design,
usually requires a large number of experiments to be conducted
when there are many process parameters to be studied. Thus,
the method is time-consuming and expensive. To overcome this
drawback, the Taguchi method uses an appropriate orthogonal
array to perform experimental design with a significant reduction
in the number of experiments. The orthogonal array determines
the minimum number of parameter-level combinations in experi-
ments, which are a small fraction of that obtained in a full facto-
rial design. The orthogonal array has levels arranged in columns
and rows, representing the process parameters and individual tri-
als, respectively. Each experiment trial is carried out based on
parameter-levels in each row. Since two quality characteristics
of denier and tenacity are investigated in this study, the experi-
mental data of denier are transformed into signal-to-noise(S/N)
ratios by the smaller-the-better characteristic:

S/N = −10 log10

(
1

n

n∑
i=1

y2
i

)
(1)

and the experimental data of tenacity are by the larger-the-better
characteristic:

S/N = −10 log10

(
1

n

n∑
i=1

1

y2
i

)
(2)

where yi, i = 1, . . ., n, are experimental data and n is the num-
ber of tests. The larger S/N ratio corresponds to the better quality
characteristic. The means of S/N ratios at the same level for each
process parameter are tabulated in the response table. From the
response table, the optimal level of the process parameter is the
level with the highest S/N ratio.

Furthermore, an ANOVA is performed to determine process
parameters which significantly affect the quality characteristic.
In the F-test, we must calculate the sum of squares due to a fac-
tor, the sum of squares due to error, and the associated degrees
of freedom. The F-test reveals that in the case of the F-ratio of
a factor, a ratio of the variance due to a factor to the variance
of the pooled error is greater than Fα means that a change of
the factor has a significant effect on the quality characteristic at
a confidence of 1-α. The value of Fα, based on the degrees of
freedom of the factors and the pooled error, can be referred to
as an F-distribution table. When the sum of squares due to error
is equal to zero, we pool the factors with the smaller sums of
squares into the error, and regard them as insignificant factors
on the quality characteristic without the need of computing their
F-ratios. The final step is to predict and experimentally verify
the quality characteristic using optimal parameter-levels through
confirmation experiments. A confirmation experiment ensures
reproducibility of experimental results and prevents fault pro-
cesses or inadequate experiment design from deteriorating final
results. The predicted S/N ratio, η̂, of the quality characteristic
is calculated by [5]:

η̂ = ηm +
q∑

i=1

(
η̄i −ηm

)
(3)

where η̄i is the mean S/N ratio at the optimal level, ηm is the
mean of total S/N ratios, and q is the number of process pa-
rameters that significantly affect the quality characteristic. If the
predicted and experimental S/N ratios are close to each other, it
reveals that the experimental data possess good reproducibility
and can become training samples of a neural network.

2.2 Back-Propagation neural network

A typical three-layer neural network has one input layer, one hid-
den layer, and one output layer. Each layer has various numbers
of nodes. First of all, the data to the input layer are normalized
between 0 and 1. The input data are then calculated forward to
produce outputs of the hidden and output layers. The qth node in
the hidden or output layer receives a net input, shown by:

netq =
∑

i

wiq zi − θq (4)

and produces an output yq = 1/(1+ e−netq ), where wiq is a con-
nection weight between the ith node and qth node in the input-to-
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hidden or hidden-to-output layer, zi is the output of the ith node
in the preceding layer, and θq is the threshold of the qth node
in the hidden or output layer. The initial weights and thresholds
are randomly given. The errors between actual outputs and target
outputs are propagated back through the network to update the
weights and thresholds in a way of decreasing the sum of squared
errors among total training samples and outputs by a gradient de-
scent method. The recursive forms of the weight and threshold
changes are given by:

∆w
(k+1)
iq = ηδqzi +α∆w

(k)
iq (5)

∆θ(k+1)
q = −ηδq +α∆θ(k)

q (6)

where δq is the error signal of the qth node in the hidden or out-
put layer [14], η is a learning rate, α is a momentum factor, and
the superscript of ∆w

(k)
iq denotes the kth iteration.

2.3 Genetic algorithms [15]

The genetic algorithm is aimed at finding parameter values that
maximize an objective function J(q1, q2), while each parameter,
xi , i = 1, 2, . . ., 11, is in the domain [ai , bi], where J, defined by
the TOPSIS, is a measure on the relative closeness of the alterna-
tive to the ideal solution. The denier and tenacity qualities, q1 and
q2, are expressed by S/N ratios in evaluating J. qi , i = 1, 2, and
xi , i = 1, 2, . . ., 11, are related by a neural network. The largest
value of J means the shortest distance of the alternative to the
ideal solution.

The genetic algorithm starts with a set of random solutions in
a population. Each individual in the population is a chromosome.
A chromosome is a binary string, including binary representa-
tions of all parameter values. The search of an optimal solution to
the problem is conducted over a space in a binary representation.
We input parameter values of each chromosome to the network
and output S/N ratios of denier and tenacity, qi1 and qi2, i =
1, . . ., n, to form a matrix, Q = [qij ]n×2, where n is a popula-
tion size. The weighted normalized matrix, V = [vij ]n×2, is given
as [6]:

vij = wjqij

/√√√√ n∑
i=1

q2
ij (7)

where w1 and w2 are weights on denier and tenacity qualities,
and w1 +w2 = 1. The separation measures of each chromosome
from the ideal solution, S+

i , and from the negative-ideal solution,
S−

i , are given by:

S+
i =

√√√√√ 2∑
j=1

(vij − V+
j )2 , S−

i =

√√√√√ 2∑
j=1

(vij − V−
j )2 (8)

where V+
j = max vij and V−

j = min vij , j = 1, 2, are the ideal
and negative-ideal solutions, respectively. The fitness value,
which is the value of an objective function, is defined as:

J = S−
i

S+
i + S−

i

(9)

The chromosome with the largest relative closeness is the best
choice.

The genetic operations, namely reproduction, crossover and
mutation, create the next generation. A roulette wheel approach
is adopted in the reproduction operation. It selects a single chro-
mosome for a new population with respect to the probability
distribution based on fitness values. The crossover and mutation
rates, which determine the number of chromosomes to mate and
the number of genes to mutate, respectively, are both between
0 and 1. The mutation occurs with a small probability. In the
crossover operation, several pairs of chromosomes are randomly
selected, and it generates the offspring by swapping the genes
from the cut-point to the end of the chromosome for each pair.
The mutation operation flips one of the bits of the chromosome
string at a randomly selected location. The evolution of the pop-
ulation terminates after a preset number of generations.

3 Experiment and results

Our melt spinning setup is of laboratory scale and includes an
extruder with screw diameter of 25 mm, a metering pump, a spin-
ning pack, and a take-up device, which is schematically shown in
Fig. 1. The spinneret has 20 holes, and each capillary hole is of
diameter 0.5 mm and L/D ratio of 2. The outflow rate of a meter-
ing pump is 0.6 ml/s. The take-up device is located 250 cm down
from the spinneret. We used a polypropylene (PP) material with
a melt flow index of 25 g/10 min, a density of 0.9 g/cm3, and an
average molecular weight of 228 000 g/mol. The PP is melted in
an extruder and discharged into a metering pump and spinning
pack. Molten PP is extruded through a spinneret into a cooled air

Fig. 1. Schematic representation of the melt spinning setup
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stream. The solidified PP as-spun fiber is then wound on take-up
rolls.

Depending on adjustable settings of the melt spinning setup,
11 process parameters to be investigated are temperatures in
three extruder barrel sections (Factors A, B, and C), a die (Factor
D), a metering pump (Factor E), a spinneret (Factor F), speeds of
a extruder screw (Factor G), a metering pump (Factor H), cooled
air temperature (Factor I), speed (Factor J), and take-up speed
(Factor K). Factors A, B, C, D, E, F, and I are temperatures in
◦C. Factors G, H, and K are speeds in rpm. Factor J is the speed
from scale one to scale seven. In order to reduce the number
of experiments, we use a L12 orthogonal array, which can han-
dle 11 two-level process parameters (as shown in Table 1) in the
Taguchi method to plan experiments. In the L12 orthogonal array,
only twelve trials are required to study entire discrete solution
space. Each trial prepares five samples of PP as-spun fibers and
their values of denier and tenacity are measured. To expand the
solution space, we conducted three experiments with different
sets of level values assigned to each process parameter, as given
in Table 2. The level values are chosen for the ranges where the
setup will properly work.

To measure the denier of PP as-spun fibers, we prepared
three bundles of fibers, each having twenty 10-m long fibers,
and weighed them with a sensitive electronic balance. The denier

Table 1. L12 orthogonal array

Trial Factor
number A B C D E F G H I J K

1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 2 2 2 2 2 2
3 1 1 2 2 2 1 1 1 2 2 2
4 1 2 1 2 2 1 2 2 1 1 2
5 1 2 2 1 2 2 1 2 1 2 1
6 1 2 2 2 1 2 2 1 2 1 1
7 2 1 2 2 1 1 2 2 1 2 1
8 2 1 2 1 2 2 2 1 1 1 2
9 2 1 1 2 2 2 1 2 2 1 1

10 2 2 2 1 1 1 1 2 2 1 2
11 2 2 1 2 1 2 1 1 1 2 2
12 2 2 1 1 2 1 2 1 2 2 1

Table 2. Two-level values of factors

Factor
Experiment 1 Experiment 2 Experiment 3

Level 1 Level 2 Level 1 Level 2 Level 1 Level 2

A 170 180 165 175 170 175
B 190 200 185 195 190 195
C 225 235 220 230 225 230
D 250 260 245 255 250 255
E 235 245 230 240 235 240
F 215 240 220 230 220 230
G 25 35 20 30 25 30
H 40 50 35 45 40 45
I 20 30 25 35 25 30
J 4 7 1 5 3 6
K 1000 3000 1700 2400 1700 2400

is estimated by the averaged weight of a PP as-spun fiber. The
tenacity is measured by an Orientec Tensilon tester (RTA-1T) at
an extension rate of 25 mm/min using a 25-mm long PP as-spun
fiber.

To analyze experimental results, the values of denier and
tenacity for each trial are first transformed into S/N ratios
by Eq. 1 and by Eq. 2, respectively. For each of the three experi-
ments, the means of SN ratios at the same level for each process
parameter are computed to give the response table. The parame-
ter and level with the largest response value in the response table
yields the optimal parameter-levels for a quality characteristic.
To demonstrate, for the denier quality in Table 3, the optimal
parameter-levels are A2, B2, C2, D1, E2, F2, G1, H1, I2, J2, and
K2 for experiment 1. A2 represents factor A, temperature in the
first extruder barrel section, at level 2, B2 represents factor B,
temperature in the second extruder barrel section, at level 2, etc.
In Tables 3, 4, and 5, as a result, the optimal parameter-levels
for each experiment and quality characteristic corresponds to the
response values with “∗” marked in the subscript.

In the ANOVA, F-ratios for the factors are obtained in
Table 6, and no values in the F-ratio column, marked by “—-”,
correspond to the factors with the smaller sums of squares. The
F-test reveals that in experiment 1, for example, factors G and K
significantly affect the denier quality at the 95% confidence level
because their F-ratios are greater than F0.05. The values of F0.05

Table 3. Response table for experiment 1

Factor
Denier Tenacity

Level 1 Level 2 Level 1 Level 2

A −25.19 −24.34∗ 4.76 5.42∗
B −25.12 −24.41∗ 4.86 5.32∗
C −25.01 −24.52∗ 4.97 5.21∗
D −24.64∗ −24.88 4.72 5.46∗
E −25.25 −24.27∗ 4.68 5.50∗
F −25.04 −24.49∗ 5.22∗ 4.96
G −23.98∗ −25.54 5.27∗ 4.91
H −24.36∗ −25.17 5.30∗ 4.88
I −25.22 −24.30∗ 4.86 5.32∗
J −24.87 −24.65∗ 5.19∗ 4.99
K −29.07 −20.46∗ 1.47 8.71∗

Table 4. Response table for experiment 2

Factor
Denier Tenacity

Level 1 Level 2 Level 1 Level 2

A −22.37∗ −22.60 5.01∗ 3.92
B −22.71 −22.27∗ 4.04 4.88∗
C −22.56 −22.42∗ 4.49∗ 4.43
D −22.35∗ −22.63 4.89∗ 4.03
E −22.56 −22.41∗ 4.64∗ 4.28
F −22.63 −22.34∗ 4.48∗ 4.45
G −21.51∗ −23.47 5.20∗ 3.72
H −21.99∗ −22.99 4.53∗ 4.40
I −22.57 −22.41∗ 4.63∗ 4.29
J −22.51 −22.46∗ 4.05 4.88∗
K −24.08 −20.90∗ 3.50 5.42∗
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Table 5. Response table for experiment 3

Factor
Denier Tenacity

Level 1 Level 2 Level 1 Level 2

A −23.29 −23.16∗ 5.14∗ 4.68
B −23.56 −22.88∗ 4.86 4.96∗
C −23.48 −22.97∗ 4.32 5.50∗
D −23.18∗ −23.27 4.71 5.10∗
E −23.09∗ −23.35 5.27∗ 4.54
F −23.25 −23.19∗ 4.74 5.08∗
G −22.74∗ −23.71 5.10∗ 4.71
H −22.73∗ −23.72 5.32∗ 4.50
I −23.28 −23.17∗ 4.35 5.47∗
J −23.10∗ −23.35 4.92∗ 4.89
K −24.41 −22.04∗ 3.74 6.07∗

Table 6. F-ratios in the ANOVA

Factor / Experiment 1 Experiment 2 Experiment 3
F0.05 Denier Tenacity Denier Tenacity Denier Tenacity

A 13.55 7.61 3.15 165.99∗ 16.92∗ —–
B 9.40 3.70 11.60∗ 97.52∗ 7.87 13.03
C 4.52 —– —– —– —– 20.69∗
D —– 9.70 4.50 104.58∗ 13.95∗ 1.92
E 18.16 11.78∗ —– 17.82∗ —– —–
F 5.65 —– 5.02 —– 6.03 3.30
G 45.84∗ 2.23 225.51∗ 308.05∗ 125.83∗ 53.95∗
H 12.23 3.12 58.88∗ —– 29.35∗ 3.31
I 15.69 3.81 —– 16.32∗ 3.99 16.93
J —– —– —– 95.68∗ —– 17.28
K 1387.96∗ 914.31∗ 600.90∗ 517.65∗ 531.28∗ 482.10∗

F0.05 18.51 10.31 7.71 10.31 10.31 18.51

are also listed in Table 6. Consequently, for three experiments,
Table 6 indicates that factors corresponding to F-ratios with “∗”
in the subscript are significant factors on the denier and tenacity
qualities. We then computed the predicted values of denier and
tenacity, respectively, at optimal parameter-levels by Eq. 3 and
compared them with experimental results through confirmation
experiments. The predicted and experimental results, which are
tabulated in Table 7, are in good agreement if the error between
them is within ±5% of the predicted value [16]. Experiments 1
and 2 are in good agreement. However, experiment 3 with an
error in the tenacity quality of greater than 5%, is not in good
reproducibility and hence, we should not adopt its experimental
data as training samples for a neural network.

The neural network is used to construct a model which re-
lates 11 process parameters and two quality characteristics in
S/N ratios. The input layer, which represents 11 process param-
eters, has 11 nodes. The output layer has two nodes, namely the

Experiment Denier(S/N ratio) Tenacity(S/N ratio)
number Prediction Experiment Error(%) Prediction Experiment Error(%)

1 −19.11 −19.68 2.88 9.04 9.12 0.86
2 −19.48 −19.21 1.43 8.05 8.32 3.23
3 −21.04 −20.25 3.88 6.73 7.43 9.42

Table 7. Comparison of predicted
and experimental denier and tenacity

output quality values of denier and tenacity. Nine nodes are cho-
sen in the hidden layer. A total of twenty-four data, 12 data from
experiment 1 and 12 data from experiment 2, are used to train
the neural network. The learning rate η = 1.0 and the momentum
factor α = 0.75 are chosen. The initial weights in the input-to-
hidden and hidden-to-output layers are randomly given between
–0.3 and 0.3. The weights and thresholds update until the root
mean squared error (RMSE) reaches 10−6 in 20 000 epoches.

We employed the genetic algorithm to search for optimal pa-
rameter values in a continuous solution space. The domains of 11
process parameters, xi , i = 1, 2, . . ., 11, are appropriately set as
[165, 180], [185, 200], [220, 235], [245, 260], [230, 245], [215,
240], [20, 35], [35, 50], [20, 35], [1, 7], and [1000, 3000]. The
required precision for each parameter is five places, so the total
length of a chromosome is 238 bits. In the TOPSIS, the perform-
ance measure in the denier and tenacity has weights of 0.4376
and 0.5624, respectively [6]. In the genetic algorithm, we set the
number of generations and the population size to be 1000 and
10, respectively. The crossover and mutation rates are 0.2 and
0.001, respectively. The genetic algorithm is repeatedly executed
until the number of generations reaches 1000. As a result, opti-
mal values of process parameters, xi , i = 1, 2, . . ., 11, are 170.6,
188.1, 235.0, 245.0, 245.0, 215.0, 27.3, 39.7, 24.5, 5.6, 2860.1.
Therefore, optimal settings of the melt spinning setup are tem-
peratures in the first extruder barrel section of 171 ◦C, the second
section of 188 ◦C, the third section of 235 ◦C, a die of 245 ◦C,

Fig. 2. Denier versus tenacity plane for experimental results
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a metering pump of 245 ◦C, a spinneret of 215 ◦C, and cooled air
of 24.5 ◦C. The speed of a extruder screw was 27.3 rpm, a me-
tering pump was 39.7 rpm, cooled air was scale 6, and take-up
roll was 2860 rpm. At these settings, the experiment results are
8.43, 8.10, and 8.64 den for the denier and 4.11, 3.97, 3.74, 4.12,
and 3.46 g/den for the tenacity, yielding a mean denier of 8.39
den and a mean tenacity of 3.85 g/den. The denier and tenacity
of PP as-spun fibers produced at parameter-levels in the Taguchi
method and at optimal parameter conditions by the genetic algo-
rithm are plotted in the denier-tenacity plane. Figure 2 shows that
parameter conditions decided by the genetic algorithm result in
the smallest denier and the largest tenacity, which is indicated by
an encircled mark in the denier-tenacity plane.

4 Conclusions

In melt spinning, good qualities of denier and tenacity in as-
spun fibers are essential to final quality products. However, the
setting of process parameters to achieve good qualities often con-
sumes much time and effort. This paper provides a systematic
approach, which is the application of the Taguchi method, neural
network, and genetic algorithm, to deal with the choice of pa-
rameter values for the optimal denier and tenacity in PP as-spun
fibers. The experimental layout in the Taguchi method provides
training samples of a neural network. Hence, only a few of ex-
periments are needed to construct the neural network. Since the
solution space is constrained by the level values in the orthogonal
array, three different sets of level values are used to expand the
solution space. The results show that the proposed approach can
yield better qualities of denier and tenacity in PP as-spun fibers
than the Taguchi method.
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