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Abstract This paper proposes a novel modification of Clements’s
method using the Burr XII distribution to improve the accuracy
of estimates of indices associated with one-sided specification
limits for non-normal process data. This work proposes a novel
Burr-based method, and compares it with Clements’s method
by simulation. Finally, an example application to semiconductor
manufacturing is presented.
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1 Introduction

In recent decades, process capability analysis has been widely
applied in the field of quality control to monitor the perform-
ance of industrial processes. The purpose of a process capability
analysis is to estimate, monitor, and reduce the variability of in-
dustrial processes [1,2]. Additionally, process capability analy-
sis provides a common standard of product quality for suppliers
and customers. The most popular way to assess process capa-
bility is to use histograms and process capability indices (PCIs).
The most extensively used PCIs in semiconductor manufacturing
are defined as follows:
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USL is the upper specification limit, LSL is the lower specifica-
tion limit, p is the process mean, and o is the process standard
deviation.

C,, and Cy are used in cases of bilateral specifications; C,,
and C); are used in cases of unilateral specifications.

Such PCIs have been generally defined based on three basic
assumptions. The first assumption is that the system determining
which data are collected is under control. The second assumption
is that the collected process data are independent and identically
distributed. The third assumption is that the collected process
data are normally distributed; that is, the process must be a nor-
mal process. In practice, industrial production involves many
non-normal processes, especially in the semiconductor industry,
so the use of PCIs based on an assumption of a normality as-
sumption may yield misleading results.

Several generalizations and modifications of classical PCIs
have been proposed to try to solve this problem and handle non-
normal processes. The simplest way to treat non-normal data is
to transform the data using mathematical functions into normally
distributed data. Johnson [3] built a system of distributions based
on the moment method, called the Johnson transformation sys-
tem. Box and Cox [4] presented a useful family of power trans-
formations. Somerville and Montgomery [5] used a square-root
transformation to transform a skewed distribution into a normal
one; however, their approach was based on data transformations,
is difficult to implement using a standard method, and tends to be
computationally intensive. Another conceptually simple way to
treat non-normal data is to use non-normal percentiles to modify
classical PCIs. Clements [6] proposed the method of non-normal
percentiles to calculate C), and Cpy indices for a distribution of
any shape, using the Pearson family of curves. The main ad-
vantage is that no complicated distribution fitting is required.
These modified indices are easily understood by non-statisticians
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and are the most commonly used in industry. Gruska et al. [7],
and Kotz and Lovelace [8] constructed tables of standardized
tails of Pearson curves as functions of kurtosis and skewness
for skewness ranging from —2 to 2 and kurtosis ranging from
—1.4 to 12.2. Based on skewness and kurtosis, standardized per-
centiles can be easily obtained and then actual percentiles can be
estimated.

Pearn and Kotz [9] also applied Clements’s method to con-
struct the second-generation index Cp,, and the third-generation
Cpmik for non-normal data. These percentile-based indices,
Cp, Cpk, Cpm and Cppk, for non-normal data, are defined as
follows:
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where x;, = p* 100th percentile value of non-normal data, and T
is the target value of the non-normal process.

Although Clements’s method is the most commonly applied
in industry today, Wu et al. [10] indicated that the Clements
method cannot accurately measure the nominal values, espe-
cially when the underlying data distribution is skewed.

The goal of this paper is to develop a new method by modi-
fying Clements’s method using the Burr XII distribution to im-
prove the accuracy of the estimation of indices of non-normal
processes; hence, this paper proposes a novel method, which is
compares with Clements’s method by simulation. Finally, the
method is applied to an example from semiconductor manu-
facturing, and conclusions are drawn and recommendations are
made.

2 The Burr XIl distribution

Clements’s method is modified using the Burr system of distribu-
tions to provide better estimates of PCIs. Burr [11] proposed the
cumulative distribution function of the Burr XII distribution:

Fx) =1—(14+x97%, forx 20
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where ¢ > 0, k > 0. The corresponding probability density func-
tion is
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The reciprocal transformation is
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Burr [11] and Burr [12] tabulated the expected values, stan-
dard deviations, skewness coefficient and kurtosis coefficient of
the Burr XII distribution for several combinations of ¢ and k.
These tables enable users to make a standardized transform-
ation between a Burr variate (say, U) and another random variate
(X). For a set of data, after the sample skewness and kurtosis
coefficients have been estimated, the mean and standard devi-
ation of the corresponding Burr distribution may be obtained
using the tables. For instance, suppose a set of data is collected
and the following sample statistics are calculated: the sample
mean (X) is 45.68; the sample standard deviation (sy) is 3.51;
the sample skewness coefficient (a3) is 0.51, and sample kur-
tosis coefficient (ayq) is 3.87. From Table I in Burr [12], this
set of data may be approximately described as a Burr XII dis-
tribution with ¢ =4.2,k = 2.8, u =.7527, and o = .2386. Let
@ and o be the mean and standard deviation, respectively, of
a Burr random variate. Then, the standardized transformation be-
tween a Burr variate (U) and the random variate (X) may be
expressed as

(X—%) /sx = (U —w)/o
S0 (X —45.68)/3.51 = (U —0.7527)/0.2386
X =34.607+14.711U

Zimmer and Burr [13] found that a wide range of the skewness
and kurtosis coefficients of various probability density functions
can be covered by different combinations of ¢ and k. Such proba-
bility density functions include most known functions, including
the normal, Gamma, Beta, Weibull, logistic, log-logistic, log-
normal, extreme value type I distribution, and other functions.
For instance, the normal density function may be approximated
as a Burr XII distribution with ¢ =4.85437 and k = 6.22665
and the Gamma distribution with shape parameter 16 can be
approximated as a Burr XII distribution with ¢ =3 and k = 6,
and the log-logistic distribution is a special case of the Burr
XII distribution. Rodriguez [14] demonstrated that the Weibull
distribution is a limiting distribution of the Burr XII distribu-
tion. Hence, the two-parameter Burr XII distribution can be
used to describe the data in the real world. The Burr XII dis-
tribution has been applied in areas of quality control, reliabil-
ity analysis, and failure time modeling. Zimmer and Burr [13]
developed a method for sampling variables from non-normal
populations using the Burr XII distribution. Burr [15] used his
distribution to investigate the effect of non-normality on the con-
stants of the X-bar and R control chart. Castagliola [16] derived



Burr’s approach to compute the proportion of nonconforming
items and then transformed this proportion into ép(q). Chou and
Cheng [17] extended Yourstone and Zimmer’s model [18] to
determine the control limits of the R control chart under non-
normality. Chou et al. [19] applied the Burr XII distribution to
generate an economic-statistical design of the X-bar chart for
non- normally distributed data. For more information on the Burr
XII distribution, please refer Wang et al. [20], Zimmer et al. [21],
and Ali Mousa and Jaheen [22].

3 Process capability analysis
using Burr XIlI distribution

Although Clements’s method is the most widely used in industry
today, it has one major drawback as described above. Clements’s
method can be modified by replacing the Pearson family of prob-
ability curves with a Burr XII distribution to improve the accu-
racy of the estimates of the indices for non-normal process data.
Two reasons justify the use of the Burr XII distribution. The first
is that the two-parameter Burr XII distribution can be used to
describe data that arise in the real world, and especially those
concerning non-normal processes, as described before. The sec-
ond reason is that the direct use of a fitted cumulative function
instead of a probability density function (like members of the
Pearson family of functions) may avoid the need for a numerical
or formal integration.

The procedure of the process capability analysis using the
Burr XII distribution is presented as follows:

Step 1. Estimate the mean (x), standard deviation (s), skewness
(a3), and kurtosis (a4) from the process data.

Step 2. Select the parameter (c¢) and (k) based on estimates of
skewness and kurtosis, using the Burr XII distribution
table (see the appendix).

Step 3. With reference to parameters (c) and (k) obtained in step
(2), use the table of standardized tails of the Burr XII
distribution to determine Z3.00135’ Zaso, and 25_99865,
where Z;‘, = adjusted standardized normal variate of the
process data (see the table in the appendix).

Step 4. Estimate percentiles Xo.00135, X0.50, and X0.99365

X0.00135 = X+ Z§ 09135 X §
Xos50 =X+ ZS.SO X s
X0.99865 = X + Z{§ 99865 X S

Step 5. Estimate process capability indices, using Eqs. 5-10

4 Simulation study

The novel method is compared with Clements’s method. A rep-
resentative PCI for non-normal data should be compatible
with that computed under normality, given the same fraction
of non-conforming parts. Therefore, It is agreeable to use
Cpu, a unilateral specification capability index, as the com-
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parison criterion in the simulation study. In the case of nor-
mal distribution, the targeted C,, value can be determined
using

Fraction of non-conforming parts = @(—=3Cp,) (14)

For example, Cp, =1, 1.5, and 2 imply non-conforming frac-
tions of 1350 ppm, 3.4 ppm, and .001 ppm, respectively, where
Ippm =1x107% (or non-conforming parts per million). In
the simulation, targeted values of Cpy,,) =1, 1.5, and 2 were
used, and corresponding USL values of underlying distribu-
tions with the same fraction of non-conforming parts are ob-
tained. These USL values are then used to estimate the Cpy (g
index of the simulated data using the two methods. Finally,
these estimated Cp,(,; values are compared with the target
Cpu (q) value.

A better method involves a sample mean of the estimated
Cpu(g) with a smaller deviation from the target value (greater ac-
curacy) and with a smaller sample standard deviation (greater
precision).

Beta, Gamma, and Weibull distributions are considered in the
investigation of the effect of non-normal data on the PCIs in the
simulation. They have parameters that can represent slight, mod-
erate, and severe departures from normality. These distributions
are known to involve significantly different tail behaviors, which
may strongly influence the process capability.

A series of simulations were implemented with sample sizes
of n =50, 100, and 500, and with C,;4) =1, 1.5, and 2 using
Beta, Gamma, and Weibull distributions. Results calculated
using standard PCI expressions on the assumption of normality
are also included for reference. Each run was replicated 30 times
to yield the average of 30C () values, Cpu(g).

Briefly, the simulation procedure is as follows:

1. Choose an underlined distribution (such as a Gamma (shape =
4, scale =0.5))

2. Choose a targeted Cpy(q value and determine the corres-
ponding USL based on the underlined distribution (such as
Cpu(g) = 1, USL = Q99865 = 54.35 for the Gamma distribu-
tion (shape = 4, scale = 0.5))

3. Use arandom number generator to generate n = 50, 100, or
500 data points, following the underlined distribution, and
use an X — R control chart to ensure that the simulated data
are under control.

4. Calculate the sample mean, standard deviation, skewness and
kurtosis.

5. Based on the sample skewness and kurtosis, determine the
standardized percentiles of Pearson’s curves and the stan-
dardized percentiles of Burr’s distribution.

6. Estimate separate percentiles of Pearson’s curves and the
Burr XII distribution.

7. Estimate separately the épu (¢) values of Pearson’s curves and
the Burr XII distribution.

8. Repeat steps 3 to 7 until they have been performed 30 times

9. Separately calculate the mean Cy(y) and standard deviation
of 30 é‘pu(q) values for Pearson’s curves and the Burr XII
distribution.
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Table 1. Non-normal distributions used in the simulation study

Distribution Skewness
Beta (shapel = 4.4, shape2 = 13.3) 0.506
Gamma (shape = 4, scale =0.5) 1
Weibull (shape = 1.2, scale = 1) 1.521
Gamma (shape = 1, scale = 1) 2

Probability Density Function
y=beta(x,4.4375,13.3125)
4.370

3.278

2.185

1.093

0.000

0.112 0.224 0.336 0.448

Fig. 1. PDF of a Beta (shapel = 4.4, shape2 = 13.3) distribution (Note: the
dashed line points to the location of the median)

Probability Density Function
y=gamma(x,4)
0.246

0.185

0.123

0.062

0.000

2.305 4.611 6.916 9.222

Fig.2. PDF of a Gamma (shape =4, scale = 1) distribution (Note: the
dashed line points to the location of the median)

Probability Density Function
y=weibull(x,1,1.2,0)

1.300

0.975

— :
0.650 S~
\\‘\

0.325 ; ~—_

0.000 -
0.498 0.995 1.493 1.990

Fig.3. PDF of a Weibull (shape = 1.2, scale = 1) distribution (Note: the
dashed line points to the location of the median)

Probability Density Function
y=gamma(x,1)

1.089

0.817

0.544

0.272

0.000
1.149 2.298 3.446 4.595

Fig.4. PDF of a Gamma (shape = 1, scale = 1) distribution (Note: the
dashed line points to the location of the median)

The results of the simulation are as follows:

Table 1 presents the non-normal distributions used in the
simulation. Figures 1 to 4 present the PDFs of these non-normal
distributions. Clearly, the skewnesses vary considerably among
these figures.

Table 2 presents Cpy(g) values and USLs of the non-normal
distributions used in the simulation. Tables 3 to 6 summarize the
simulation results obtained for non-normal distributions using
the three methods. Table 3 refers to the Beta (4.4,13.3) distribu-
tion; Table 4 refers to the Gamma (4,0.5) distribution; Table 5
refers to the Weibull (1.2, 1) distribution, and Table 6 refers to the
Gamma (1, 1) distribution.

To save space, Figs. 5 to 10 present only some of the simu-
lation results obtained by applying the three methods to non-
normal distributions. Figure 5 presents box plots of épu(q) ob-
tained by applying the three methods to the Beta (4.4, 13.3)
distribution with target Cpy(4) = 2. Figure 6 presents correspond-
ing plots for the Gamma (4, 0.5) distribution; Fig. 7 presents
corresponding plots for the Weibull (1.2,1) distribution and
Fig. 8 presents corresponding plots for the Gamma (1,1) dis-

Beta(4.4,13.3) skewness=0.506 with target Cpu(q)=2
(n=100 and n=500)

Cpu(a)=2

Cpu{q) predicted value

T T T T T T
B 2h C2h N 2h B 2f C2f N2f

B:Burr based C:Clements’ N:Normal assumed
* 2h(2f):target Cpu(q)=2 n=100 (=500}

Fig. 5. Box plots of CA'W(,,) for three methods for Beta (4.4, 13.3) with target
Cpu (Q) =2



Table 2. Cp,(, values and USLs for non-normal distributions used in the simulation study
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Cpu(g) = (USL —x 50) / (x.99865 — X.50)

USL=C}, ) (x.99865 — X.50) +X.50

Beta (shapel = 4.4, shape2 =

13.3)

Gamma (shape = 4, scale =0.5)

Weibull (shape = 1.2, scale =

D

Gamma (shape = 1, scale = 1)

X 99865
0.5954
X 99865
6.3405
X 99865
4.8236
X 99865
6.6078

X 50
0.2405
X 50
1.836
X 50
0.7368
X 50
0.6931

Cputq)
USL
Cpug)
USL
Cputq)
USL
Coug)
USL

0.5954

6.3405

4.8236

6.6078

1.5
0.7729
1.5
8.5927
1.5
6.867
1.5
9.5651

0.9504

10.845

8.9104

12.522

Table 3. The mean C pu(g) and standard deviation of 30 ¢ pu(g) values of Burr-based, Clements’s, and normal-assumed methods of each C,;, value for the Beta

simulation
Beta (shapel = 4.4375, shape2 = 13.3125) skewness = 0.506

Cpu(g) 1.00 Bur Clm Nor 1.50 Bur Clm Nor 2.00 Bur Clm Nor
mean n=>50 0.99 1.07 1.14 n =50 1.49 1.60 1.72 n=>50 1.98 2.14 2.31
std 0.17 0.22 0.14 0.25 0.33 0.19 0.32 0.43 0.25
mean n =100 1.04 1.16 1.14 n =100 1.57 1.74 1.73 n =100 2.09 2.32 2.32
std 0.15 0.21 0.11 0.23 0.32 0.16 0.31 0.43 0.20
mean n =500 0.98 1.05 1.15 n =500 1.48 1.58 1.75 n =500 1.97 2.10 2.34
std 0.07 0.10 0.05 0.10 0.15 0.08 0.14 0.20 0.10

Table4. The mean Cp,(; and standard deviation

of 30 C pu(g) values of Burr-based, Clements’s, and normal-assumed methods

for the Gamma (4,0.5)

simulation
Gamma (shape = 4, scale = 0.5) skewness = 1
Chru(g) 1.00 Bur Clm Nor 1.50 Bur Clm Nor 2.00 Bur Clm Nor
mean n=>50 1.22 1.30 1.52 n =150 1.83 1.94 2.31 n =250 2.44 2.59 3.09
std 0.20 0.25 0.20 0.31 0.38 0.28 0.42 0.51 0.37
mean n =100 1.18 1.23 1.51 n =100 1.77 1.85 2.29 n =100 2.36 2.46 3.07
std 0.23 0.28 0.19 0.34 0.42 0.28 0.46 0.56 0.37
mean n =500 1.01 1.01 1.46 n =500 1.52 1.52 2.21 n =500 2.03 2.03 2.96
std 0.06 0.07 0.06 0.10 0.10 0.08 0.13 0.13 0.11
gamma(4,0.5) skewness=1 with target Cpu(q)=2 Weibull(1.2,1) skewness=1.521 with target Cpu(q)=2
(n=100 and n=500) (n=100 and n=500)

g ]

= =

> >

B B

3 =

E k

a, =%

G G

3 =

o, j="

© Cpu(g)=2 ~

Cpu(a)=2

B 2h C2h
B:Burr based C:Clements' N:Normal assumed

* 2h(2f):target Cpu(q)=2 n=100 (n=500)

N2h

B2f

C2f

Fig. 6. Box plots of ¢ pu(qg) for three methods for Gamma (4,0.5) with target

Cpu (Q) =2

B 2h C2h

N2h

B 2f c2f N 2f
B:Burr based C:Clements' N:Normal assumed
* 2h(2f):target Cpu(q)=2 n=100 (n=500)

Fig.7. Box plots of ¢ pu(qg) for three methods for Weibull (1.2,1) with target
Cpll (Q) =2



980

Table 5. The mean C pu(g) and standard deviation of 30 ¢ pu(g) values of Burr-based, Clements’s, and normal-assumed methods for the Weibull simulation

Weibull (shape = 1.2, scale = 1) skewness = 1.521

Cpu(g) 1.00 Bur Clm Nor 1.50 Bur Clm Nor 2.00 Bur Clm Nor
mean n =50 1.33 1.40 1.71 n =50 1.98 2.10 2.61 n =50 2.63 2.79 3.51
std 0.39 0.47 0.38 0.59 0.69 0.55 0.78 0.92 0.72
mean n =100 1.34 1.42 1.72 n =100 2.00 2.13 2.63 n =100 2.66 2.83 3.53
std 0.21 0.25 0.23 0.32 0.38 0.34 0.42 0.51 0.45
mean n =500 1.22 1.24 1.70 n =500 1.81 1.86 2.59 n =500 241 2.48 3.48
std 0.10 0.12 0.11 0.15 0.18 0.17 0.21 0.24 0.22

Table 6. The mean C'pu (¢) and standard deviation of 30 CA'W (¢) Values of Burr-based, Clements’s, and normal-assumed methods for the Gamma (1,1) simulation

Gamma (shape = 1, scale = 1) skewness =2

Cpu(g) 1.00 Bur Clm Nor 1.50 Bur Clm Nor 2.00 Bur Clm Nor
mean n =50 1.59 1.67 2.11 n =50 2.38 2.51 322 n =250 3.16 3.35 4.33
std 0.41 0.49 0.41 0.63 0.74 0.60 0.84 0.98 0.79
mean n =100 1.43 1.48 1.98 n =100 2.13 2.23 3.03 n =100 2.84 2.97 4.07
std 0.20 0.24 0.24 0.30 0.35 0.35 0.40 0.47 0.46
mean n =500 1.39 1.43 2.02 n =500 2.08 2.14 3.08 n =500 2.76 2.85 4.15
std 0.12 0.13 0.16 0.18 0.19 0.24 0.24 0.26 0.31
gamma(1,1) skewness=2 with target Cpu(q)=2 skewness=0.506,1,1.521 and 2 with target Cpu(q)=2
(n=100 and n=500) (n=500)
30 - e o l ------

= 2

g S

3 B

2 L AU I DR

: |

& Z H L

E =

= =z

8 é 20 'J_'[;I Cpu(q)=2

2 Cpua)=2
T T T T
B 2h C2h N2h B2f Caf N2f So.tls 2h S1IZh s1.|5 2h 32l2h
B:Burr based C:Clements' N:Normal assumed S: Skewness
* 2h{2f):target Cpu(g)=2 n=100 (n=500) *+ 2ftarget Cpu(q)=2 n=500

Fig. 8. Box plots of Cpy(g) for three methods for Gamma (1,1) with target  Fig. 10. Box plots of €, () for the Burr-based method with target Cp, (q) =

Cpulq) =2 2,n =500
skewness=0.506,1,1.521 and 2 with target Cpu(q)=1 tribution. Figures 9 and 10 present box plots of épu(q) for the
(n=500) Burr-based method with n = 500 and target Cpyg) =1 and 2,
respectively.
>
E 5 Discussions
2
Eé The simulation study yielded the following results:
3
S [_,—__1 Cpu(@)=L 1. The Burr-based method is the best of the three methods.
The Burr-based method is the one for which the sample mean
051t S11f S151F $2 1f of the estimated C,,(; deviates least from the target value
S: Skewness (so it is the most accurate) and for which the sample stan-
* Iftarget Cpu(g)=1 n=500 dard deviation of the estimated Cpy (g varies least (so it is

Fig. 9. Box plots of épu(q) for the Burr-based method with target Cpu (q) = the most precise). The Burr-based method is Shghﬂy better
1,n =500 than Clements’s method. The method that assumes normal-



ity is the worst of the three methods because of its inaccurate
estimates in these non-normal distributions.

2. A larger sample size n yields better estimates.

3. A larger target value of Cpy () corresponds to slightly worse
estimates

4. The Burr-based method is effective for slightly or moderately
non-normal distributions, but it yields overestimates in cases
of highly skewed distributions (skewness = 1.5).

6 Example of the application of the proposed method
in the semiconductor industry

This section presents the results obtained by applying the de-
scribed method for estimating non-normal PCIs to some experi-
mental data. Data were collected during a normal photolitho-
graphic process using a stepper at a semiconductor manufacturer
in Taiwan [23]. The data are measurements of the deviation of
exposure in the x-direction and the y-direction. The data can be
treated as absolute deviations of exposure in the x and y direc-
tions with USL = 0.05. Figures 11 and 12 show histograms of
the data obtained after abnormal data were screened out using
the X — R control chart to ensure that the data are under control.
The histograms appear to show that the underlying distributions
of the two sets of data were not normal. Moreover, the data do
not follow any specific distribution, according to goodness-of-fit
testing, the results of which are presented in Table 7. The results
show that the process capability of index C pu(g) < 1.25, so that
the photolithographic process should be improved. The estimates

—
20 —
5 — ]
c
@ |
=
3 10 |
W
1o ™
T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05
X -direction

Fig. 11. Histogram of absolute deviations of exposure in the x direction with
USL =0.05
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25 —

20 —

15 —

10 —

Frequency

T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05

Y -direction

Fig. 12. Histogram of absolute deviations of exposure in the y direction with
USL =0.05

made using the Burr-based method, which are lower than those
made using Clements’s method, can help engineers be more at-
tentive to process improvement.

7 Conclusions

This article proposes a novel modification of Clements’s method

using the Burr XII distribution to improve the accuracy of esti-

mates of indices associated with non-normal process data. This
work proposes the novel Burr-based method, and compares it
with Clements’s method by simulation. Finally, an example ap-
plication to semiconductor manufacturing is presented.

The following conclusions are drawn and recommendations
are made:

1. This article proposes a Burr-based method for estimating the
Cpu(g) capability index, and demonstrates that it is slightly
better than Clements’s method. The Burr table is also made
easier to use.

2. The Burr-based method works well under distributions that
depart slightly or moderately from normality.

3. Clements’s method and the novel Burr-based method over-
estimate the Cpy(g) in cases of highly skewed distributions
(skewness = 1.5).

4. The estimates made using the Burr-based method, which are
lower than those made using Clements’s method, are good in-
dicators to help engineers be more attentive to and focus on
process improvement.

Table 7. The results of process an-

alysis of the data of absolute de- Data Skew- Kur- Method Cru(g) K-S test fO{ )
viations of exposure in the x- and ness tosis goodness-of-fit
y-directions with USL = 0.05
L. Burr-based 0.884 Not significant at o = 0.05
¥-direction 0.7 26 Clements’s 0.996 Not significant at o = 0.05
L. Burr-based 0.823 Not significant at o = 0.05
y-direction 0.6 23 Clements’s 0.931 Not significant at o = 0.05
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The Burr XII distribution is appropriate for describing data that
originate in the real world. It is computed easily because the cu-
mulative density function of Burr XII is an algebraic form. This
article strongly recommends the further investigation and appli-
cation of the Burr-based method in process capability analysis
and quality control.
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Appendix

Tables of the standardized percentiles of Pearson’s curves
(Clements’s) and Burr’s distribution.

Note: 1. given combinations of a3 and a4, values of c, k, i, and

o can be determined for the Burr XII distribution
2. a3 and a4 are standardized skewness and kurtosis, re-
spectively. (a3 = 0, a4 = 3) is for normal distribution.
3. az=((n—2)//n(n—1))xskew,as = (n—2)(n—3)/
(m+Dn—1D)*kurt+3x(n—1)/(n+1)

culating second and third generation process capability indices for where
non-normal Pearsonian populations. Qual Eng 7(1):139-145
10. Wu HH, Wang JS, Liu TL (1998) Discussions of the Clements-based n Yi—X 3
process capability indices. In: Proceedings of the 1998 CIIE National skew = ————— . Z [1—]
Conference, pp 561-566 (n—1Dn-2) = s
11. Burr IW (1942) Cumulative frequency distribution. Ann Math Stat J
13:215-232 -4
12. Burr IW (1973) Parameters for a general system of distributions to kurt = nin+1) Z i
match a grid of a3 and a4. Commun Stat 2:1-21 m—1)(n—-2)((n—3) < N
13. Zimmer WJ, Burr IW (1963) Variables sampling plans based on non- /
normal populations. Ind Qual Control July:18-36 3(n—1)>2
14. Rodriguez RN (1977) A guide to the Burr type XII distributions. Bio- - m
metricka 64:129-134
15. Burr IW (1967) The effect of non-normality on constants for X and R _ .
charts. Ind Qual Control May:563-569 X and s are sample mean and sample standard devia-
16. Castagliola P (1996) Evaluation of non-normal process capability in- tion, respectively.
dices using Burr’s distributions. Qual Eng 8(4):587-593 4. To save space, we present only the values for a3 =0,
17. JCt(I;Li‘ngi I?;terllf dpgnél?zg)igqisogontr(ﬂ chart for non-normal data. 0.5, 1, 1.5, and 2. For all of the details, please contact
18. Yourstone SA, Zimmer WJ (1992) Non-normality and the design of the authors or please refer to Kotz and Lovelace [8] and
control charts for averages. Decis Sci 23:1099-1113 Burr [12]
Skewness  Kurtosis Clements’s Burr
a3 a4 ZPooiss  ZPs  ZPoowses  BZPooiss BZPs  BZPgoges c k 1% o
0 2 —1.966 0.000 1.966 —1.843 0.022  2.396 —18.148445  0.062932 0.538666 0.290634
0 22 —2.210 0.000 2.210 —1.959 0.037 2.697 —13.840637  0.093482 0.574597 0.290269
0 2.4 —2.442 0.000 2.442 —2.076 0.047 2911 —12.134081  0.120321 0.608776 0.287975
0 2.6 —2.663 0.000 2.663 —2.197 0.053 3.078 —11.251863  0.146295 0.641872 0.283920
0 2.8 —2.839 0.000 2.839 —2.735 0.008 2914 3.938938  19.864823 0.427479 0.124319
0 3 —3.000 0.000 3.000 —2.884 0.010  3.081 4.873717  6.157568 0.644717 0.161990
0 3.2 —3.140 0.000 3.140 —3.020 0.011 3.221 6.065153  3.745010 0.767265 0.164426
0 34 —3.261 0.000 3.261 —3.148 0.011 3.340 7.695948  2.700685 0.850740 0.151944
0 3.6 —3.366 0.000 3.366 —3.269 0.011 3.442 10.182078  2.089559 0.911057 0.129983
0 3.8 —3.458 0.000 3.458 —3.388 0.009 3.529 14.723762  1.664480 0.955196 0.099905
0 4 —3.539 0.000 3.539 —3.509 0.015 3.609 27.068908  1.325754 0.985829 0.059999
0 4.2 —3.611 0.000 3.611 —3.642 0.001 3.659 —195.260000  0.959315 0.999691 0.009430
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Skewness  Kurtosis Clements’s Burr

as as ZPoo13s  ZPs Z P 9oses BZPyi3s BZPs BZPoyoses ¢ k M o
0.5 2 —1.232 -0.212 2.131 —1.225 —0.213 2.258 —46.009112 0.012681 0.368920 0.301069
0.5 2.2 —1.377 —-0.169 2.422 —1.292 —0.173 2.829 —14.222488 0.046148 0.401469 0.310714
0.5 2.4 —1.539 —-0.142 2.708 —1.357 —0.141 3.121 —11.000293 0.066322 0.431431 0.317882
0.5 2.6 —1.711 -0.122 2.968 —1.421 —0.115 3.325 —9.617790 0.083673 0.459691 0.323217
0.5 2.8 —1.887 —0.108 3.194 —1.487 —0.093 3.483 —8.837537 0.099951 0.486834 0.327087
0.5 3 —2.059 —-0.097 3.387 —1.554 —0.076 3.612 —8.339490 0.115918 0.513287 0.329712
0.5 3.2 —2.220 —0.089 3.550 —2.085 —0.082 3.595 2.537779 12.52349 0.335292 0.147712
0.5 34 —2.368 —0.082 3.688 —2.202 —0.074 3.731 2.943293 6.113841 0.501498 0.201715
0.5 3.6 —2.502 -0.077 3.805 —2.313 —0.067 3.843 3.395555 4.142901 0.620824 0.227764
0.5 3.8 —2.622 —0.072 3.905 —2.419 —0.061 3.939 3.917524 3.155912 0.713383 0.237814
0.5 4 —2.727 —0.068 3.991 —2.523 —0.057 4.023 4.548291 2.540631 0.788396 0.236949
0.5 4.2 —2.817  —0.065 4.066 —2.627 —0.053 4.099 5.360672 2.100986 0.851246 0.227386
0.5 4.4 —2.893  —0.062 4.131 —2.736 —0.050 4.169 6.513761 1.751518 0.905414 0.209324
0.5 4.6 —2.957 —0.060 4.189 —2.856 —0.048 4.237 8.473843 1.440495 0.953420 0.180041
0.5 4.8 —3.011 —0.057 4.239 —3.018 —0.049 4.301 14.457708 1.084855 0.998320 0.122136
0.5 5 —3.055 —0.055 4.285 —3.034 —0.042 4.365 —13.177200 0.8078 0.983214 0.146900
1.0 2.8 —-0.919 —-0.413 2.608 —0.914 —0.418 2.739 —37.592244 0.009476 0.263067 0.287757
1.0 3.0 —1.000 —0.347 2914 —0.952 —0.381 3.264 —13.068026 0.030050 0.285705 0.300232
1.0 3.2 —1.086 —0.299 3.206 —0.987 —0.350 3.535 —10.102815 0.042342 0.306405 0.310543
1.0 3.4 —1.178  —-0.263 3.468 —1.020 —0.321 3.722 —8.794494 0.052544 0.325718 0.319287
1.0 3.6 —1.277 -0.235 3.693 —1.053 —0.296 3.864 —8.035677 0.061736 0.344004 0.326831
1.0 3.8 —1.381 —0.213 3.883 —1.084 —0.273 3.978 —7.534128 0.070362 0.361514 0.333420
1.0 4.0 —1.491 —0.196 4.043 —1.116 —0.252 4.072 —7.176003 0.078658 0.378436 0.339226
1.0 4.2 —1.602 —0.181 4.177 —1.522 —0.180 4.191 1.600580  75.150186 0.060742 0.039208
1.0 4.4 —-1.713  —-0.169 4.290 —1.598 —0.168 4.300 1.781200  13.522563 0.213171 0.129853
1.0 4.6 —1.821 —0.159 4.386 —1.671 —0.157 4.390 1.964535 7.780951 0.328516 0.189332
1.0 4.8 —1.925 -0.151 4.468 —1.740 —0.148 4.465 2.152385 5.59623 0.424414 0.231862
1.0 5.0 —2.023 —0.143 4.539 —1.808 —0.140 4.528 2.347094 4.428629 0.506046 0.262382
1.0 5.2 -2.116  —-0.137 4.600 —1.873 —0.133 4.583 2.551826 3.689945 0.576758 0.283956
1.0 5.4 —2.202 —0.131 4.653 —1.936 —0.126 4.631 2.770828 3.170981 0.639034 0.298637
1.0 5.6 —2.283 —0.126 4.700 —2.000 —0.120 4.675 3.009958 2.778372 0.694794 0.307793
1.0 5.8 —2.358 —0.122 4.741 —2.075 —0.127 4.803 3.227685 2.463769 0.745571 0.312291
1.0 6.0 —2.427 —-0.118 4.777 —2.129 —0.110 4.753 3.587147 2.199033 0.792649 0.312572
1.0 6.2 —2.491 —0.114 4.810 —2.197 —0.105 4.791 3.960662 1.965622 0.837209 0.308651
1.0 6.4 —2.549 —-0.111 4.839 —2.272 —0.101 4.829 4.442055 1.748775 0.880562 0.299899
1.0 6.6 —2.602 —0.108 4.865 —2.358 —0.097 4.871 5.139853 1.531357 0.924740 0.284223
1.0 6.8 —2.651 —0.105 4.888 —2.478 —0.093 4,923 6.548242 1.265997 0.976403 0.252039
1.5 4.2 —-0.721  —0.520 3.172 —0.719 —0.526 3.322 —28.492765 0.008116 0.188273 0.262918
1.5 4.4 —0.768 —0.474 3.463 —0.738 —0.511 3.749 —12.725454 0.019623 0.202338 0.274262
1.5 4.6 —0.815 —-0.432 3.736 —0.758 —0.495 3.985 —9.947745 0.026856 0.215249 0.284055
1.5 4.8 —0.863 —0.396 3.979 —0.777 —-0.479 4.149 —8.662713 0.032764 0.227275 0.292677
1.5 5 —0913  —-0.365 4.189 —0.794 —0.464 4.273 —7.899136 0.037968 0.238597 0.300383
1.5 5.2 —0.964 —0.338 4.369 —0.811 —0.450 4.371 —7.385558 0.042725 0.249344 0.307348
1.5 5.4 —1.018 —-0.315 4.521 —0.828 —0.435 4.452 —7.013213 0.047172 0.259615 0.313703
1.5 5.6 —1.073  —-0.295 4.649 —0.843 —0.422 4.520 —6.729262 0.051392 0.269485 0.319544
1.5 5.8 —1.131 —-0.278 4.758 —0.859 —0.408 4.579 —6.504675 0.055441 0.279014 0.324948
1.5 6 —1.191 —0.263 4.850 —0.874 —0.396 4.629 —6.322081 0.059357 0.288250 0.329972
1.5 6.2 —1.253  —-0.250 4.929 —1.215 —0.252 4.925 1.241925 74.22419 0.029369 0.024055
1.5 6.4 —1.317 -0.239 4.996 —1.257 —0.242 4.988 1.332837 19.55014 0.102225 0.08071
1.5 6.6 —1.381 —0.228 5.055 —1.298 —0.232 5.041 1.422317 11.68978 0.170200 0.129784
1.5 6.8 —1.446 —0.219 5.106 —1.338 —0.223 5.085 1.510611 8.52946 0.233508 0.172259
1.5 7 —1.510 -0.211 5.150 —1.376 —0.215 5.123 1.598009 6.815789 0.291987 0.208693
1.5 7.2 —1.574  —-0.204 5.189 —1.413 —0.208 5.155 1.684839 5.734788 0.345803 0.239765
1.5 7.4 —1.636 —0.197 5.223 —1.449 —0.202 5.182 1.771479 4.986255 0.395319 0.266187
1.5 7.6 —1.697 —0.191 5.253 —1.483 —0.196 5.207 1.858343 4.433791 0.440973 0.288617
1.5 7.8 —1.756  —0.186 5.280 —1.517 —0.190 5.228 1.945891 4.006426 0.483218 0.307632
1.5 8 —1.813 —0.181 5.303 —1.551 —0.185 5.247 2.034632 3.663584 0.522485 0.323722
1.5 8.2 —1.867 —0.176 5.325 —1.583 —0.180 5.265 2.125136 3.38037 0.559172 0.337296
1.5 8.4 —-1.920 -0.172 5.344 —1.615 —-0.176 5.280 2.218055 3.140639 0.593641 0.348687
1.5 8.6 —1.970 —-0.168 5.361 —1.647 —0.172 5.295 2.314143 2.933435 0.626215 0.358163
1.5 8.8 —2.019 —-0.164 5.376 —1.679 —0.167 5.309 2.414297 2.751024 0.657189 0.365939
1.5 9 —2.065 —0.161 5.390 —1.712 —0.164 5.323 2.519614 2.587749 0.686833 0.372178
2.0 6.2 —0.590 —0.525 3.813 —0.589 —0.529 3.979 —21.416286 0.007433 0.137895 0.236343
2.0 6.4 —-0.618 —0.513 4.072 —0.596 —0.529 4.291 —12.465414 0.013546 0.146252 0.245201
2.0 6.6 —0.646  —0.495 4311 —0.609 —0.528 4.482 —10.020598 0.017762 0.154009 0.253089
2.0 6.8 —0.674 —0.475 4.524 —0.620 —0.526 4.619 —8.791087 0.021232 0.161277 0.260206
2.0 7.0 —0.702  —0.455 4712 —0.630 —0.523 4.724 —8.031145 0.024275 0.168139 0.266695
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Skewness  Kurtosis Clements’s Burr

as as ZPoo1i3s  ZPs ZP9oses BZPyi3s BZPs BZPoyoses ¢ k M o
2.0 7.2 —0.730 —-0.435 4.873 —0.641 —0.520 4.808 —7.507666 0.027031 0.174654 0.272662
2.0 7.4 —0.758 —0.416 5.012 —0.650 —0.516 4.877 —7.121838 0.029578 0.180870 0.278185
2.0 7.6 —-0.786  —0.399 5.131 —0.659 —0.512 4.935 —6.823937 0.031965 0.186825 0.283327
2.0 7.8 —0.815 —0.382 5.233 —0.668 —0.508 4.984 —6.585976 0.034223 0.192548 0.288139
2.0 8.0 —0.844 —-0.367 5.320 —0.677 —0.503 5.027 —6.390891 0.036377 0.198066 0.292660
2.0 8.2 —0.874 —-0.353 5.395 —0.685 —0.499 5.064 —6.227638 0.038442 0.203400 0.296924
2.0 8.4 —0.904 —0.340 5.460 —0.693 —0.494 5.098 —6.088733 0.040431 0.208567 0.300959
2.0 8.6 —0.935 —-0.328 5.516 —0.701 —0.489 5.127 —5.968907 0.042356 0.213582 0.304789
2.0 8.8 —-0.966 —0.317 5.565 —0.708 —0.484 5.154 —5.864337 0.044223 0.218459 0.308432
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