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Abstract Topology optimization is used in the initial stage
of the product manufacturing process. However, the non-
manufacturable or non-machineable results of topology opti-
mization have become an obstacle to process manufacturing.
This paper proposes a modified topology optimization method
by adding manufacturing and machining constraints to the top-
ology optimization formulation. A hybrid topology optimization
algorithm (combining the method of moving asymptotes and
wavelets) is applied to solve this optimization problem. With this
approach, the design space can be reduced and an engineering-
accepted and manufacturable topology result can be guaranteed.

Keywords Machining constraints · Manufacturing constraints ·
Method of moving asymptotes · Topology optimization

1 Introduction

The popularity of topology optimization methods in struc-
tural design has increased rapidly since Bendsoe and Kikuchi’s
study [1] triggered a renewed interest in the topic.

Currently, topology optimization has rapidly developed and,
with the maturation of topology theory and an increased num-
ber of tools, it has become a strong method in the design of
new products. However, a range of problems, including porosity,
a design with checkerboards, mesh dependency, local minimum
results, etc. often lead to a non-manufacturable topology that
cannot be accepted later in the manufacturing and machining
process.
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Many numerical methods, such as the mesh-independent fil-
ter, the slope constraint method and the perimeter constraint [2]
can be used to eliminate porosity, checkerboards, and mesh de-
pendency. The local minima are normally resolved by using
a different initial point selection. However, even if numerical in-
stability can be fully resolved, the topology result is still not
always manufacturable. Because topology design is a concept
design process, some manufacturing and machining factors, such
as the minimal hole size for machining tools – a characteristic
that affects casting and the symmetry property for a part’s func-
tion – are generally not taken into consideration in the topology
optimization process.

Although the non-manufacturable or non-machineable top-
ology result is difficult to resolve, it is important for engineering
applications. A new approach to deal with this problem is pro-
posed in this paper, in which manufacturing and machining fac-
tors are considered during the optimization process by introduc-
ing manufacturing and machining constraints into the topology
optimization formulation. With this approach, the non-accepted
result in engineering can be avoided, which will be proven using
two examples.

2 Topology optimization with manufacturing
and machining constraints

2.1 Topology optimization based on SIMP

The solid isotropic material with penalization model (SIMP)
method was initially proposed by Mlejnek[3], and Bendsoe and
Sigmund [4]. The topology optimization of minimal compliance
problem based on SIMP can be written as follows:

Minimize : C = UT KU =
N∑

e=1

uekeue =
N∑

e=1

(xe)puek0ue

Subject to : V = f × V0 =
N∑

e=1

xeve ≤ V ∗ (1)

F = KU, 0 < xmin ≤ xe ≤ xmax
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where C is the compliance of the structure, F is the force vec-
tor, U is the displacement vector, K is the stiffness matrix of
the structure, V0 is the initial volume of the structure, V ∗ is the
maximum volume of the structure, V is the structure’s volume
after optimization, and f is the ratio of initial volume to vol-
ume after optimization. The volume constraint and equilibrium
equation of the structure are included. ve is the element volume
after optimization, xe is the design variable of the element, xmin
is the lower bound constraint of element density, introduced to
prevent singularity of the equilibrium problem, xmax is the upper
bound constraint of element density, ue is the displacement vec-
tor of the node, and N is the total number of discrete elements.
Penalty factor p is introduced to increase the cost of intermediate
density elements and decrease the number of intermediate dens-
ity elements, in order to make the density of the elements as close
as possible to 0 or 1. By using this SIMP method, the discrete
variable optimization problem is changed into a continuous one.

2.2 Manufacturing- and machining-based formulation

The design variable in topology optimization is very large. The
objective and constraint always exhibit non-convex behavior, so
the design space is also non-convex. The optimization problem
in non-convex design space has multiple extrema. A convex ap-
proximation method is proven to be efficient for solving the
complex large-scale topology optimization problem [5, 6]. This
makes the solution an approximation of the initial problem.

In order to deal with a topology result that is non-manufac-
turable, extra manufacturing and machining constraints are intro-
duced according to the practicality requirement. Such constraints
condense the initial design space and the solution in condensed
space in order to find an engineering-acceptable result.

A two-dimensional design space without manufacturing and
machining constraints is shown in Fig. 1. A convex approxima-
tion method is used to approximate the initial design problem.
The iteration process of convex approximation is also shown in
Fig. 1. Without taking other factors into account that occur later
in the manufacturing and machining process, the result X∗

1 can
at times be useless from an engineering standpoint. Figure 2
is a condensed design space with manufacturing and machin-

Fig. 1. Design domain without manufacturing constraints

Fig. 2. Design domain with manufacturing constraints

ing constraints, in which a convex approximation method and its
solution iteration are included. The result X∗

2 has taken manu-
facturing and machining factors into consideration and is useful
from an engineering perspective. The result X∗

2 is therefore dif-
ferent from X∗

1.
The formulation of topology optimization with manufactur-

ing and machining constraints can be written as follows:

Minimize : C = UT KU =
N∑

e=1

uekeue =
N∑

e=1

(xe)puek0ue

Subject to : V = f × V0 =
N∑

e=1

xeve ≤ V ∗

F = KU, 0 < xmin ≤ xe ≤ xmax (2)

g(xe)− g0 ≤ 0, h(xe) = 0

where g(xe)− g0 ≤ 0 and h(xe) = 0 are manufacturing and ma-
chining constraints.

Forms of manufacturing and machining constraints are dif-
ferent for different applications. Some constraints, such as min-
imal size constraint, symmetrical constraint, conforming con-
straint, etc., can be introduced into the optimization according to
the various requirements of application problems.

2.3 Numerical solver

Once manufacturing and machining constraints are added to
the single-constraint design problem in optimization, it becomes
a multiple-constraint problem. It can now be solved with an ad-
vanced mathematical programming method, such as the method
of moving asymptotes (MMA) [7, 8]. However, the MMA algo-
rithm used for topology optimization is not globally convergent.
As a result, some global numerical instabilities and convergence
problems may appear that may necessitate an effective global fil-
ter. Multi-resolution is an important characteristic of a wavelet,
which can be used as a global filter for the design variable and
its sensitivity. We use a hybrid approach of wavelet and MMA,
in which some information in the design, such as numerical in-
stability, can be removed using the filter characteristic of the
wavelet.

The design variable in two-dimensional topology optimiza-
tion can be represented with f(x, y), which can be approximated
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using a multi-resolution approximation in L2(R × R) with a se-
quence of subspaces {Vj(x, y)}j∈Z (where R is the set of real
numbers and Z is the set of integers). The two-dimensional base
function for multi-resolution can be defined as:

φj,m(x)φj,n(y) = 2 j/2φ(2 j x −m)2 j/2φ(2 j y −n) (3)

where φ(2 j x − m) and φ(2 j y − n) are one-dimensional base
functions, j, m, n ∈ Z , and function f(x, y) can be approximated
as:

f j(x, y) =
∑

m,n

c j
m,nφj,m(x)φj,n(y) (4)

where f j(x, y) ∈ Vj (x, y), and c j
m,n denotes component coeffi-

cients on nodes.
The following decomposing relations exist for the multi-

resolution of two-dimensional wavelets:

Vj+1(x, y) = Vj (x, y)⊕ Wj (x, y) (5a)

Wj(x, y) = Vj+1(x, y)/Vj (x, y) (5b)

where Wj(x, y) is the orthogonal complement of Vj(x, y) in
Vj+1(x, y).

The approximating function f j+1(x, y) ∈ Vj+1(x, y) can be
decomposed into four parts in Vj(x, y)-space and Wj(x, y)-
space, respectively as:

Vj+1(x, y) =Vj+1(x)⊗ Vj+1(y)

=[Vj(x)⊕ Wj (x)]⊗[Vj (y)⊕ Wj(y)]
=[Vj(x)⊗ Vj (y)]⊕[Vj (x)⊗ Wj (y)⊕ Wj (x)

⊗ Vj(y)⊕ Wj(x)⊗ Wj (y)] (6)

where ⊕ represents the direct sum, and ⊗ represents the tensor
product.

When φ(x, y) is an orthogonal scaling function, the base
function in spaces Vj(x, y) and Wj(x, y) can be written as:

Vj(x, y) = Vj(x)⊗ Vj (y)

= span
{
φj,m(x)φj,n(y), m, n ∈ Z

}
(7a)

W1
j (x, y) = Vj(x)⊗ Wj (y)

= span
{
φj,m(x)ψj,n(y), m, n ∈ Z

}
(7b)

W2
j (x, y) = Wj(x)⊗ Vj (y)

= span
{
ψj,m(x)φj,n(y), m, n ∈ Z

}
(7c)

W3
j (x, y) = Wj(x)⊗ Wj (y)

= span
{
ψj,m(x)ψj,n(y), m, n ∈ Z

}
(7d)

where φj,m and φj,n are the orthogonal bases in Vj(x) by scal-
ing and translating from the scaling function φ, and ψj,m(x) and
ψj,n(x) are the orthogonal bases in Wj(x) constructed from the
wavelet function ψ.

In this paper, the Daubechies orthogonal wavelet is used to
approximate the function of density distribution in topology op-
timization.

From Eqs. 4 to 7d, one can obtain

f j+1(x, y) =
∑

m,n

c j
m,nφj,m(x)φj,n(y)

+
∑

m,n

α
j
m,nφj,m(x)ψj,n(y)

+
∑

m,n

β
j
m,nψj,m(x)φj,n(y)

+
∑

m,n

γ
j

m,nψj,m(x)ψj,n(y) (8)

with an orthogonal scaling function and wavelet, the following
decomposing coefficients are obtained:

c j
m,n =

∑

k,l

h(k −2m)h(l −2n)c j+1
k,l ,

α
j
m,n =

∑

k,l

h(k −2m)g(l −2n)c j+1
k,l ,

β
j
m,n =

∑

k,l

g(k −2m)h(l −2n)c j+1
k,l ,

γ
j

m,n =
∑

k,l

g(k −2m)g(l −2n)c j+1
k,l

The corresponding composing algorithm can be written as:

c j+1
m,n =

∑

k,l

c j
k,lh(m −2k)h(n −2l)

+
∑

k,l

α
j
k,lh(m −2k)g(n −2l)

+
∑

k,l

β
j
k,l g(m −2k)h(n −2l)

+
∑

k,l

γ
j

k,lg(m −2k)g(n −2l) (9)

Fig. 3. Flowchart of hybrid algo-
rithm
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Therefore, {c j+1
m,n } in level j +1 can be obtained from {c j

k,l}, {α j
k,l},

{β j
k,l}, and {γ j

k,l} in level j . In the same way, {c j+2
m,n } in level j +2

can be obtained from {c j+1
m,n }, {α j+1

k,l }, {β j+1
k,l }, and {γ j+1

k,l }. This
algorithm is called multi-resolution analysis in the wavelet. This
algorithm is applied as follows: the design function can first be
decomposed, and then recomposed, by choosing a threshold and
modifying the corresponding coefficients. Numerical instabilities
and singular optima involved in the calculation can be removed
with decomposing and composing algorithms in the wavelet. In
the same way that a noise-eraser works in image processing,
a wavelet decomposing and composing algorithm can be viewed
as a global filter that can filter or modify the numerical instabili-
ties in function values and their derivatives. It is for this reason that
the wavelet algorithm can improve the convergence of the MMA
approach. The wavelet decomposing and composing algorithm is
added at the end of the MMA approach shown in Fig. 3.

3 Examples

In this section, we will use two illustrative examples to demon-
strate the proposed approach for manufacturing- and machining-
based topology optimization and the hybrid numerical algorithm
to solve this optimization problem. The first is an example of
manufacturing constraints, while the second applies machining
constraints.

Example 1: Optimization with a machining constraint

A minimal feature size is needed in machining, since a feature
whose size is smaller than the minimal value is difficult to cast
or machine with tools. Some small features, such as small holes,
are often included in topology optimization results, making the
result difficult to machine during the subsequent processing.
Therefore, it is necessary to introduce a minimal machining hole
size constraint in topology optimization to control the formation
of small holes.

A finite element model of a 3D cantilever beam is shown in
Fig. 4. The beam is clamped at one end and is subject to a force
F at the center of the other end. The objective is to minimize
the compliance subject to a volume fraction constraint of 0.5 and
a minimal machining hole size constraint. The beam is meshed
into 160 pentahedron elements and 1040 hexahedron elements.

The result without a machining constraint is shown in Fig. 5,
in which a small hole exists. This small hole is not only useless,
but it also makes the later casting and machining process difficult
to perform. The hole can be eliminated with a minimal hole con-
straint added into the optimization formulation. The result with
the machining constraint is shown in Fig. 6. The hole in the mid-
dle of the beam disappears, and the result is beneficial for later
machining.

In this example, a minimal hole size constraint for machining
can be written as follows:

G =
∑M

k=1 sk × xe
k

l p ≥ G∗ (10)

where G is an equivalent hole size of discrete boundary elements
with respect to projection plane P, sk is the exterior surface area
of boundary element k, M is the number of boundary elements,
l p is the average depth of the boundary hole with respect to pro-
jection plane P, and G∗ is the lower bound of the minimal hole
size, determined by extensive practical requirements. Projection
plane P is defined as the yz-plane that is controlled by the mini-
mal machining size. As mentioned above, a lower bound value of
the minimal machining size is introduced to control the minimal
feature size in topology optimization results.

Example 2: Optimization with a manufacturing constraint

Because some manufacturing parts are symmetrical or conform
in structure or function, a symmetrical or conforming topology
optimization result should benefit their further design and man-
ufacture. Such results are possible by adding a symmetrical or
conforming constraint into the optimization formulation.

The finite element model of a hook in a space mechanism and
its design domain are shown in Fig. 7. The hook is fixed at the
foot, subject to a surface pressure F on the joggled surface of
the head. Two design domains and two non-design domains are
included in this model. The joggled surface of the head, where
pressure F is loaded, and the foot, which is connected to another

Fig. 4. Finite element model showing the machining constraint and design
domain

Fig. 5. Result without a machining constraint

Fig. 6. Result with a machining constraint
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part, compose the non-design domains, whose shape and size are
unchangeable. The two areas exempt from non-design domains
are design domains. The density of the elements in non-design
domains are set as constant and do not change with the number
of iterations, while the density of elements in design domains are
changeable.

The object is to minimize the compliance subject to a vol-
ume fraction constraint of 0.5, a conforming constraint in the
z-direction of the head, and a symmetrical constraint in the z-
direction of the tail. Conforming constraints on the head mean
that the density of different elements in the same z-direction of
a fixed (i, j) position are equal. Symmetrical constraints on the
tail mean that the density of whole elements is symmetrical with
respect to the xy-plane. The hook is meshed into 60 pentahedron
elements and 11 150 hexahedron elements.

The result without manufacturing constraints is shown in
Fig. 8. The topology distribution is irregular and complex on the
head as well as on the tail. This result is difficult to use for further
design and manufacturing purposes. The result with a conform-
ing constraint on the head and a symmetrical constraint on the
tail is shown in Fig. 9. In this figure, the density of elements at
the head is equal in the z-direction to the tail, and is symmetrical
with respect to the xy-plane.

In this example, the conforming constraint can be expressed
as:

K1−1∑

k=1

∣∣∣(xe
ij )k+1 − (xe

ij )k

∣∣∣
p
≤ δ, i = 1, . . . , nx, j = 1, . . . , ny

(11)

where (xe
ij )k is the density of the kth element at the (i, j) pos-

ition of perpendicular projection plane P, which is written as the
xy-plane here, K1 is the number of elements at the (i, j) pos-
ition, nx , ny are the number of elements in the x and y direction
on the projection plane, respectively, and δ is a small positive
number.

Fig. 7. Finite element model showing the manufacturing constraint and de-
sign domain

In this example, the symmetrical constraint can be expressed
as:

K2∑

k=1

∣∣∣(xe
ij )k − (xe

ij )−k

∣∣∣
M

≤ δ, i = 1, . . . , nx, j = 1, . . . , ny

(12)

where (xe
ij )−k is the element density that is opposite to (xe

ij )k with
respect to symmetrical plane M, which is the xy-plane in this ex-
ample, and K2 is the sequence number of elements at the (i, j)
position.

The result of topology optimization should be smoothed and
reconstructed before further detailed design, manufacturing, and
machining takes place. Figure 10 is a finite element model after
reconstruction on the basis of the topology results.

With extra constraints introduced into the optimization for-
mulation, calculation costs rapidly increase. Moreover, the lower
bound G∗ in the minimal machining size constraint is not easy to
define, and requires experience and a detailed understanding of
the requirements.

Fig. 8. Result without manufacturing con-
straints

Fig. 9. Result with manufacturing constraints
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Fig. 10. Reconstructed finite element model
based on the topology results

4 Conclusion

This paper has illustrated that the use of manufacturing and
machining constraints in topology optimization can solve non-
manufacturing and non-machining problems in engineering ap-
plications. In addition, it has shown that the hybrid algorithm can
overcome the disadvantage of a pure MMA method and effec-

tively improve convergence. The topology optimization results
with manufacturing and machining constraints can guarantee en-
gineering requirements and benefit the subsequent design, manu-
facturing, and machining process.
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