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Abstract In a history-based parametric modeling system, the
mechanism for naming topological entities is a key component
for generating design variants by re-evaluation. During the pro-
cess of re-evaluation, topological entities may be split, merged,
or obliterated. Thus, it is a principal functional request for a nam-
ing mechanism to trace such alterations of topological entities.
A data structure called a name propagation graph (NPG) is in-
troduced to represent the identity propagation of topological en-
tities. Rules and algorithms are also presented to identify the
genetic entities, which originate from the entities on the original
version of a part model. Our approach has been implemented in
a history-based and feature-based modeling system.

Keywords Computer-aided design · Constraint-based design ·
Feature-based modeling · History-based modeling ·
Topological entity

1 Introduction

1.1 Topological entity naming mechanism

Feature-based design paradigms are by now well established in
current solid modeling systems. Nearly all of the commercial
CAD systems have adopted this paradigm. In addition, there are
some research systems that adopt this design paradigm to some
degree [1, 2].

Nearly all of the systems that adopt a feature-based design
paradigm are history-based. In these systems, the design pro-
cess is often sequential and history-based. Models are created via
a sequence of attachments that apply design features to an in-
cremental version of a part model. The attachment sequence of
features is often referred to as a design history, which can be rep-
resented by a binary tree [3]. In a history-based and feature-based
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modeling system, a part model is usually defined through dimen-
sions, constraints and features, which make it easy to generate
a new version of the part model.

When designers want to get a new version of the designed
part, they can edit the designed model using editing tools and
the design history is re-evaluated automatically; thus, a new ver-
sion is obtained. However, sometimes designers may not be able
to get the satisfactory results this way [4] due to the following
typical reasons:

• the ability of the geometric constraint solver is not strong
enough to handle some odd cases; and

• some related entities cannot be consistently retrieved or iden-
tified from the information in the part model.

The handling of the first issue needs a robust geometric con-
straint solver. In fact, to some extent, the solver is a mature
technology to solve geometric constraint system in 2D space.
There are even some commercial software component modules
to solve geometric constraint system.

However, the second issue is relevant to referencing a topo-
logical entity (TE). The history of designing a part model is
a sequential one in a parametric feature-based system. Usually,
a base feature is designed first, and then the other features are
attached to it. When a new feature is added to the part model,
perhaps these TEs, such as faces, edges, and vertices, may be
referenced. How the TEs are referenced is listed as follows:

• as an operation object of a feature, i.e., the removed face of
a shelling feature;

• as a datum object of a feature, i.e., the datum plane of the
sketch of a protrusion feature; and

• as an intermediate between a feature and its semantic, i.e., the
entities in a feature referenced by dimensions.

For the existence of the reference relation in history-based
and feature-based modeling systems, we need a mechanism for
consistently naming the TEs. Thus, the correct new version of the
part model can be achieved by re-evaluation of design history.
Such a mechanism is called a topological entity naming mech-
anism (TENM). TENM is a kernel module for a history-based
and feature-based modeling system. A generic and robust TENM
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is a key for capturing design intent. The principal functional re-
quests for a TENM include two main aspects:

• from the static viewpoint, a TENM should be capable of
naming the TEs in a part model uniquely and consistently;
and

• from the dynamic viewpoint, a TENM should be capa-
ble of tracing the alteration of TEs during the design pro-
cess. Such alteration of TEs includes merging, splitting, and
obliteration.

1.2 Identity propagation of TEs

Let’s consider the first functional request for a TENM, which is
from the static viewpoint, and have a look at how a TE such as
face, edge, and vertex is named.

Firstly, an identity is given to each point in a 2D profile.
Then, the identity of each edge in the 2D profile can be decided
by the identities of the associated point set. For example, the
identity of a line segment is decided by the identities of its start-
ing point and end point; the identity of a circle is determined by
the identity of its center. As is well known, a sweep feature is
constructed by sweeping a profile along a specific path. Notice
that element E is one of the edges in the profile, while P is the
sweep path; hence, the identity of the face delineated by E and
P can be decided by the identities of E and P. Wu et al. [4] also
presented the mechanism to name the faces in some other types
of features such as chamfer, round, shell and so on. With such
a concisely described approach, each face in the original feature
will have an identity, called its original name (ON).

After naming all of the faces, Wu et al. pointed out that the
ONs of the faces in an original feature are unchanged during the
Boolean operation. Therefore, the name of an edge can be de-
cided by the identities of the two associated faces, and the name
of a vertex is determined by the identities of the three associated
faces. Consequently, each TE in a part model such as the face,
edge and vertex will have its own identity. Due to a lack of space,
we cannot give a detailed description of the mechanism adopted;
refer to [4] for details.

Now let’s take the second functional request into consider-
ation. It is well-known that, in a history-based solid modeling
system, after adding new features to the original version or re-
editing the original version, a new version of a part model can be
achieved by re-evaluating the design history.

In the process of re-evaluation, a Boolean operation is ne-
cessary. During such a process, perhaps the TEs will be split,
merged, or even obliterated. Such alteration of a TE is called
topological entity propagation (TEP). In the new version of the
part model, if a topological entity TE is constructed by propaga-
tion of a topological entity TE ′ that is on the original version of
the part model, there must be a relation between TE and TE ′. The
relation is called a genetic relation (GR), and TE is the genetic
entity (GE) of TE ′.

For the existence of GRs between the original version and
a new version of the TEs, the identity of the original version
should be propagated to the new version in the same manner. We
name such a process, in which the identity of the original ver-

sion is propagated to the new version of a TE, a topological name
propagation (TNP).

There are four types of TNP [4]:

• Propagation of deleting a topological name When a topo-
logical entity is deleted during re-evaluation, the identity of
the entity should be deleted too. This is called propagation of
deleting a topological name.

• Propagation of keeping a topological name If a topological
entity is still alive and not split or merged with other entities
during re-evaluation, no change will happen to the identity of
the entity. This is called propagation of keeping a topological
name.

• Propagation of splitting a topological name If a topological
entity is split into two or more entities during Re-evaluation,
the topological name of the entity will be carried to all of the
entities that originate from it. This is called propagation of
splitting a topological name.

• Propagation of merging a topological name If two or more
entities are merged into one entity, one of the identities of
these entities will be used to name the new resulting entity.
This is called propagation of merging a topological name.

The following is a simple example to illustrate the impor-
tance of TNP modeling.

In Fig. 1, a column is created as the base feature of a part
model. Then, a pocket is added, and finally, a round is added to
the top face of the column. Thus, the original version of the part is
achieved and is shown in Fig. 1b. After the achievement of the ori-
ginal version, the pocket is re-edited and turned into a through-all
slot. According to the design history tree shown in Fig. 1a, after
reevaluation, we will obtain a new version of the part. During
the re-evaluation, the top face f is split into f1 and f2, and conse-
quently, the identity of f should be propagated to f1 and f2. If the
propagation can’t be traced by the modeling system, perhaps the
correct resulting part shown in Fig. 1c can’t be achieved. Some
incorrect results are shown in Figs. 1d, 1e and 1f.

In reference [4], after pointing out the phenomenon of iden-
tity propagation, Wu et al. did not give any algorithms or details
to trace the identity propagation. In this paper, we elaborate on
a mechanism to fulfill the second functional request for a TENM.
First, a data structure called a name propagation graph (NPG) is
introduced to represent the identity propagation process of topo-
logical faces. Then, based on an NPG, some rules and algorithms
are given to identify the genetic entity such as genetic face, ge-
netic edge and genetic vertex.

This paper is organized as follows: in Sect. 2, after defining
NPG, we give some properties of an NPG. In Sect. 3, an ap-
proach to identify a genetic face is described. Section 4 describes
how to identify genetic edges. And in Sect. 5, a rule is presented
to identify genetic vertices. The implementation is briefly intro-
duced in Sect. 6. Section 7 summarizes the work.

1.3 Review of related research on TENM

A topological ID system is presented by Kripac [5] to map the ID
of topological entities on the original version of a part model to
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Fig. 1. A simple example of
TNP modeling

the ID of entities on a new version. A graph-based approach is
also presented to represent the alteration of entities such as merg-
ing, splitting, and so on. Some examples are given to illustrate
the effectiveness of his approach. However, the details are omit-
ted. Therefore, the algorithm adopted by Kripac is perplexing.

Capoyleas [6] presented a method to name the topological
entities by giving each entity an unique identity. But Capoyleas
didn’t consider the alteration of entities during the re-evaluation
of the part. Thus, only the functional request from the static
viewpoint for a TENM is satisfied. However, the second func-
tional request from a dynamic viewpoint can’t be fulfilled. In
order to improve the editability of feature-based design, Chen [7]
presented matching algorithms for the vertex, edge and face,
based on the method by Capoyleas. But it seems that the algo-
rithms presented by Chen are not easy to be implemented.

Certainly, many commercial modeling systems have done
much work on TENM because a robust TENM is a prerequisite
for developing a feature-based modeling system. However, per-
haps for proprietary reasons, they are unwilling to make their
approach public.

2 Name propagation graph

A name propagation graph (NPG) is defined as NPG = (E, R),
where E is the node set and each node represents a complex
code (CC) of a topological face. A CC is a triplet; that is,
CC = {ON(f ), seq, num}, where ON(f ) represents the ON of
a particular face (denoted f ) and the process of generating an ON
for a topological face has been described in Sect. 1.2; seq repre-
sents how many times f has been split or merged in the current
part model; and num is used to identify the faces that are con-
structed by the splitting of f . For example, if f is split into two

faces, f1 and f2, num corresponding to f1 is 1 and num corres-
ponding to f2 is 2. The directed arc set of NPG, R = {ER}, and
ER = {〈CCi , CCj 〉

∣
∣i �= j, CCi¬CCj

}
. The symbol ¬ indicates

that the face corresponding to CCj originates from the face cor-
responding to CCi .

In order to describe the propagation of deleting a topological
name, we introduce a special node called a rubbish node (RN)
and the CC of the RN is (0, 0, 0). All of the nodes representing
the deleted faces point to the RN.

The following is an example to illustrate how an NPG is con-
structed. The modeling process includes four steps: (a) create
a block; (b) add a slot feature: Slot1; (c) add another feature:
Pocket; (d) reevaluate the Pocket feature and turn it into a slot
feature: Slot2. In order not to clutter the illustration, only the
identity propagation process of the top face f1 is depicted.

In Fig. 2, assume that ON(f1) = 1, then according to the
definition of CC, CC(f1) = (1, 0, 1), CC(f2) = (1, 1, 1), CC(f3) =
(1, 1, 2), CC(f4) = (1, 2, 1), CC(f5) = (1, 2, 2), CC(f6) = (1, 3, 1),
CC(f7) = (1, 3, 2) and CC(f8) = (1, 3, 3). The texts on the arcs
indicate the type of the topological name propagation.

The following are some basic properties of an NPG:

• Property 1: NPG is a directed acyclic graph (DAG). An NPG
represents the process of splitting and merging of topological
faces during the design process. In a history-based modeling
system, the design process is unidirectional. Therefore, there
must not be a cycle in an NPG, and the NPG is a DAG.

• Property 2: If a node whose CC= {0, 0, 0}, it must be an RN.
• Property 3: If a node contains no out-arc and it isn’t an

RN, the topological face corresponding to the node must
exist on the current version of a part model. In Fig. 3, such
a type of node includes CC(f2) = {2.1.1}, CC(f12) = {3.3.1},
CC(f13) = {6.3.1} and CC(f14) = {6.3.2}. These faces, that
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Fig. 2. The process of creating an NPG

Fig. 3. The properties of an
NPG
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is, f2, f12, f13, and f14 are on the final version of the part
model.

• Property 4: If a node contains no in-arc, the topological
face corresponding to the node is a topological face on
an original feature. In Fig. 3, such a type of node in-
cludes CC(f1), CC(f2), CC(f3), CC(f4), CC(f5), CC(f6) and
CC(f7). f1, f2, f3, f4, f5, f6 and f7 are on original features,
but these faces may be split, merged or deleted during the
Boolean operation.

• Property 5: If a node contains more than on in-arc, the
topological face corresponding to the node must be formed
by a merging of some original topological faces. In Fig. 3,
CC(f10) is a node that contains two in-arcs. One of the
two in-arcs comes from CC(f4), and the other comes from
CC(f5). Thus, during the Boolean operation, f4 and f5 are
merged into f10.

• Property 6: If a node in an NPG contains more than one out-
arc, the topological face corresponding to the node must be
split into some new topological faces. In Fig. 3, CC(f3) is
a node that contains two out-arcs. One points to CC(f8), and
the other points to CC(f9). Thus, during the Boolean opera-
tion, f3 is split into f8 and f9.

• Property 7: If a node contain only one out-arc and the adja-
cent node, which contains only one in-arc, isn’t an RN, the
face corresponding to the node is still alive without splitting
or merging. In Fig. 3, CC(f2) is such a type of node. Thus, f2
is still alive without splitting or merging during the Boolean
operation.

• Property 8: If a node contains only one out-arc and the ad-
jacent node, which contains only one in-arc, is an RN, the
face corresponding to the node is deleted. In Fig. 3, CC(f1)

is such a type of node. Thus, f1 is deleted during the Boolean
operation.

In Fig. 3, first, f1, f2, f3, f4, f5, f6, and f7 are created. Then,
f1 is deleted, and f3 is split into f8 and f9, as f4 and f5 are
merged into f10. f6 and f7 are merged into f11. Finally, f9 and
f10 are merged into f12, and f11 is split into f13 and f14. Only
f2, f8, f12, f13 and f14 still exist on the final part model. In
Fig. 3, the texts on the directed arcs indicate the propagation
type, i.e., delete, merge, keep, or split.

As described in Sect. 1.2, the identification of topological
faces is the basis of a TENM. An NPG represents the propaga-
tion process of the identities of faces. Thus, the propagation pro-
cess of the corresponding faces can be identified from the NPG.
Consequently, the genetic relation between the genetic face and

Fig. 4. Patterns of a sub-graph
corresponding to the rules for
identifying genetic faces

the original face can be deduced. Based on the genetic relation
between faces, the genetic relation between a genetic edge and an
original edge can be clarified.

3 Approach of identifying a genetic topological face

As is well known, in a directed graph, the direction of an arc indi-
cates a logic relation between the head node and the tail node. In
an NPG, the direction of an arc represents the genetic relation be-
tween the head node and the tail node. The head node originates
from the tail node. Based on the properties of an NPG that were
mentioned before, some rules are presented to identify genetic
faces.

3.1 Rules and algorithm
for identifying a genetic topological face

For an arc of an NPG, let vhead represent the head node, vtail rep-
resent the tail node. The number of in-arcs contained by a node v

is called the in-degree of v and is denoted by in-degree(v). Sim-
ilarly, the number of out-arcs contained by a node v is called the
out-degree of v and is denoted by out-degree(v). Note that the
vhead quoted in rule 1, rule 2, and rule 3 of the following isn’t
an RN.

• Rule 1: if in-degree(vhead) = 1 and vtail · ON = vhead · ON ,
there is no topological alteration that occurs to the topo-
logical face corresponding to vtail. The pattern of the sub-
graph is depicted in Fig. 4a.

• Rule 2: if out −degree(vtail) > 1, the face corresponding to
vtail is split into some new faces. The total num of the new
faces are out-degree(vhead). The pattern of the sub-graph is
depicted in Fig. 4b.

• Rule 3: if in-degree(vhead) > 1, the face corresponding to
vhead is formed by merging some original faces. The pattern
of the sub-graph is depicted in Fig. 4c.

• Rule 4: if out-degree(vtail) = 1 and vhead is an RN, the face
corresponding to vtail is deleted during the Boolean opera-
tion. The pattern of the sub-graph is depicted in Fig. 4d.

Based on the rules discussed above, an algorithm is presented
to identify the genetic topological faces in current version of
a part model.

Algorithm 1: identifying genetic faces that originate from
a face whose complex code is CC

Step 1 Construct a node set {vs} from an NPG; each node in
{vs} contains no in-arcs.
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Step 2 Find the node v0 from {vs} and v0 · ON = CC · ON;
Step 3 Find a node v1 from v0 by a depth first search (DFS) and

v1 · seq = CC · seq, v1 cdotnum = CC cot num;
Step 4 Find a node set {vdest} from v1 by DFS. Each node v in

{vdest} isn’t a RN and out-degree(v) = 0;
Step 5 Return {vdest}.

The time complexity of algorithm 1 is approximately equal to
that of depth first ergodicity (DFE), i.e. O(n +m), where n is the
number of nodes in an NPG and m is the number of arcs.

3.2 A case of identifying the genetic faces

In the example shown in Fig. 2, assume that the face f5 is cham-
fered in step (c). Thus, an original version of the part model is
achieved, as shown in Fig. 5a. Then, in step (d), the pocket is re-
edited and turned into a through-all slot. Therefore, in order to
get a correct new version of the part model by re-evaluation, we
should determine which faces are to be chamfered in step (d).

Now let’s have a look at how to identify the genetic faces that
originate from f5. As described in Sect. 2, CC(f5) = {1, 2, 2}.
Therefore, according to algorithm 1, in the NPG correspond-
ing to step (d), the node CC(f1) is first found because CC(f1) ·
ON= CC(f5) · ON = 1 and in-degree(CC(f1)) = 0. Then, using
DFS, the node CC(f5) is obtained because CC(f5) · seq = 2 and
CC(f5) ·num = 1. Finally, the node set {CC(f7), CC(f8)} is ob-
tained using DFS from the node CC(f5). Therefore, the faces f7
and f8 are the genetic faces that originate from f5, so both f7 and
f8 should be chamfered in step (d).

The correct resulting part model is shown as Fig. 5b. The
part model given by a commercial modeling system is shown as
Fig. 5c. In Fig. 5c, the face f7 isn’t chamfered. This case indi-

Fig. 5. A case of identifying
genetic faces

Fig. 6. Two examples of ge-
netic edges

cates that perhaps there are still some shortcomings of the TENM
adopted by those commercial systems.

4 Approach of identifying genetic edges

As described in Sect. 1.2, the topological name of an edge is
decided by its two adjacent faces. Thus, after the definition of
complex code (CC) of a topological face, the complex code of
an edge can defined by the CCs of its two adjacent faces. For
example, in Fig. 6a1, the edge e is constructed by the intersec-
tion of f1 and f4. If CC(f1) = {1, 3, 2} and CC(f4) = {4, 3, 1}, the
complex code of e, CC(e) = {1, 3, 2, 4, 3, 1}.

Based on the rules and the algorithm for identifying genetic
faces, we present the rule and algorithm for identifying genetic
edges.

4.1 Rule and algorithm for identifying genetic edges

In the original version of a part model, assume that CC is the
complex code of a specific edge e and that f1, f2 are the adja-
cent faces of e. If e′ is an edge on the current version of the part
model, the following rule is presented to judge whether e′ is a ge-
netic edge of e.

• Rule 5: if the two adjacent faces of e′ are the genetic faces of
f1 and f2, e′ is the genetic edge that originates from e.

For example, the pocket in the part model shown in Fig. 6a1
is re-edited and turned into a through-all slot; the new model is
shown in Fig. 6a2. In Fig. 6a1, the adjacent face set of the edge
e is {f1, f4}. In Fig. 6a2, it can be seen that the adjacent face set
of e2 is {f3, f5}. Since f3 is a genetic face that originates from f1
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and f5 originates from f4, according to rule 5, consequently, the
edge e2 is a genetic edge that originates from e.

In Fig. 6b1, the edge ee represents the circle of the top face.
The pocket is re-edited and turned into a through-all slot; the new
model is shown in Fig. 6b2. In Fig. 6b2, the adjacent face set
of the edges ee1 and ee2 is {f7, f8, Column2}. The faces f7 and
f8 are the genetic faces of f6. The face Column2 is the genetic
face of Column1. Thus, according to rule 5 described above, the
edges ee1 and ee2 are the genetic edges of ee.

Based on rule 5, algorithm 2 is presented to identify genetic
topological edges in the current version of a part model:

Algorithm 2: identifying the genetic edges that originate
from an edge whose complex code is CC

Step 1 Obtain the complex code of the adjacent faces CCf1 ,
CCf2 from CC.

Step 2 If CCf1 = CCf2 , according to CCf1 , construct the genetic
face set of f1: {f1i |0 ≤ i ≤ k1 };
Else, according to CCf1 and CCf2 , construct the genetic
face set of f1 and f2: {f1i |0 ≤ i ≤ k1} and {f2i |0 ≤ i ≤ k1 }.

Step 3 In the current part model, find the edge set
{ei |0 ≤ i ≤ k2 } that contains all of the edges formed
by the intersection of the faces in {f1i |0 ≤ i ≤ k1 } and
{f2i |0 ≤ i ≤ k1 }.

Step 4 Return {ei |0 ≤ i ≤ k2 }.
In algorithm 2, the time complexity of step 2 is far more than

that of steps 1, 3, and 4, and essentially, step 2 involves algo-
rithm 1, which finds the genetic faces according to a complex
code of a face. If CCf1 = CCf2 , step 2 is executed only once; if
CCf1 �= CCf2 , step 2 is executed twice. Therefore, the time com-
plexity of step 2 is the same as algorithm 1, i.e., O(n +e). Conse-
quently, the time complexity of algorithm 2 is O(n + e) as well,
where n is the number of nodes in the current NPG and e is the
number of arcs.

4.2 A case of identifying the genetic edges

As described before, in the example shown in Fig. 6a1, the edge
e is constructed by the intersection of f1 and f4. Thus, CC(e)
is decided by CC(f1) and CC(f4). Assume CC(f1) = {1, 3, 2}

Fig. 7. A case of identifying
genetic edges

and CC(f4) = {4, 3, 1}, then, the complex code of e, CC(e) =
{1, 3, 2, 4, 3, 1}.

Assume that in Fig. 6a1, the edge e is chamfered and the
original version of the part model is achieved, as shown in
Fig. 7a. Then, in Fig. 6a2, the pocket is re-edited and turned into
a through-all slot. Therefore, in order to get a correct new ver-
sion of the part model by re-evaluation, we should determine
which edges are to be chamfered in the part model shown in
Fig. 6a2.

Now let’s have a look at how to find the genetic edges that
originate from e. As described before, CC(e) = {1, 3, 2, 4, 3, 1}.
According to algorithm 2, the complex codes of the two adja-
cent faces is first obtained in step 1 from CC(e): one is {1, 3, 2}
and the other is {4, 3, 1}. Then, in step 2, the genetic face sets
that originate from f1 and f5 are found, i.e., {f2, f3} and {f5}. The
edge e1 is constructed by intersection of f2 and f5, e2 are con-
structed by the intersection of f3 and f5. Therefore, the edge set
constructed in step 3 is {e1, e2}. Consequently, the genetic edge
set of e is {e1, e2}. So, in Fig. 6a2, both e1 and e2 should be
chamfered. The resulting model is shown in Fig. 7b.

We also tested this case in some commercial modeling sys-
tems. However, the correct part model shown in Fig. 7b can’t be
fulfilled. The part model produced by those commercial systems
is shown in Fig. 7c. In Fig. 7c, not all of the genetic edges that
originate from e are chamfered. Obviously, it is an incorrect part
model.

5 Approach of identifying a genetic vertex

Since the topological vertex won’t be split or merged by the
Boolean operation, it is not a very sophisticated task to identify
the genetic vertex. The genetic vertex can be identified by its
identity exclusively. Therefore, we only present a rule to identify
genetic vertices.

Assume that CC is the complex code of a vertex v1 on the
original version of a part model, and v2 is a topological vertex on
current version of part model. The following rule can be used to
identify whether v2 is a genetic vertex of v1.
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Rule 6: If CC(v2) = CC(v1), v2 is the genetic vertex that
originates from v1.

6 Implementation

The algorithms discussed above have been implemented as
a software module of our feature-based modeling system. The
software module provides many interface functions that can be
called to identify the GEs that originate from a TE.

If a feature in a design references some topological entities,
the CCs of the referenced topological entities will be recorded.
When a feature is added or re-edited, the part model will be
re-evaluated. According to the recorded CCs, the interface func-
tions provided by the software module will be called to identify
the GRs between the new version TEs and those from the old
version.

For example, consider a feature, FILLET , of a design that
references a topological edge, EDGE. The complex code of
EDGE, CC(EDGE), will be recorded. And when the part model
is re-evaluated, CC(EDGE) is first retrieved, then the inter-
face functions are called to determine the genetic entity set
{NEW_EDGE} that originates from EDGE. Finally, each edge
in {NEW_EDGE} will be filleted.

The software module is programmed with ANSI-C++, and
thus, a different system will be supported. The software mod-
ule is adopted by our history-based and feature-based modeling
system. Our system is programmed with C++. The user inter-
face toolkit adopted by our system is Microsoft Foundation Class
(MFC), a software component module of Microsoft Corporation.
And ACIS, a software product of Spatial Corporation, is the ge-
ometric kernel.

7 Conclusion

After analysis of the key position of a topological-entity-naming
mechanism in a history-based and feature-based modeling sys-
tem, two principal functional requests for a topological-entity-
naming mechanism are found:

• From the static viewpoint, a naming mechanism should be
capable of naming the topological entities uniquely and
consistently.

• From the dynamic viewpoint, a naming mechanism should
be capable of tracing the alteration of entities during the de-
sign process.

This paper presents an approach to satisfy the second func-
tional request. Firstly, we introduce a data structure called an
NPG to represent the process of identity propagation of topo-
logical entities. Next, some rules and algorithms are presented
to identify genetic entities such as genetic faces, genetic edges,
and genetic vertices. Several examples are also given to illustrate
the effectiveness of our approach. Our approach has been imple-
mented in our history-based and feature-based modeling system.
It seems that our approach is more effective than those in some
commercial modeling systems.
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