
DOI 10.1007/s00170-004-2169-5

O R I G I N A L A R T I C L E

Int J Adv Manuf Technol (2005) 27: 211–224

Y.-E. Nahm · H. Ishikawa

An Internet-based integrated product design environment.
Part I: a hybrid agent and network architecture

Received: 24 September 2003 / Accepted: 6 February 2004 / Published online: 2 February 2005
© Springer-Verlag London Limited 2005

Abstract During the past two decades, concurrent or collabo-
rative engineering (CE) has presented new possibilities for suc-
cessful product development. In addition, the advances in com-
puter networks and information technology have brought engin-
eering design context into a new era. As a promising approach
to accommodate the radical pace of changes in the context of
engineering design, agent technologies have been attracting pub-
lic attention and are being used in an increasingly wide var-
iety of applications. However, little attention has been paid to
multi-agent system (MAS) frameworks for CE environments that
enable systematic and timely design integrations in both hier-
archical and heterarchical design topology. This is the first of
a two-part paper proposing a MAS framework for integrated
product design in a computer network-oriented CE environment.
Part I first proposes a hybrid agent network architecture to de-
velop lightweight, dynamic and large-scale distributed systems,
and then proposes a hybrid agent architecture based on our fi-
nite state automata (FSA) formalism that can exhibit both hybrid
behaviours and hybrid interactions. Finally, some ideas for build-
ing an integrated product design environment are presented using
the proposed agent and network architecture. Part II discusses
the applications of the proposed MAS framework to concurrent
engineering design.

Keywords Concurrent engineering · Design decomposition
and integration · Finite state automata · Multi-agent system ·
Network-oriented CE environment

1 Introduction

Since the late 1980s, concurrent or collaborative engineering
(CE) has brought new possibilities for realising faster product

Y.-E. Nahm · H. Ishikawa (�)
Department of Mechanical Engineering and Intelligent Systems,
The University of Electro-Communications,
1-5-1 Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan
E-mail: ishikawa@mce.uec.ac.jp
Tel.: +81-424-435422
Fax: +81-424-843327

development, higher quality, lower costs, improved productivity,
better custom values, and so on [1, 2]. CE attempts to incorpo-
rate various product lifecycle functions from an earlier stage of
the product development process. This approach is thus intended
to encourage the design engineers, to consider all elements of
the product lifecycle from the outset, thus imposing a heavy bur-
den on the design engineers [3–5]. As a result, the CE approach
increases the complexity of design problems and necessitates dif-
ferent expertise from a variety of engineering fields.

Due to the increasing complexity of the design problem, it
becomes more difficult for a single designer to propose a de-
sign solution as global optima that satisfies all of the require-
ments within a given timeframe. Design decomposition has been
a common practice to reduce the complexity and facilitate the
concurrency of the design problem [4]. A complex engineer-
ing design problem is recursively decomposed into a manage-
able number of sub-problems, each representing sub-systems (or
units, parts) or different perspectives (or disciplines). Then, the
design decomposition causes the hierarchical and heterarchical
design topology. The decomposed sub-problems are assigned to
different design participants who are geographically dispersed
and diverse in their disciplines. Since each participant has a dif-
ferent point-of-view and has limited expertise, the sub-problems
are usually interrelated to each other to exchange various sources
of design information necessary for individual design problems
(i.e. heterarchical design topology). Also, a large problem can
be formulated in terms of interacting smaller sub-problems that
encapsulate specific aspects of the large problem (i.e. hierarch-
ical design topology). Then, the results of smaller problems are
recombined to formulate solutions to the larger problems, along
with the problem hierarchy. Accordingly, a complex engineering
design problem should be solved by a network of linked design
problems with hierarchical and heterarchical interdependencies.

In addition, the advances in computer networks and informa-
tion technology have brought engineering design context into a
new era. The Internet has been validated as an information in-
frastructure for collaborative engineering and has been utilised
as a facilitator for collaborative activities [6]. Therefore, it is
becoming common that the decomposed design problems are

212

distributed over a networked environment such as the Internet,
intranet or World Wide Web (WWW). In such a distributed de-
sign environment, different aspects of a problem are modelled
and solved by different people who have special expertise. In
solving individual design problems, design participants use dif-
ferent engineering resources (e.g. problem-specific engineering
models, applications, pre-existing software tools, legacy codes,
design data, etc.) that are intrinsically heterogeneous. Since a
wide variety of engineering resources are used at geographi-
cally distributed locations, the heterogeneous resources need to
be integrated or translated to facilitate interoperation and collab-
oration over the networked environment.

Consequently, the engineering product development process
in such a network-oriented CE environment can be viewed as:
problem decomposition of the product design project and aggre-
gation of sub-problems by multi-disciplinary or multi-talented
teamwork; a network of linked decisions with hierarchical and
heterarchical interdependences; resource-sharing and the ex-
change of information between team members; and design
conflict detection and process coordination. There have been
many research efforts to address all of these basic tracks. Re-
cently, agent technology has been considered as an important
approach for developing industrial distributed systems [7, 8], and
has already been applied to the many intelligent manufacturing
systems for the last ten years [9]. In particular, the approach of
multi-agent systems (MAS) has been proven to be an effective
way to develop large distributed systems [10, 11].

Many agent-based approaches have been applied to infor-
mation sharing and teaming [12–18], multi-enterprise integra-
tion [10, 11], supply chain management (SCM) [9, 19], concur-
rent design and manufacturing [20, 21], planning and scheduling
[22–25], negotiation and coordination [4, 19, 25–27], tools for

Fig. 1. Hierarchical and heterarchical design topology

multi-media conferences [28], and so on. However, few signifi-
cant research results have been reported for applying agent tech-
nology to the integrated product design environment that enables
the hierarchically and heterarchically distributed team members
to integrate various engineering resources in a systematic and
timely fashion. Our claim is that this problem is mainly due to
the lack of agent architecture suited to various engineering re-
sources and their interactions modelling, and of agent network
architecture more adaptive to the dynamic random changes.

This paper proposes a MAS framework, called the agent
network concurrent design environment (ANetCoDE), for inte-
grated product design in the computer network-oriented CE en-
vironment. The need for new agent and network architectures is
first addressed by identifying the shortcomings of state-of-the-art
research in Sect. 2. Sect. 3 proposes the agent network architec-
ture for building a lightweight, dynamic and large-scale MAS, as
well as a clear formalism for the agent architecture that enables
agents to exhibit hybrid (both continuous and discrete) behaviour
and hybrid interaction, by using finite state automata (FSA)
theory. Based on the proposed architectures, the ANetCoDE is
developed, and several ideas for systematic and timely design in-
tegration are addressed in Sect. 4. Sect. 5 gives an overview of an
implementation perspective, and Sect. 6 concludes the paper.

2 Need for integrated product design environment

2.1 Integrated product design environment

As shown in Fig. 1, a complex engineering design problem can
be decomposed into a manageable number of sub-problems,
based on the product decomposition (e.g. product modularity and

213

structural decomposition) and process decomposition (including
upstream and downstream processes, or multidisciplinary per-
spectives such as structures, kinematics, dynamics, etc.) [29].
Sub-problems are interrelated and may share the same kinds
of design interfaces (DI), by representing subsystems (or units,
parts) or different perspectives (or disciplines). Therefore, a de-
sign problem (DP11) is made up of the smaller sub-problems
(DP21 and DP22) and one or more design interfaces. Then, a
non-terminal design problem (e.g. DP21) can be formulated as
a decision network of multiple interacting design aspects (or a
manageable set of design variables) and defines the feasible de-
sign space (or solutions). When defining the design space, the
design problem establishes the feasibility of the defined solutions
by communicating the design possibilities with the neighbouring
design problems and by integrating the design spaces mapped
from its child design problems. Further, the design solutions are
recursively mapped onto the parent design problem in order to
create a global solution that can be accepted from all of the
sub-problems. As a result, design decompositions cause the hier-
archical and heterarchical design topology.

Although design decomposition facilitates the concurrency
of product lifecycle functions from an earlier stage of design and
reduces the complexity of the design problem, it necessitates var-
ious integration efforts for recombining the hierarchically and
heterarchically decomposed design problems. Then, the hier-
archical and heterarchical design integrations can be made by
mapping the individual design solutions onto commonly inter-
acting design spaces and by communicating the design possi-
bilities through accessible design interfaces with neighbouring
design problems, respectively.

2.2 Shortcomings of state-of-the-art researches

2.2.1 Network architectures for MAS

The aforementioned integrated product design environment in-
volves interactions between different people or organisations
with different (possibly conflicting) goals and proprietary in-
formation. The MAS approach is ideally suited to represent
problems that have multiple problem-solving methods, multi-
ple perspectives and/or multiple problem-solving entities. Since
agents are relatively independent pieces of software interacting
with each other through message-based communication, system
development, integration and maintenance become easier and
less costly. The multi-agent-based solutions can be designed and
implemented as several interacting agents. When talking about
MAS, two components thus have to be described: the agent ar-
chitecture and network architecture.

As shown in Fig. 2, the existing network architectures for
MAS can be classified into three categories: centralised ap-
proach; federation approach; and autonomy-based approach.

The centralised architecture probably is the most widely ap-
plied approach for developing the network-oriented collabora-
tion systems as well as MAS [9, 30, 31], although it may be
criticised for its bottleneck problem of data and control [13],
inadequacy with regard to loose and flexible collaboration in

Fig. 2. Existing network architectures for distributed systems

an open environment [31, 32], low scalability [13], and the sys-
tem safety and stability problem of being shut down by a single
point of failure [9, 32], etc. An example of this type of approach
is a distributed and integrated environment for computer-aided
engineering (DICE) project [33]. The DICE project provides a
centralised multi-user system for cooperation and coordination
among multiple designers working in separate engineering dis-
ciplines using the shared workspace model and object-oriented
database management systems.

Next, the federation architecture is a distributed system ap-
proach, where usually there is no central module. Instead, this

214

approach coordinates multi-agent activities via facilitation as a
means of reducing overheads, ensuring stability and providing
scalability [9]. Communication and coordination between a local
collection of agents and remote agents are therefore made only
via middle agents (e.g. facilitators, brokers, or mediators) that
usually provide the following services: (1) message routing and
translation; (2) agent behaviour monitoring and notification; and
(3) coordination between multi-agent activities. Using this ap-
proach, the Palo Alto Collaborative Testbed (PACT) experiments
demonstrate how encapsulating engineering tools and frame-
works by using agents that exchange information and services
through facilitators enable them to interoperate with one another,
even though they were developed with no anticipation of subse-
quent integration [13]. Here, an agent is regarded as a computer
program that communicates with external programs exclusively
via predefined protocols such as KQML [14] and KIF [15]. Al-
though they provide a good foundation for developing open, scal-
able multi-agent-based network architectures, many interpreters
are required between different domain systems that adopt the dif-
ferent communication and content-level languages [34]. As in
the centralised approach, the bottleneck problem still remains if
a lot of agents are connected to a facilitator.

More recently, the autonomy-based approach has been pro-
posed based on the concept of autonomy, using distributed com-
puting and component technologies [31, 34]. The distributed ob-
ject modelling and evaluation (DOME) framework forms a ser-
vice exchange network by connecting interacting components
that encapsulate specific aspects of a design problem [31]. Al-
though powerful in integrating various engineering models trans-
parently, the framework is likely to be only suited to the well-
structured and conflict-free problem. Since it mainly focuses on
how an integrated model can be modelled by combining a num-
ber of distributed modules, the topology of the module network
is fixed and remains unchanged as the system operates. Because
all of the problems cannot be always well-structured or for-
malised, design participants seek to discover new relationships
and configure themselves as the system operates. A similar ap-
proach is found in the component agent-based design-oriented
model (CADOM) program [34]. In this system, the compon-
ent agents (CAs) encapsulating common building elements (such
as the wall, beam, slab, etc.) are distributed over the Internet,
and the assembly shops (ASs) assemble the predefined and dis-
tributed CAs to produce a particular project using the web-based
interface manager and design session manager. Since that sys-
tem basically follows the ideas of DOME, the similar drawbacks
also exist. Also, by encapsulating engineering tools and human
specialists as an agent, the distributed intelligent design envi-
ronment (DIDE) architecture attempts to integrate engineering
tools, like CAD/CAM tools, database systems, or knowledge-
based systems, in an open environment [17].

Since there is no central controller or middle agents, the func-
tional or physical agents are empowered to manage most of the
activities related to their own goals and tasks through intensive
inter- and intra-agent communication. This type of architecture is
well-suited for developing distributed intelligent design systems
in an open, dynamic environment. However, it is not easy to test

the overall behaviour of the MAS [18]. Also, it is difficult to pro-
duce a globally optimal solution since each local agent has an
equal right to compete with one another. No agent has the right
to decide on the best strategy [30]. What is worse, the circular
dependencies among interacting agents may give rise to serious
trouble. It is difficult to find a circular dependency when dis-
tributed agents are utilised since there is no central observer [31].
Therefore, there is no theoretical guarantee that the process will
ever converge.

Based on the product decomposition and marketplace dy-
namics, the responsible agent for product-process integrated de-
sign (RAPPID) framework forms a hierarchical topology of
component agents, each with specified characteristics (or a defin-
able attribute or parameter of a component) [35, 36]. The com-
ponent agents buy and sell units of these characteristics, taking
into account its own resources. Although it presents a promis-
ing vision to the market-based design environment, it is not clear
how the heterogeneous design tools can interoperate with one
another, or how a variety of engineering information and mul-
tidisciplinary knowledge can be defined, shared and managed
among heterarchically distributed team members.

2.2.2 Agent architectures for modelling engineering resources
and their interactions

In addition to the network architecture, building agent-based so-
lutions require the agent architecture to model properties or be-
haviours of the agent itself. The ideas of finite state automata
(FSA) theory had and still have strong influence in different areas
of human activities like technology, sociology and biology. FSA
could be also considered canonical representations of computa-
tional agents. FSA are a widely known and simple but powerful
formalism to model the behaviour of a system as a sequence of
transitions.

Examples include Mealy automata, Moore automata, timed
automata [37], I/O automata [38], hybrid I/O automata [39], in-
terface automata [40], and so on. Many Mealy-type, Moore-type
or hybrid hidden Markov models (HMMs) have been proposed
to model agents and their interactions [41]. Alur and Dill [37]
proposed timed automata, which impose timing constraints on
state transitions, to model the behaviour of real-time systems
over time. Lynch and Tuttle [38] introduce an event-driven model
of asynchronous distributed computation, the input-output au-
tomaton. The I/O automata consist essentially of states, start
states and discrete transitions. Discrete transitions are labelled
by discrete actions that include mutually disjoint sets of in-
put, output and internal actions, where input actions are re-
quired to be enabled from every state (i.e. input-enabled). In
other words, since a process must be able to accept any input
at any time, a very strong distinction is made between those
actions locally-controlled by the system itself (output and in-
ternal actions) and those actions controlled by the system’s ex-
ternal environment (input actions). More recently, the I/O auto-
mata model is augmented by adding explicit trajectories [39].
The state of the hybrid I/O automata can therefore change in
two ways: discrete transitions, which make it possible to syn-

215

chronise the transitions of different hybrid I/O automata, and
change the state atomically and instantaneously; and trajecto-
ries, which describe the evolution of the state over intervals
of time.

Models of computation can be classified into two categories:
component models that specify how components behave in an ar-
bitrary environment, and interface models that specify what the
components expect from the environment. Component models
like (hybrid) I/O automata are deemed as pessimistic in that they
assume the environment is free to behave as it pleases, and two
components to be composed are compatible only if no environ-
ment can lead them into an error state. Alfaro and Henzinger
proposed a lightweight formalism, interface automata, to model
component interfaces with the capability of capturing temporal
aspects of interfaces [40]. The interface automata are based on an
optimistic approach in which components are usually designed
under assumptions about the environment, and two components
are compatible so long as there is some environment in which
they can work together.

Although a couple of variations of FSA have been proposed
to model components and their interactions, there is no FAS
model or framework that is able to explicitly represent both hy-
brid (i.e. continuous and discrete) behaviour and hybrid interac-
tion, and to dynamically adapt its behaviour and interaction style
to the environmental random changes.

2.3 Need for a new agent and network architecture

As mentioned above, a complex engineering design problem
should be solved by a network of linked design problems with
hierarchical and heterarchical interdependencies. Since a large
problem can be formulated in terms of interacting smaller sub-
problems, the results of smaller problems need to be systemati-
cally recombined to formulate solutions to the larger problems.
On the other hand, the dependencies between the heterarchically
distributed design problems seem to occur more dynamically.
Although there already exist a lot of network architectures for
building MAS, most approaches consider either hierarchical or
heterarchical topology. Also, there is no lightweight architecture
that can provide flexibility for agent consideration, plug-and-
play and agent interaction while adapting to dynamic topological
changes.

In addition, the difficulties in integrating a variety of engin-
eering resources mainly stem from the heterogeneities of inter-
faces to access them and internal models of computation to de-
scribe their behaviour. As in most research, the interfacing prob-
lem could be solved by providing functional agents, where differ-
ent engineering models or tools are encapsulated with transpar-
ent interfaces network-accessible from other agents. However,
heterogeneous internal computational models still make the inte-
gration difficult. Models of computation include the continuous-
time model, discrete-event model, the discrete-time model and
the synchronous/reactive model [42, 43]. In addition to the net-
work architectures, much agent-based research has suggested a
lot of agent architectures for modelling either a continuous or
discrete behaviour. However, for most real-world engineering

tools or models, neither a purely continuous behaviour model nor
a purely discrete behaviour model is appropriate.

Due to these shortcomings of current agent and network
architectures, most agent-based solutions are still ad hoc, and
therefore, they may not be appropriate for different systems and
domains. As a result, few comparable research results have been
reported for applying agent technology to the integrated product
design environment that enables systematic and timely design in-
tegrations in the hierarchical and heterarchical design topology.
Therefore, there is strong need to develop a new agent and net-
work architecture.

Our solution to agent network architecture is to hybridise the
autonomy-based and federation approaches, and doing so could
compensate for the limitations between the two (see Sect. 3.1).
In addition, the most promising solution to agent architecture is
the hybrid agent model that can exhibit a combination of contin-
uous and discrete behaviour. Besides the hybrid agent behaviour,
the agent should be able to change its interaction mode (i.e. either
continuous or discrete communication) according to the agent
behaviour or unexpected environmental changes (see Sect. 3.2).
Such a new agent and network architecture can effectively sup-
port the development of a MAS framework for implementing the
integrated product design environment (see Sect. 4).

3 A multi-agent system architecture

3.1 Proposed hybrid network architecture

This section proposes a hybrid agent network architecture that
marries the best aspects of the federation and the autonomy-
based approaches into the so-called autonomy-based federa-
tion approach. While most federation and autonomy-based ap-
proaches adopt either message-based or invocation-based com-
munication models, the proposed approach enables a combi-
nation of message-based and invocation-based communication
models that are dynamically switched according to the random
environmental changes.

As shown in Fig. 3a, we first employ a lightweight middle
agent, called an “interface agent”, for continuous or discrete in-
teractions between local agents (type 1), between a collection of
local agents and a collection of remote agents (type 2), and be-
tween a local agent and a remote agent (type 3). Therefore, agent
interactions are made only via the interface agent.

A multi-agent organisation can also be structured in a hier-
archical form depending on the size of the organisation and com-
plexity of design problem. Then, the interface agent serves as
a bridge between hierarchically and heterarchically distributed
agents or agent teams. Any functional agents are thus pluggable
into the different domains, only if the interface agents that de-
fines how to access the functional agents are network-accessible.
As compared with facilitators, brokers and mediators, the inter-
face agent can be characterised by the following features:

• Unlike the federation approach, discrete and continuous in-
teractions are distributed over a lot of lightweight interface

216

Fig. 3. Proposed network architecture and agent architecture

agents. In the case of type 1, it simply provides shared vari-
ables for message-based interactions, instead of providing in-
formation routing and translation services as in the existing
middle agents. Message is stored directly on the shared vari-
ables of interface agent and viewed directly by the functional
agent. Information need not be explicitly passed to and from
functional agent since the agent can access it directly. The dif-
ferent agents can see current variable values without update
delays. Exchanging the messages is therefore the responsibil-
ity of autonomous functional agents, not the interface agent,
thereby reducing the communication overheads of the inter-
face agent. During the message-based interactions of type 2,
a registration mechanism is provided for finding appropriate
agents or services, thereby enabling dynamic system reconfig-
uration. That is, the important feature of interface agent is to
know how to find other agents, thus serving as a yellow page
server. Once the information (e.g. physical address, role, inter-
face, etc.) about other agents is obtained, functional agents can
directly make invocation-based interactions through peer-to-
peer conversations (type 3), thus also eliminating the commu-
nication overheads of the interface agent.

• Real-world design environments are highly dynamic because
of diverse frequently changing situations. For example, there
are no obligations for functional human or computerised
agents to remain with a design network for a certain time
period [19]. In addition, network-based large-scale systems
are more prone to random changes of their environment (e.g.
temporary unavailability of servers or service agents, trans-
mission channel alterations or break-downs) [46]. Our ap-
proach can change the type of communication between the

communicating agents. For example, when the synchronous
invocation-based communication (type 3) has failed, our in-
terface agent initiates an asynchronous message-based com-
munication with the remote agent. As drawn by bold lines in
Fig. 3a, it intercepts the invocation, packs it under the form
of message and stocking it in the different interface agent.
In this manner, functional agents are able to interact in a
highly dynamic way. In our approach, functional agents can
join in, stay, or leave the system. When a design task is al-
located, a virtual design network between functional agents
may emerge from the system through autonomous design
process between functional agents.

Consequently, our approach can be viewed as a lightweight
and flexible network architecture for a MAS framework that can
provide flexibility for agent consideration, plug-and-play and dy-
namic agent interaction in a networked environment.

3.2 Proposed hybrid agent architecture

Real-world systems are intrinsically hybrid systems that exhibit
a combination of discrete and continuous behaviour [39]. For
a more complete model of real-world systems, a system com-
ponent should therefore be able to represent both discrete and
continuous behaviour. The component then needs to make dis-
crete and continuous interactions with different components, in
order to perform the hybrid behaviour. Therefore, we believe
that hybrid behaviour model and hybrid interaction model are in-
dispensable in describing real-world components. This section
proposes a hybrid agent model, called Hagent, which consists
of hybrid behaviour automata (HBA) for modelling individual
agents (i.e. the component itself) and hybrid interaction automata
(HIA) for modelling the interaction of agent team (i.e. the com-
ponent interface and environment).

3.2.1 Hybrid behaviour automata (HBA)

In this paper, an agent is defined as a reactive and proactive sys-
tem that has the data and code encapsulation, its own thread
of control, and the ability to execute autonomously (or respon-
sively) without (or with) external invocation. Agents are also
resource-bounded reasoners that have some ability to reason
about their beliefs, based on the finite computational resources
and a set of explicitly represented beliefs [44]. To realise an
intelligent behaviour with the resource-bounded reasoning capa-
bility, we advocate that it is necessary for the agent to possess
a set of explicitly represented states and a repertoire of possible
behaviours.

Also, interactions between different agents can be generally
classified into two models: (local or remote method) invocation-
based interaction and message-based interaction. Using a hy-
brid combination of the two types of interaction models, our
HBA model attempts to exhibit a combination of discrete and
continuous behaviour. First, from the viewpoint of agent re-
activeness, it seems to be persuasive that discrete behaviour
can be described by the triplet <input_action, internal_action,
output_action> by considering synchronous (or possibly asyn-

217

chronous) invocation-based interactions that consist of the fol-
lowing steps: 1) the caller invokes an input action (i.e. function
or subroutine) on the callee; 2) the input action triggers some in-
ternal actions for internal computation; and 3) the callee invokes
an output action in order to inform the caller of the termination
of the task or (possible) requested information [29]. By adopt-
ing a black box approach, the triple can be rewritten by the pair
<input_action, output_action>. Since the input/output action
pair alters the internal states, a discrete transition can be denoted
by the quad (previous_state(s), input_action(i), output_action(o),
next_state(s)). We call this possible transition a repertoire frag-
ment. A repertoire is then constructed from a finite sequence
s0i1o1s1. . .sk−1ikoksk of alternating states and actions beginning
with a start state (s0) such that each quad (sj , i j+1, oj+1, sj+1) is
a repertoire fragment.

Second, from the viewpoint of agent proactiveness, contin-
uous behaviour means that an agent can autonomously update
its internal state variables and external state variables over in-
tervals of time, without being invoked externally. That is, con-
tinuous behaviour is proactive, rather than reactive (or interac-
tive) as in discrete behaviour. While the input actions of dis-
crete behaviour are triggered by the external agents, all actions
of continuous behaviour are locally controlled. Continuous be-
haviour is based on asynchronous (or possibly synchronous)
message-based interaction. Therefore, continuous behaviour can
be described by the triplet <previous_state, action, next_state>,
not by the input/internal/output action triplet. Then, the inter-
nal or external state vector (s(t) ∈ S) can be determined by
an internal action or external action (i.e. input and output ac-
tions) (a ∈ A), respectively, at time t (ṡ(t) = a(s(t))). Although
a continuous transition may be commonly described in dif-
ferential equations, it is more tractable to design it as a dis-
crete transition that changes the state at regular intervals of
δt, s(t + δt) = a(s(t)), when realising it using digital circuits
and computers [45]. Our HBA model thus defines a continu-
ous transition as the quintuplet (start_time(t), previous_state(s),
action(a), next_state(s), end_time(t)). The repertoire fragment
for continuous behaviour is slightly different from that of dis-
crete one. A repertoire fragment (rf) is described as a finite
sequence t0s0a1s1t1. . .tk−1sk−1aksktks0 of alternating states and
actions beginning with a start state (s0) at time t0, ending with
a state (sk) at time tk, and returning to the start state (s0),
which can be simulated by a single-loop program. Then, the
duration of time (δt ′) required to a repertoire fragment execu-
tion is calculated by tk − t0. A repertoire (R) can have one or
more repertoire fragments with regular intervals of time (δt) that
can be explicitly specified by users, denoted by the form of
R =< {r f1, r f2, . . . , r fi}, δt >. In particular, we call the reper-
toire fragment of sk = s0 the “final fragment”, which means that
a repertoire is fully completed. As a result, an HBA triggers
a possible repertoire fragment at regular intervals of δt, and δt
may be replaced by δt ′ if δt − δt ′ < 0. According to required be-
havioural aspects, more than one repertoire can be embedded
into the HBA.

Definition 3.1: An HBA A =< I, O, P, S, SINIT, AD, AC, RD,

RC , W,∆T > consists of the following elements:

• I , O and P are mutually disjoint sets of input, output and
internal (or private) variables, respectively. For a clearer sep-
aration with internal variables, we denote the set of all input
and output variables by a set E(= I ∪ O) of external vari-
ables. Strictly speaking, E may be local copies of a part of
“external world” state variables, ES. Also, the set of all vari-
ables is denoted by V = I ∪ O ∪ P.

• S and SINIT(⊆ S) is a set of states and a set of initial states,
respectively. S is partitioned into a set SI (⊆assign(P)) of
internal states and a set SE(⊆assign(E)) of external states.
assign(P) is used to denote the value assignments into a set
P of variables.

• AD and AC are a set of action primitives for discrete be-
haviour and a set of action primitives for continuous be-
haviour, disjoint from each other. AD (AC) is further par-
titioned into a set ADI (ACI) of input actions, a set ADO

(ACO) of output actions and a set ADP (ACP) of internal ac-
tions. Then, AD and AC are denoted by AD = ADI ∪ ADO ∪
ADP and AC = ACI ∪ ACO ∪ ACP , respectively.

• RD (⊆ SI × ADI × ADO × SI) is a set of discrete transitions,
with the property that, for a given pair < adi(∈ ADI), ado(∈
ADO) > and a state s(∈ SI), there is a transition of the form
(s, adi , ado, s). An element (s, adi , ado, s) of RD is referred to
as a repertoire fragment (rf) of repertoire (R).

• RC (⊆ T × S × AC × S× T) is a set of continuous transitions
at time T . If a ∈ ACI , ACO or ACP , then (t, s, a, s′, t ′) is
called an input, output, or internal transition step, respec-
tively. Slightly different from the discrete transition, a finite
sequence t0s0a1s1t1. . .tk−1sk−1aksktks0 of RC is referred to
as a repertoire fragment, where s0, t0 and tk are a start state,
start time and end time, respectively. Note that the HBA re-
moves the dual use of external variables (E) for discrete and
continuous transitions. If a discrete transition could change
an input or output variable, it could cause an incorrect change
of continuous transition.

• W makes a dynamic choice of repertoire, through collabora-
tion with HIA.

• ∆T is a timing interval specified by users. In the continu-
ous behaviour mode, HBA continuously change the internal
and external states at regular intervals of ∆T . This inter-
val of time can be dynamically changed in comparison with
the real duration of time required to the repertoire fragment
execution.

3.2.2 Hybrid interaction automata (HIA)

As mentioned above, both invocation-based models and message-
based models are popular communication mechanisms for mod-
elling interactions between distributed systems or system com-
ponents [46], through shared actions (i.e. public procedures or
functions to be invoked) and shared variables (i.e. public vari-
ables to be referenced) that can be used to model both discrete
and continuous interaction [39].

In the previous section, we mentioned the importance of
the representation of hybrid behaviour. Since a component can
exhibit a combination of discrete and continuous behaviour, a

218

component should be dynamically able to switch its communica-
tion mode according to the behaviour type executed by different
components. In order to offer the capability to adapt the com-
munication model to the execution context of an component as
well as changes in its communication environment, instead of
using the direct communication approach between components
(e.g. I/O automata and hybrid I/O automata [38, 39]), we employ
a kind of interface automaton, HIA, through which components
indirectly communicate with each other.

The proposed HIA model is somewhat similar to interface
automata [40] in that an interface component is explicitly de-
fined to model interactions between components, but offers
quite different functionalities. The interface automata aim at
automating the component composition for component-based
design, via automatic compatibility checks between component
interfaces. It captures both input assumptions about the order
in which the methods of a component are called, and output
guarantees about the order in which the component calls ex-
ternal methods. On the other hand, HIA focus on modelling
interaction protocols for collaboration between components (i.e.
cooperation, competition and coordination), thus facilitating
agent-based design. Such interaction protocols can be mod-
elled by shared variables or shared actions. Thus, a shared
variable itself can be a finite state automaton. For example,
shared variables could play a critical role in integrating different
types of solutions or the same types of solutions with differ-
ent values from multiple HBA; that is, solution integration (see
Sect. 4.3.1).

In addition, for a better and more transparent understanding
of component behaviour, a clearer separation is made between
the mechanisms used to model discrete and continuous interac-
tion between components. That is, the dual use of shared ac-
tions (or shared variables) for discrete and continuous interaction
is not allowed. Our HBA use shared actions for synchronous
discrete interaction and shared variables for asynchronous con-
tinuous interaction (see Fig. 3b). HIA also provide a mechan-
ism for dynamic switching of the communication models used
between HBA. Although it is similar to [46], our HIA pro-
vide a clear formalism. When a caller HBA tries to invoke
an input action of a callee HBA via a shared action of the
HIA, and the callee HBA is under the continuous behaviour,
the HIA pack the invocation under the form of a message and
stock it in a message queue. When the callee HBA is later
ready to accept invocations, it can contact the message queue
and thereby retrieve the packed invocation message. After un-
packing the message, it can return the invocation result to the
caller HBA.

Definition 3.2: An HIA I =< V, S, SINIT, A, R, Q > consists
of the following elements:

• V is a set of shared variables, through which HBA au-
tonomously make continuous interactions by communicat-
ing their own data at regular intervals of time. V may be
further finite state automata that consist of possibly mul-
tiple input data (VIN), single output data (VOUT), a set of
states (VS), a set of actions (VA), and a set of state transi-

tions (VT ⊆ VIN × VS × VA × VS × VOUT) denoted by V =<

VIN, VOUT, VS, VA, VT >.
• S(⊆assign(V)) and SINIT(⊆ S) is a set of states and a set

of initial states, respectively. assign(V) is used to denote the
value assignments into a set V of variables.

• A is a set of shared actions, through which HBA make dis-
crete interactions with each other.

• R(⊆ S × A × S) is a set of state transition steps.
• Q is an intercept mechanism for dynamic switching of com-

munication models used between interacting HBA. Q con-
sists of a sequence of actions (Q A) for packing an invocation
under the form of a message and a set of message queues
(QM) for stocking the packed message.

4 ANetCoDE framework for integrated product design

Based on the proposed agent and network architecture, we de-
velop a MAS framework, ANetCoDE, for the integrated product
design in a networked environment.

4.1 Design agents

This section gives an overview of the design agents for the ANet-
CoDE. As shown in Fig. 4, it is assumed that decomposed sub-
problems can be structured in a network form of four different
types of design agents in the hierarchical and heterarchical de-
sign topology:

• An attribute unit agent (AU-Agent) is a kind of HBA that
represents a specific aspect of product and process know-
ledge, and by default initiates continuous behaviour for its
own design task including design synthesis, selection, eval-
uation, critique, and so on. The continuous and discrete
interactions between AU-Agents are made through shared
variables and shared actions that could be described as slot
variables and public methods of a design interface mod-
ule agent (DIM-Agent), respectively. In the continuous be-
haviour and interaction mode, AU-Agent can be viewed as an
n-bit processor, whose design task is dependent upon the ac-
tive bits on the shared bus by the other agents (cooperation)
and the other agents having the same bits active (competi-
tion). When a competition occurs, DIM-Agent may initiate
a sequence of coordination process. Since such a process is
interactive rather than transaction-based, DIM-Agent makes
the conflicting AU-Agents shift their behaviour and inter-
action mode to discrete one. In this paper, continuous and
discrete behaviour are thus regarded as transaction-based and
interactive process, respectively. Figure 5 shows the pictorial
representation of a repertoire for continuous behaviour that
is intended to describe the cooperation between AU-Agents
in the local problem domain. For example, the repertoire
fragment, rf1, of this repertoire continuously checks whether
the required inputs are available at its real-time interval. If
exist, the next repertoire fragment, rf2, is executed. This con-
tinuous behaviour is asynchronously performed. In another

219

Fig. 4. Agent network concur-
rent design environment (ANet-
CoDE) for hierarchical and het-
erarchical design integrations

repertoire, designers can also publish their own AU-Agents
to the remote design domains by making the AU-Agents
available and accessible over the Internet.

• A design interface module agent (DIM-Agent) is a kind of
HIA for establishing inner-domain or inter-domain commu-
nication channels between AU-Agents. A DIM-Agent ex-
plicitly defines interaction spaces (i.e. a set of shared vari-
ables, V , of HIA) for the shared and network-accessible
agent interactions, integrates a number of design solutions
assigned to the shared variables, and coordinates the conflict-
ing design solutions through a coordination protocol (i.e. a
set of state transition steps, R, of HIA) that are modelled
using shared actions (A). The interaction space itself is fur-
ther a finite state automaton that provides the integration
functionalities such as suppression mapping, inhibition map-
ping, joint mapping and functional mapping (see Sect. 4.3.1).
As mentioned in Sect. 3.1, the DIM-Agent is a lightweight
middle agent and also serves as a message server by inter-
cepting a failed method invocation and packing it under the
form of the message, thus enabling dynamic switching of
communication models used by AU-Agents.

• A service wrapper agent (SW-Agent) is a kind of HBA that
serves as a bridge between the different domains. With an
SW-Agent, designers can define both input and output ac-
tion, through which shared actions or shared variables of

local or remote agents are called. Thus, SW-Agent facilitate
the integration of inter-domain tasks by plugging the remote
AU-Agents published from the different divisions into the
local domain (local AU-Agents or local DIM-Agents) or pro-
viding its own data objects with the remote AU-Agents or
DIM-Agents. The SW-Agent then ensures the interoperabil-
ity between the different types of data objects by defining a
set of transformation functions between input and output.

• A design module agent (DM-Agent) is a kind of HBA that
corresponds to a design division which takes charge of a
partial portion of the entire design problem. The DM-Agent
contains several functional modules for its own tasks. Such
functional modules include a set of HBA for design pro-
cess control, problem-solving, decision-making, etc., and a
set of HIA for interactions between the HBA. This paper
focuses on the problem-solving characteristics of the DM-
Agent. During the design process, the DM-Agent produces
an evolving collection of AU-Agents. The DM-Agent recur-
sively aggregates a set of runnable AU-Agents, based on the
input-output compatibilities between AU-Agents and the ac-
tive data objects from their shared variables. That is, if all
the required inputs of an AU-Agent are available, the AU-
Agent can run immediately. It is therefore assumed that the
problem-solving structure of a DM-Agent can be represented
in the form of a network of AU-Agents.

220

Fig. 5. An example of repertoire for continuous behaviour, called inner-
problem cooperation

4.2 Communicating design objects

Most research in engineering design context takes a design vari-
able as a triplet that consists of a unique name, type and value.
Instead, a new design object communicated between the agents
is proposed to provide richer semantics, thus enabling design
agents to make intelligent inferences. Table 1 shows the at-
tributes of design objects.

The design objects are classified into four types: a decision
design object on which design agents are allowed to make de-
cisions independently during the design process and under their
controls; a performance design object which is used in the de-
sign process that measures the performance of current design; a
specification design object which is specified usually in advance
of a design process that needs to be satisfied for a feasible or
acceptable design; and an intermediate design object. Designers
can also express a preference structure on a design object. If a
designer, for example, imposes the trapezoid function as a prefer-
ence structure onto a set-valued design object < v1, v2, v3, v4 >,
the values between v2 and v3 will always be preferable to the
designer. The degree of influence describes the sensitivity of
the data relative to the remaining data objects, which will be
of importance later when a redesign process is required. For
example, suppose that an AU-Agent implements the following
two expressions as the performance measure (total mass M and
safety factor S): M = ρ(htL +w2

√
x2 + y2); S = σth2/12P(L −

Table 1. Attributes of the data object

Attribute Description

Id a unique identification name
Handler agent creating the data object
Type (“decision”|“performance”|“specification”

|“intermediate”)
Value of type DataObjectValue
Priority (“-1”|“0”|“1”|“2”|“3”|“4”|“5”|“6”|“7”|“8”|“9”)
Degree of influence (“none” | “linear” | “quadratic” | “cubic”

| “quartic” | “more”)
Logic quantifier (“none” | “universal” | “existential”)
Preference function (“none”|“monotonic_decreasing”
(or Preference graph) |“monotonic_increasing”|“triangular”

|“reverse_triangular”|“trapezoid”
|“reverse_trapezoid”|“monotonic_increasing_flat”
|“flat_monotonic_decreasing”|“flat”)

Unit determined by the agent based upon
the types it depends upon

x). Note that mass is linear in both t and h, while the safety
factor for the bending member is linear in t but quadratic in
h. Thus, as long as no other design objects reach the max-
imum acceptable dimension, it will always be preferable to in-
crease h rather than t. When a set-valued assignment is made,
the design object can also be either existentially-quantified or
universally-quantified.

4.3 Vision to integrated product design

4.3.1 Agent interaction spaces for hierarchical design integration

In order to integrate hierarchically distributed design problems,
DIM-Agents of the parent problem define network-accessible
interaction spaces into which the design solutions from child
problems are assigned. Then, the interaction space is represented
by a finite state automaton that consists of six states and four
types of integration functions, as shown in Fig. 6:

• The unbound state. This means that the space does not have
any assigned value.

• The Single_Input_Offered state. This means that the space
has a single agent that provides a design object.

• The bound state. This means that there is both a provider
agent that assigns a design object to the space, and one or
more consumer agents that need the assigned data object for
their own design tasks.

• The Conflicted_Input_Offered state. This means that there
are two or more provider agents that assign the same types of
data objects to the space. That is, the data object is possibly
in conflict.

• The Multiple_Input_Offered state. This means that there are
two or more provider agents that assign different types of
data objects to the space. This implies that the space is in-
tended to create a new design object, based on the individual
design objects.

• The Unspecified_Mapping_Type state. This is to allow input
actions from users to specify the mapping operation type.

221

Fig. 6. An example of interaction space for
hierarchical design integration

In addition, four different types of data mapping operations
are proposed to integrate design objects:

• The SuppressionMapping operation. The old data is sup-
pressed by the new one. This operation always releases the
newest data object.

• The InhibitionMapping operation. This mapping has a sin-
gle priority value that is used for arbitration. When more than
one data object is connected to this mapping operation, the
value of the domain with the highest priority value will be set
to the value of this mapping. For example, the solution to the
“design an automotive suspension” problem may be the solu-
tion to the problem “design a hydraulic suspension”. The de-
signer may eliminate the mechanical suspension option with
the lower priority from consideration (at least temporarily).

• The JointMapping operation. This operation represents the
logical relationships between the individual design objects
of the child design problems. For example, to make the ro-
bust design decision against future product variations, a body
design team may select a body compatible with any of the
possible power trains mapped from the power train design
team (i.e. a logical AND operation).

• The FunctionalMapping operation. Unlike JointMapping,
this operation represents the arithmetic relationships between
the design objects. For example, the cost of the automotive
suspension will be the summation of the costs of the valve,
sensor, harness, etc., and the total cost of the automobile
will further be the summation of the costs of the suspension,
body, engine, chassis, brake system, automotive seat, and the
like. A lot of built-in functions are implemented, including
min, max, a set of average operators, etc.

4.3.2 Service usage scenarios for heterarchical design integration

In the ANetCoDE, functional agents like AU-Agents can be used
to represent various engineering models related to products or

processes and encapsulate the pre-existing software tools, by
defining input and output actions transparent to the remote users.
These agents are also network-accessible and pluggable. Then,
the agents can be directly connected to each other through proxy
agents (a special type of HIA that contains only shared input and
output actions) in a networked environment like the Internet.

Since a design team can predict the design outcomes from
its child sub-problems, the shared interaction spaces for hier-
archical design integration can usually be defined in advance.
On the other hand, the dependencies between the heterarchically
distributed design problems seem to occur more dynamically.
As a mechanism for the heterarchical design integration, we
present here the idea of publishing and subscribing the AU-
Agents (see Fig. 7). When an AU-Agent is published to the
neighbouring domains via the DIM-Agent of the parent prob-
lem domain, three usage options of the published AU-Agent are
available, including Service_Supplier, Service_Consumer and
Service_Simulator.

• The Service_Supplier option. If an AU-Agent is published as
a service supplier, the designer can take its output services
for his or her local usage through the agent proxy. The out-

Fig. 7. Publishing and subscribing mechanism for heterarchical design
integration

222

Fig. 8. Transformation processes for interoperability between incompatible
design objects

put design objects are passed onto the local AU-Agent or
DIM-Agent through the mediation of an SW-Agent. When
introducing more than one agent to the local domain, a de-
signer can also make the remote design objects compatible
with his or her local domain after some transformation pro-
cesses. Fig. 8 shows a pictorial representation of such map-
ping operations. U1, U2 and U3 are the “universal set” of all
the assignments to attributes in domain 1, 2 and 3, respec-
tively. Then, the designer can create a new design object by
assembling or customising the remote design objects acces-
sible over the Internet.

• The Service_Consumer option. Unlike the Service_Supplier
option, this option implies that the publishing side requires
the input to its AU-Agents from the remote domains. By
the Service_Supplier and Service_Consumer options, the de-
signer tries to reveal the local design decisions to remote
domains by exchanging local design objects, and to examine
whether his or her current design solutions are acceptable or
feasible to the remote domains or how the solutions influence
the remote design solutions. When some conflicts are caused
by the different viewpoints of each domain, a finite sequence
of a resolution process to negotiate or trade off the conflicts
is made. That is, these options are intended to incorporate the
synchronous collaborative activities.

• Service_Simulator usage. Publishing AU-Agents as Ser-
vice_Simulator means that the subscribing side can use the
AU-Agents as a means to share their models of computation
only for local purposes. By using this option, the designer
can pre-estimate the current design performance from the
viewpoint of different disciplines or exploit how the cur-
rent design should be modified to reach an agreement of all
members. By doing so, the designer can minimise the dis-
crepancies between the different domains in advance, and
finally can get a globally optimal solution with dramatically
reduced backtracking processes. Therefore, the input to this
AU-Agent by the subscribing side has no effect on the design
of the publishing side.

Fig. 9. An illustrative example of design integration

Finally, designers can make either input or output interface, or
both interfaces of the AU-Agent accessible from the remote
domains.

4.3.3 Plug-and-play for concurrent global design network

Figure 9 illustrates how the services from remote AU-Agents and
interaction spaces are integrated. Design integration can be made
by defining how the design objects from remote services are re-
lated to one another. When introducing the remote AU-Agents or
interaction spaces to the local domain, the designer first creates
SW-Agents by defining the interfaces to access remote services
(i.e. input actions), making the services compatible for his or her
purposes through a set of transformation functions (i.e. internal
actions), and defining the destinations of the transformed remote
services (i.e. output actions). After plugging the remote services
into the local domain, SW-Agents can play the remote services.

Suppose that two AU-Agents and an interaction space are
published by the remote domains and are now accessible over
the Internet. Then, the designer can define a lot of transformation
functions (i.e. embedded models) by instantiating SW-Agents,
based on the data objects obtained from published AU-Agents
and interaction space services. In this example, the three SW-
Agents (SWAgent_XY, SWAgent_XYP and SWAgent_ZQ) are
created to define three embedded models including Z = f(X, Y),
Q = g(X, Y, P) and R = h(Z, Q). For example, SWAgent_XY
takes the two input data objects, X and Y , from the AU-Agent
and interaction space, respectively, and generates a new data ob-
ject, Z , by using a transformation function, Z = f(X, Y).

These plug-and-play processes finally form an extended de-
sign chain of design agents that emerges from the system in a

223

dynamic manner. Then, the resultant concurrent design network
represents an integrated global perspective for the given design
project.

5 Implementation

A prototype version of the proposed framework has been imple-
mented in Java2SE. In the previous version, the common object
request broker architecture (CORBA) standard for distributed
computing environments is utilised to add distributed communi-
cations capabilities to design agents. The software module has
been recently replaced by the Java remote method invocation
(RMI), due to its simple interaction protocol, the automatic and
transparent serialisation for exchanged data and objects, the stan-
dard infrastructure for the distributed Java programming, and so
on. The Java native interface (JNI) programming was also used
to integrate pre-existing software programs that were written in
the different types of languages such as C and C++.

Figure 10 illustrates the software modules for constructing
the Internet-based integrated product design environment. The
system components in grey represent those which have been pro-
totyped in our laboratory as part of architecture. The core com-
ponent is the ANetCoDE kernel including agent architecture and
network architecture. All the design agents are implemented as
the concurrent threads, by extending java.lang.Thread or by im-
plementing java.lang.Runnable. The agents then exhibit a com-
bination of continuous and discrete behaviour at their regular
intervals. These intervals can also be specified by the designer. In
addition, the DIM-Agent and AU-Agent have the adapter objects
(i.e. a kind of proxy) implementing the RMI-compliant inter-
faces, to which their clients (SW-Agents) can connect for use.
The SW-Agents get the appropriate proxy objects by the dy-
namic class loading through an HTTP server. In the current im-
plementation, the proxy objects use RMI’s default socket-based
transport. As required, they can therefore be interconnected to
form an integrated design network through the Internet.

Fig. 10. System components of ANetCoDE

The AU-Agent is used for local or remote use, and for a
third party application. An application programming interface
(API) is provided so that third party software wrappers plug into
the ANetCoDE system. The AU-Agent transforms pre-existing
domain-specific models or applications to ANetCoDE-compliant
entities and provides the interoperability between the entities.
The DIM-Agent can provide a number of shared interaction
spaces to which the SW-Agents with permission to access can
connect. The SW-Agents provide a mapping between the remote
design objects and local design objects.

6 Conclusions

This paper develops a multi-agent system framework, ANet-
CoDE, for an integrated product design environment that enables
systematic and timely integrations in the hierarchical and het-
erarchical design topology. To build the ANetCoDE, we first
propose a lightweight agent network architecture, called the
autonomy-based federation approach, to provide flexibility for
agent consideration, plug-and-play and dynamic agent interac-
tion in a networked environment. Second, a hybrid agent archi-
tecture is proposed for a more complete model of real-world sys-
tem components, engineering models or tools. It can model both
hybrid (continuous and discrete) behaviour and hybrid interac-
tion, and dynamically adapt its behaviour and interaction modes
to the environmental random changes. Finally, some ideas for
enabling the hierarchical and heterarchical design integrations
are presented, including the network-accessible agent interaction
spaces and pluggable AU-Agents.

References

1. Prasad B (1996) Concurrent engineering fundamentals, Volume I: in-
tegrated product and process organization, and Volume II: integrated
product development. Prentice-Hall, New York

224

2. Willaert SSA, De Graaf R, Minderhoud S, Collaborative engineering: A
case study of concurrent engineering in a wider context. J Eng Technol
Manage 15:87–109

3. Kusiak A, Wang J (1995) Decomposition of the design process. Trans
ASME J Mech Des 115:687–695

4. Kusiak A, Wang J (1994) Negotiation in engineering design. Group
Decis Negotiation 3:69–91

5. Kusiak A, Larson N (1995) Decomposition and representation methods
in mechanical design. Trans ASME J Mech Des 117:17–24

6. Cutkosky MR, Tenenbaum JM, Glicksman J (1996) Madefast: an ex-
ercise in collaborative engineering over the Internet. Commun ACM
39(9):78–89

7. Jennings NR, Sycara K, Wooldridge M (1998) A roadmap of agent
research and development. Auton Agents Multi-Agent Syst 1:7–38

8. Wooldridge M, Jennings NR(1995) Intelligent agents: theory and prac-
tice. Knowl Eng Rev 10(2):115–152

9. Shen W, Norrie DH (1999) Agent-based systems for intelligent manu-
facturing: a state-of-the-art survey. Knowl Inf Syst 1(2):129–156

10. Peng Y et al. (1998) An agent-based approach for manufacturing inte-
gration – the CIIMPLEX experience. J Appl Artif Intell 13(1/2):39–63

11. Peng Y et al. (1998) A multi-agent system for enterprise integration. Int
J Agile Manuf 1(2):201–212

12. Kuokka DR et al. SHADE: knowledge-based technology for the re-
engineering problem. http://www-ksl.stanford.edu/knowledge-sharing/

13. Cutkosky MR et al. (1993) PACT: an experiment in integrating concur-
rent engineering systems. IEEE Comput 26(1):28–37

14. Finin T et al. (1992) Specification of the KQML agent-communication
language. Tech Report EIT TR 92-01, Enterprise Integration Technolo-
gies, Palo Alto, California

15. Genesereth MR et al. (1992) Knowledge interchange format, version
3.0 reference manual. Tech Report Logic-92-1, Computer Science Dept,
Stanford University, Palo Alto, California

16. Toye G et al. (1993) SHARE: a methodology and environment for col-
laborative product development. In: Proceedings of the Second Work-
shop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pp 33–47

17. Shen W et al. (1997) Agent-based approaches for advanced CAD/CAM
systems. In: Proceedings of the Fifth International Conference on
CAD/Graphics, Shenzhen, China, pp 609–615

18. Maturana F et al. (1997) Multi-agent architectures for concurrent design
and manufacturing. In: Proceedings of the IASTED International Con-
ference on Artificial Intelligence and Soft Computing, Banff, Canada,
27 July to 1 August, pp 355–359

19. Chen Y et al. (1999) A negotiation-based multi-agent system for supply
chain management. In: Proceedings of Autonomous Agents, Workshop
on Agent-Based Decision-Support for Managing the Internet-Enabled
Supply-Chain, Seattle, Washington

20. Zha XF, Lim SYE, Fok SC (1999) Development of expert system for
concurrent product design and planning for assembly. Int J Adv Manuf
Tech 15:153–162

21. Zha XF (2002) A knowledge intensive multi-agent framework for coop-
erative/collaborative design modelling and decision support of assem-
blies. Knowledge-Based Sys 15:493–506

22. Zhao FL, Tso SK, Wu PSY (2000) A cooperative agent modelling ap-
proach for process planning. Comput Ind 41:83–97

23. Maturana F, Balasubramanian S, Norrie DH (1996) A multi-agent
approach to integrated planning and scheduling for concurrent engin-
eering. In: Proceedings of the Third ISPE International Conference
on Concurrent Engineering, Toronto, Canada, 26–28 August 26-28, pp
272–279

24. Flores RA, Kremer RC, Norrie DH (2000) An architecture for mod-
elling Internet-based collaborative agent systems. In: Proceedings of
Agents’ 2000 Workshop on Infrastructure for Scalable Agent Systems,
Barcelona, Spain

25. Kim KS et al. (2000) Compensatory negotiation for agent-based project
schedule coordination. CIFE Working Paper #55, Centre for Integrated
Facility Engineering, Stanford University

26. Danesh MR, Jin Y (2001) An agent-based decision network for concur-
rent engineering design. Concurrent Eng: Res Appl 9(1):37–47

27. Petrie CJ, Webster TA, Cutkosky MR (1995) Using Pareto optimal-
ity to coordinate distributed agents. Artif Intell Eng Des Anal Manuf
9(4):313–323

28. Pena-Mora F et al. (2000) CAIRO: a concurrent engineering meet-
ing environment for virtual design teams. Artif Intell Eng 14:
203–219

29. Berardi D et al. (2003) Finite state automata as conceptual model for
E-services. In: Proceedings of the 7th Conference on Integrated Design
and Process Technology, Special Session on Modelling and Developing
Process-Centric Virtual Enterprises with Web-Services

30. Ou-Yang C, Lin JS (1998) The development of a hybrid hierarch-
ical/heterarchical shop floor control system applying bidding method in
job dispatching. Robot Comput-Integr Manuf 14:199–217

31. Pahng G-D, Bae S-H, Wallace D (1998) Web-based collaborative de-
sign modeling and decision support. In: Proceedings of the 1998 ASME
Design Engineering Technical Conferences, Atlanta, Georgia, 13–16
September

32. Rosenman M, Wang F (2001) A component agent based open CAD
system for collaborative design. Automat Constr 10:383–397

33. Sriram D, Logcher R (1993) The MIT dice project. IEEE Comput
26(1):64–65

34. Rosenman M, Wang F (1999) CADOM: a component agent-based
design-oriented model for collaborative design. Res Eng Des 11:193–205

35. Parunak HVD, Ward A, Fleischer M, Sauter A (1997) A market-
place of design agents for distributed concurrent set-based design. In:
Proceedings of the 4th ISPE International Conference on Concurrent
Engineering: Research and Applications

36. Parsons MG, Singer DJ, Sauter JA (1999) A hybrid agent approach for
set-based conceptual ship design. In: Proceedings of the 10th Interna-
tional Conference on Computer Applications in Shipbuilding

37. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci
126(2):183–235

38. Lynch NA, Tuttle MR (1987) Hierarchical correctness proofs for dis-
tributed algorithms. In: Proceedings of the 6th Annual ACM Sympo-
sium on Principles of Distributed Computing, Vancouver, Canada, pp
137–151

39. Lynch N, Segala R, Vaandrager F (2003) Hybrid I/O automata. Inf
Comput 185(1):105–157

40. de Alfaro L, Henzinger TA (2001) Interface automata. In: Proceed-
ings of the 9th Annual ACM Symposium on Foundations of Software
Engineering

41. Noda I (2002) Hidden Markov modelling of multi-agent systems and
its learning method. In: Proceedings of RoboCup 2002 International
Symposium

42. Chang W-T, Ha S-H, Lee EA (1997) Heterogeneous simulation –
mixing discrete-event models with dataflow. J VLSI Signal Process
15:127–144

43. Liu J et al. (2001) Interoperation of heterogeneous CAD tools in
Ptolemy II. J Model Simul Microsyst 2(1):1–10

44. Wooldridge M (1992) The logical modelling of computational multi-
agent systems. PhD Thesis, Department of Computation, The Univer-
sity of Manchester

45. Oka T, Tashiro J, Takase K (1999) Object-oriented BeNet programming
for data-focused bottom-up design of autonomous agents. Robot Auton
Syst 28:127–139

46. Budau V, Bernard G (2002) Synchronous/asynchronous switch for a
dynamic choice of communication model in distributed systems. In:
Proceedings of the 9th International Conference on Parallel and Dis-
tributed Systems, 17–20 December

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

