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Abstract The conventional methods of tool life estimation take
a long time and consume a lot of work piece material. In this
paper, a quicker method for the estimation of tool life is pro-
posed, which requires less consumption of work piece material
and tools. In this method the tool life is estimated by fitting
a best-fit line on the data falling in the steady wear zone and find-
ing the time till tool failure by extrapolation. Neural networks are
used to predict lower, upper and most likely estimates of the tool
life. Comparison between neural networks and multiple regres-
sion shows the superiority of the former. The paper also proposes
a methodology for continuous monitoring of tool use in the shop
floor and updating/obtaining the tool life estimates based on the
shop floor feed back.

Keywords Dry turning · Multiple regression · Neural
networks · Optimization · Tool life

1 Introduction

Starting from the work of Gilbert [1], optimization of the
turning process has attracted the attention of a number of re-
searchers. Most of the research works concentrate on finding
a suitable optimization technique and testing the performance
of proposed techniques by means of hypothetical examples [2–
12]. In all the papers cited here, authors have assumed the
existence of a reliable tool life equation, with known values
of exponents. None of the authors have validated their tech-
nique by real life data in a shop floor environment. This
is in spite of the known fact that the availability of a reli-
able tool life equation is crucial, but perhaps, the most diffi-
cult requirement for a reliable estimation of optimum cutting
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parameters. In comparison to the literature available on the
optimization of the turning process, there are fewer publica-
tions on tool life estimation, some of the representative papers
being [13–19].

Many times, in shop floors the tools are used in a very in-
efficient manner due to lack of proper information about tool
life. A recent CIRP working paper [20] reports the survey re-
sult of a major cutting tool manufacturer as “ . . . In USA, the
correct cutting tool is selected 50% of the time, the tool is used
at the rated cutting speed only 58% of the time and only 38%
of the tools are used up to their full tool life capability . . . .”
This indicates that most of the research works on the optimiza-
tion of turning process could not cross the boundaries of aca-
demic research. Non-availability of reliable data on tool life for
various tool-work material combinations is one of the major
causes for this. Tool life testing requires a considerable num-
ber of tests, if reliable results are to be obtained. This implies
a high consumption of time, work-material and cutting tools
and is, therefore, a relatively expensive procedure. Construct-
ing tool life curves at two different cutting speeds using ISO
turning test, for example, often requires roughly forty hours of
machining time [21]. Hegginbotham and Pandey [22] proposed
a “variable rate turning” method in which 20 kg of material was
consumed to estimate the dependency of tool life on cutting
speed only.

In view of these, the objective of the present work is to de-
velop a quicker method for the estimation of tool life. For tool
life prediction purpose, use is made of neural networks, which
have been used earlier also for the tool life estimation [16, 17].
However, the present work uses them more efficiently and pro-
vides the information regarding low, most-likely and high esti-
mates of the tool life. Observing that Taylor’s extended tool life
equation does not fit over the whole domain, the present work
suggests to fit different equations over different sub-domains.
Multiple-regression technique is used for finding the exponents
of tool life equations. The paper also suggests a methodology
for continuous monitoring of tool use in the shop floor and
updating/obtaining the tool life estimates based on shop floor
feedback.
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2 Tool life estimation procedure

Tool life estimation involves a number of tests to be carried out
at various cutting conditions till the failure of the cutting tool.
This procedure not only consumes a number of tools, but also
requires a lot of time and work material, especially while ma-
chining at the process conditions providing more tool life. In
this work, a methodology is adopted, in which machining is car-
ried out for 5–7 passes at each cutting condition. The wear after
each cutting pass is noted and the time for a limiting flank wear
is estimated by extrapolating the wear-time curve. The wear-
time curve for most cutting tools follows a pattern similar to that
shown in Fig. 1, having three distinct wear zones: initial wear,
steady wear, and severe wear. A tool should be discarded before
reaching the severe wear zone. A few tests carried out to test the
behavior of TiN coated carbide tool while machining mild steel
clearly showed a rapid increase in wear in the initial wear zone
and an almost linear wear in the steady wear zone. Figure 2a, for
example, shows the initial wear zone followed by the steady wear
zone, whereas, in Fig. 2b, only a linear steady wear zone is de-
picted. In this case no data point fell in the initial wear zone, as
the zone is of very small size.

Tool life is estimated by fitting a best-fit line on the data
falling in the steady wear zone, and then finding the time by
which a maximum flank wear of 0.8 mm would occur. The crite-
rion of a maximum flank wear of 0.8 mm is based on literature,
as well as, the experience of authors. Estimates can easily be
modified for any other limiting value of the maximum flank
wear.

Mathematically, if the best-fit equation is

w = a+bt , (1)

where w is the flank wear, t is the time and a and b are constants,
then the tool life T is given by

T = wmax −a

b
, (2)

where wmax is the maximum flank wear. Once the tool life data
for various cutting conditions are obtained, the tool life equa-
tion can be developed by means of neural network/regression.
The following subsections describe the experiments and neural
network/regression procedure.

Fig. 2a,b. Flank wear versus
time curve for dry turning a
cutting speed, v = 135 m/min,
feed, f = 0.32 mm/rev, depth
of cut, d = 0.3 mm b v =
270 m/min, f = 0.32 mm/rev,
d = 1.2 mm

Fig. 1. Flank wear versus time curve for a typical tool

2.1 Experimental setup

For carrying out experiments, a HMT make NH-26 lathe was
used. A 3-phase 11 kW induction motor, providing 23 speeds
between 40 and 2040 RPM drives the spindle. The work piece
used for the experiments was cut from rolled steel bars contain-
ing about 0.35% carbon. The hardness of steel was 130 BHN,
yield strength 290 MPa and ultimate strength 477 MPa. Dry turn-
ing tests were conducted for predicting the tool life on a work
piece of diameter ranging from 30 to 50 mm and lengths ranging
from 110 to 130 mm. The ranges of process parameters were cut-
ting speed 135–270 m/min, feed 0.04–0.32 mm/rev and depth
of cut 0.3–1.2 mm. The cutting tools used were TiN coated
tungsten carbide triangular inserts, TNMM 160404 type, Widia
make. The ASA Tool signature was (−5◦)-(−5.5◦)-6◦-6◦-28◦-
0◦-0.8 mm. For different cutting conditions machining was done
for 5–7 passes and after each pass the maximum flank wear was
recorded using an Axiotech microscope (Zeiss).

2.2 Design of experiments and neural network modeling

It was decided beforehand to use neural networks for the tool life
estimation. The methodology used by Kohli and Dixit [23] for
surface roughness prediction was used here, which is described
very briefly in the context of the present problem. Here, a feed
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forward network consisting of one input layer of 3-inputs (cut-
ting speed (v), feed ( f ) and depth of cut (d)) neurons, one hidden
layer and one output layer of one neuron representing the tool
life (T ) was employed. Input and output parameters were put in
natural logarithmic form and normalized to lie between 0.1–0.9.

First, eight experiments were carried out according to a 23

full factorial design, two levels for each input parameters being
the minimum and maximum values in the corresponding ranges.
Based on this, the effect of a factor can be calculated as [24]

Effect of a factor =
∑

responses at high levels−∑
responses at low levels

half the number of runs in the experiment
. (3)

In the present work, effects of cutting speed, feed, and depth
of cut were found to be −0.66, −1.17 and −0.51, respectively.
Note that the effect is dependent on the ranges chosen for the
parameter. For example, here, the ratio between maximum and
minimum speed is 2, whereas it is 8 for feed. Hence, the magni-
tude of the effect of feed is more than that of speed. If both, speed
and feed, had the same ratio between their maximum and mini-
mum values, the effect of speed would have been more than the
effect of feed.

The levels of a factor are increased in proportion to its effect.
The parameter having the minimum effect (depth of cut in this
case) is retained at two levels only, i.e. maximum and minimum
values in the range. The number of levels for speed and feed were
obtained as 3 and 5, respectively. Thus for speed, one value in
the middle of the range is chosen and the other process parame-
ters corresponding to this speed are taken at random. Similarly, in
the case of feed, three additional levels are chosen to have a total
of five equally spaced levels in the range. Thus, an initial train-
ing dataset of 23 is increased to 12. The size of the initial testing
data set is kept as 8, as in [23]. A bigger data set size will pro-
vide more reliability in prediction. By optimizing for the number
of neurons, learning rate and initial weights, the best network is
fitted.

If the maximum percentage error in a testing data is more
than 50%, the data is transferred to the training data set and
one fresh data is added in the testing data set in lieu of it. It
would have been better to add two data in the testing set in ex-
change for the one data transferred, as done in [23]. However,
time and cost requirements in this work prohibited the authors
to do that. This procedure is repeated till all data in the testing
set provide an error of less than 50%. Based on a few replicates,
it was concluded that a prediction accuracy of less than 50% is
not achievable. In case the testing error in a data comes out to
be more than twice the rms error, two replicates are generated to
assess the correct tool life for that data.

2.3 Lower and upper estimates of tool life

For predicting the lower and upper estimate of the tool life,
a simple modification of back-propagation algorithm, as pro-
posed by Ishbuchi and Tanaka [25], is used. In the back-
propagation algorithm, the error is propagated backwards such

that it adjusts the weights of the network. In the case of predic-
tion of upper estimate, the prediction should be a value greater
than the experimental value. Hence, if the predicted value is
slightly greater than the experimental value, a reduced value of
the error is propagated backwards for modifying the weights. On
the contrary, if the predicted value is less than the experimental
value, complete error is propagated backwards. This is to ensure
that the prediction is more than the experimental value. Thus, the
error function is given by the following equation:

ep =
⎧
⎨

⎩

(
dp − op

)2
/

2 dp � op

w(u)
(
dp − op

)2
/

2 dp < op

. (4)

Here u, dp, op denote the epoch number of the learning algo-
rithm, experimental value and network output for a particular
pattern (p), respectively. Factor, w(u) is a monotonically de-
creasing function such that, 0 < w(u) � 1 and w(u) → 0 as
u → ∞. The decreasing function used here is

w(u) = 1

1+ (u/500)
3 . (5)

In a similar way, a lower estimate of the data can be found out. In
this case, the error function is given by:

ep =
⎧
⎨

⎩

(
dp − op

)2
/

2 dp < op

w(u)
(
dp − op

)2
/

2 dp � op

. (6)

2.4 Finding the exponents of Taylor’s extended tool life equation

In most of the optimization algorithms (for example, in all pa-
pers cited here), an extended Taylor’s tool life equation of the
following form is required:

VT n f xdy = C , (7)

where the constants n, x, y and C are to be determined empiri-
cally. Fitting an equation to obtain these coefficients over a wide
range yields a poor value of the coefficient of determination (R2),
which should be close to one. The coefficient of determination is
used as a measure of how well the fit is, and is defined as

R2 = 1−
∑(

y − ŷ
)2

∑(
ȳ − y

)2 , (8)

where ŷ is the predicted value of the actual dependent variable y
and ȳ is the mean.

In the present work, parameter ranges were divided into three
sub-ranges. Thus for each 27 zones, 27 different equations can
be fitted by the multiple regression procedure. Data for the mul-
tiple regressions is obtained by the fitted neural network. In
the optimization algorithm, the provision can be made to obtain
the coefficients in the search space only, avoiding unnecessary
computations. After the optimization algorithm determines the
optimum values of speed, feed and depth of cut, a more refined
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tool life equation near to the optimum values can be obtained by
conducting a number of experiments around the optimum.

3 Results and discussion of tool life prediction

Following the systematic procedure outlined in Sect. 2.2, neural
networks were fitted for tool life prediction. The networks re-
quired a total of 22 data consisting of 14 training data and eight
testing data. For assessing the performance of fitted networks,
the following error measures were used:

Absolute error in prediction for ith data = (Ti − T̂i) (9)

Percentage fractional error in prediction for ith data

= (Ti − T̂i)

Ti
×100 (10)

Root mean square error, (RMSerr ) =

√
√
√
√
√

n∑

i=1
(Ti − T̂i)2

n
(11)

Root mean square fractional error, (RMS f
err ) =

√
√
√
√
√

n∑

i=1

(
1− T̂i

Ti

)2

n
,

(12)

where Ti is the estimated tool life, based on experiments and
using Eq. 2, T̂i is the predicted tool life and n is the number of
data.

Tables 1 and 2 show the training and testing data, respec-
tively. Table 3 shows the performance of the network. The root
mean square fractional error is 29.1% for testing data. The max-
imum percentage fractional error of 48.6% is found in the sixth
data, which has the lowest tool life among all testing data. The
maximum absolute error in the testing data is 76.1 min for data
number 4, where the actual tool life is 181.3 min. The percentage

Table 1. Training data set

S. no. v f d T
(m/min) (mm/rev) (mm) (min)

1 135 0.04 0.30 164.5
2 270 0.04 0.30 68.3
3 135 0.04 1.20 116.8
4 270 0.04 1.20 64.0
5 270 0.32 1.20 1.3
6 270 0.32 0.30 3.1
7 135 0.32 0.30 112.1
8 135 0.32 1.20 3.7
9 205 0.12 0.50 94.8

10 260 0.10 0.68 37.3
11 200 0.20 0.34 65.0
12 210 0.24 0.36 112.6
13 160 0.28 1.14 52.9
14 164 0.16 1.00 35.1

Table 2. Testing data set

S. no. v f d T
(m/min) (mm/rev) (mm) (min)

1 212 0.14 0.80 44.9
2 180 0.08 1.10 57.9
3 140 0.06 0.70 88.7
4 175 0.05 0.60 181.3
5 220 0.07 0.38 90.9
6 210 0.20 0.80 37.0
7 195 0.08 0.62 71.0
8 150 0.10 0.50 189.0

Table 3. Errors in training, testing and total data

Error measure Error values
Training data Testing data Total data

RMSerr (min) 14.4 37.3 25.2

RMS f
err (%) 21.0 29.1 24.6

Maximum absolute
error (min) 31.7 76.1 76.1

Maximum fractional
error (%) 32.1 48.6 48.6

error in this case is 42%. In view of a number of random factors,
these errors are reasonable.

In order to make a comparison with the multiple regression
analysis, all 22 data were used for fitting the regression equation.
Comparison between the multiple regression and neural network
prediction has been carried out on the basis of various error mea-
sures and R2 given by Eq. 8. Table 4 shows the comparison. It is
seen that the coefficient of determination is very poor in the case
of multiple regression. Hence, a satisfactory extended Taylor’s
tool life equation cannot be fitted over the whole domain. Various
error measures provide a high value in the case of multiple re-
gression as compared to neural network. Hence, neural networks
provide much better estimates of tool life.

Figures 3a and 3b visually depict the lower, upper, most
likely estimates and experimental values of tool lives for 14 train-
ing and eight testing data, respectively. The upper and lower

Table 4. Comparison of neural networks and multiple regression

Performance Neural networks Multiple regression
Measures values values

R2 0.92 0.34

RMS f
err (%) 24.6 166.9

RMSerr (min) 25.2 74.0

Maximum absolute
error (min) 76.1 292.0

Maximum fractional
error (%) 48.6 536.1
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Fig. 3a,b. Predicted values versus experimental value of tool lives in dry
turning by carbide tool a for training data b for testing data

estimates were obtained by following the procedure described in
Sect. 2.3. The network was trained up to the error goal, which
provided all the experimental data falling between the upper and
lower estimates. In testing data, the experimental values of tool
lives lie between the predicted lower and upper estimates, except
in two cases. The somewhat large difference in the two estimates
is due to randomness of the turning process. It is seen that in
17 cases the error in prediction is less than 40%. Only in five
cases error is more than 40% with the maximum of 48.6%.

In order to assess the possibility of fitting an extended Tay-
lor’s tool life equation, the procedure outlined in Sect. 2.4 was
adopted. Twenty-two data were generated artificially (using the
fitted neural network) in a sub domain of v = 160–220 m/min,
f = 0.14–0.22 mm/rev and d = 0.3–0.6 mm to fit the extended
Taylor’s tool life equation. Then the equation was fitted using
multiple regressions. Values of R2, RMS f

err and RMSerr for these
data were obtained as 0.98, 1.71% and 1.86 min, respectively.
Exponents of the equation were obtained as n = 0.54, x = 0.08,
y = 0.34 and C = 1381.

In the estimation of the tool life using the method proposed in
this paper, effectively four tools were consumed. The total work
piece material consumed was 9.5 kg. This quantity is much less
than the 20 kg consumed by the method proposed by Heggin-
botham and Pandey [22] and other conventional methods for tool
life estimation.

4 Updating/obtaining Taylor’s tool life exponents
based on shop floor feedback

Tool life estimation is carried out by means of limited data and
using some failure criterion such as the maximum flank wear of
0.8 mm. It is essential to obtain the feedback from the shop floor
about tool usage. This will help in monitoring the efficient uti-
lization of tools as well as updating the estimates, if necessary.
With modern CNC machines, it is possible to keep complete
machining history of the tool. This information can be commu-
nicated via intranet/internet.

Let a tool operate at n different machining conditions before
failure, time of machining at the ith cutting condition being ti . If
T l

i , T u
i and T m

i are the lower, upper and most likely estimates of
the tool life, then the following relations should hold good:

n∑

i=1

ti
T l

i

� 1 (13)

n∑

i=1

ti
T u

i
� 1 (14)

1− ε�
n∑

i=1

ti
T m

i
� 1+ ε , (15)

where ε is a small number close to zero, depending on the ran-
domness in the tool lives and accuracy of prediction.

Non-satisfaction of inequality Eq. 13 means the underuti-
lization of tools. Similarly, non-satisfaction of inequality Eq. 14
implies over utilization of the tool. For a particular tool j , error
in prediction of the most likely estimate can be defined as

ej =
n∑

i=1

ti

T j
i

−1 . (16)

If for all the tools, the error is of the same sign, then either the
tool use in the shop floor should be monitored or the tool life es-
timate should be revised. If the errors in prediction are large but
more or less equally distributed around zero, it indicates a large
variation in the quality of tools.

Tool life exponents can be modified after a sufficient num-
ber of data is available. If the history of m number of tools is
available, tool life exponents can be obtained by minimizing the
following objective function:

f =
m∑

j=1

(
n∑

i=1

t j
i

T j
i

−1

)2

, (17)

where for the jth tool, operating at ith cutting condition,

T j
i = C1/n

( f j
i )x/n(d j

i )y/n(v
j
i )

1/n
. (18)

In the objective function apart from the shop floor data, initial
test data may also be included. The above optimization problem
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is solved using the Simplex search method [26]. The initial guess
for C, n, x, y is taken from test data.

The entire methodology works as follows:

1. Collect data from the shop floor. Study the cases violating
the inequalities Eq. 13 and Eq. 14. If the discrepancy is due
to the operator’s wrong strategies of tool change, he should
be asked to change the strategy. However, if the operator’s
strategy is sound, the tool estimates should be modified by
changing the failure criterion and/or by carrying out a few
sets of experiments.

2. In case inequalities Eq. 13 and Eq. 14 are satisfied, but the
values of errors given by Eq. 16 are high, and in same di-
rection, tool use in the shop floor should be examined and
reviewed. If the errors are large and more or less equally
distributed around zero, the vendor development depart-
ment should be informed about the large variation in tool
estimation.

3. If the shop floor practice is all right and data from the shop
floor is reliable, the coefficients are updated using the Sim-
plex search method.

An example:
For demonstrating the feasibility of obtaining tool-life exponents
using the Simplex search method, an example is taken. Let us as-
sume that data for eight different tools has been collected from
internet/intranet. In this example, hypothetical data is generated
using the tool life equation:

VT 0.2 f 0.15d0.2 = 273 . (19)

Data should be from a narrow domain of cutting parameters and
should cover a number of cutting conditions. The data for tools
(Table 5) was used for minimization of the objective function
Eq. 17. The optimization routine provides exponents as x = 0.15,

Table 5. Hypothetical data of eight tools used in the shop floor

Tool no. v f d Turing time
(m/min) (mm/rev) (mm) (min)

1 180 0.14 0.6 40.00
225 0.14 0.9 4.02

2 190 0.20 0.6 18.00
200 0.16 0.9 9.83

3 185 0.20 0.7 17.00
195 0.14 0.8 14.43

4 210 0.16 0.6 15.00
220 0.14 0.9 5.52

5 200 0.16 0.6 19.00
180 0.20 0.7 14.99

6 190 0.14 0.7 24.00
185 0.16 0.8 12.86

7 210 0.20 0.7 9.00
220 0.16 0.6 5.77

8 225 0.20 0.6 11.00
195 0.14 0.9 6.50

y = 0.15, n = 0.2 and C = 273. These values were the same as
the exponents used for generating the data. The solution process
took about 3 min on a Pentium III machine.

5 Conclusion

In the present work, a procedure to estimate tool life in an eco-
nomical and reliable manner has been developed. Utilizing the
property of linear tool wear and time relation in a steady wear
zone, time until failure was estimated by partially wearing the
tools. Neural networks were used to find lower, upper and most
likely estimates of tool life. It is observed that in most of the
cases, the experimental value is close to the predicted most likely
estimate and within the upper and lower estimates. In a few
cases, the predicted values differ considerably from experimen-
tal values. This is because of the presence of many random
factors. However, it is seen that neural networks provide much
better estimates of tool life as compared to multiple regression.
The procedure required less consumption of tool and workpiece
material.

A methodology has been proposed for monitoring the tool
usage based on the shopfloor feedback, which can be obtained
using internet/intranet in an efficient manner. If the large num-
ber of reliable shop floor data is available, tool life exponents can
be estimated in an inverse manner without conducting tests. This
is demonstrated by taking an example. Future work will include
implementing the above strategy in a real factory making use of
the internet.
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