
DOI 10.1007/s00170-003-2020-4

O R I G I N A L A R T I C L E

Int J Adv Manuf Technol (2005) 26: 659–668

Jung-woon Yoo · Eok-Su Sim · Chengxuan Cao · Jin-Woo Park

An algorithm for deadlock avoidance in an AGV System

Received: 26 September 2003 / Accepted: 4 November 2003 / Published online: 1 December 2004
© Springer-Verlag London Limited 2004

Abstract In this paper, a simple and easily adaptable deadlock
avoidance algorithm for an automated guided vehicle (AGV)
system is presented. This algorithm uses the graph-theoretic ap-
proach. Unlike Petri-net-based methods, which are complex and
static, it is easy to modify the existing model as the configura-
tion of the system changes. Therefore, it is suitable for the AGV
system in a flexible manufacturing system (FMS) and a retail or
postal distribution center. Moreover, because it is very simple, it
is appropriate for real-time control mechanisms.

This paper consists of two parts: the first part presents an
AGV deadlock avoidance algorithm that uses the graph-theoretic
approach, and the second suggests appropriate routing strategies
based on the proposed algorithm. The results show that this dead-
lock avoidance algorithm can be modified easily whenever the
configuration of an FMS changes and provide high-performance
on the deadlock avoidance. Finally, experimental results that
confirm the validity of this approach are provided.

Keywords AGV · Conflict free · Deadlock avoidance ·
Graph theory · Path matrix

1 Introduction

There have been many reports on such automation systems as
material handling and distribution systems and flexible manu-
facturing systems (FMSs). Among the various research areas in

J.-W. Yoo
e-Logistics Research Team,
Electronics and Telecommunications Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

E.-S. Sim · J.-W. Park (�)
Seoul National University,
San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
E-mail: autofact@snu.ac.kr

C. Cao
School of Management,
University of Science and Technology Beijing,
Beijing 100083, P.R. China

automation systems, one area that has often been overlooked in
previous studies on the design and operation of automation sys-
tems is the phenomenon known as “deadlock”. Most automation
systems use the deadlock prevention algorithm (DPA) to prevent
deadlocks, which is the most inefficient approach for preventing
deadlocks. The deadlock prevention method prohibits the system
from deadlock in the design stage (i.e., deadlock prevention in
the scheduling algorithm). Therefore, there has been little need
for solving real-time deadlock problems.

Currently, as the market is getting more and more compet-
itive and endlessly demanding various services and products, it
requests a high level performance from the automation systems.
The methods using deadlock-free scheduling algorithms and/or
additional facilities (i.e., detours) are inappropriate, because they
cause lower utilization. Therefore, there is a need for a more ef-
ficient real-time deadlock-free control algorithm.

As the market tends towards infinite competition, not only
automation but also flexibility is recognized as essential factors.
However, most of the deadlock-free methods do not take sys-
tem flexibility into consideration [2–4]. In the case of Petri-net
approach, when a small change occurs in a physical layout, the
model for a deadlock-free operation is of no use. The deadlock-
free approach must recommence from the system modeling.
Therefore, it is absolutely necessary to provide a deadlock-free
approach, which holds regardless of the system changes.

The above situation is still the case in flexible manufacturing
systems and material handling and distribution systems. When it
comes to postal distribution centers, together with the growth of
e-commerce, the amount of mail, which includes letters, packets,
and parcels, is growing more and more and fluctuates day by day.
In addition, it is almost impossible to forecast the destination of
the mail. Consequently, for the sake of meeting lead time require-
ments, it is indispensable for a postal system to introduce flexible
automation systems, one of which is the postal AGV system that
this paper intends to deal with.

This paper is organized as follows: Sect. 2 outlines the dead-
lock detection method based on graph theory and compares it
with other methods. Section 3 presents the deadlock avoidance
algorithm (DAA) in the case of 2 AGVs and then verifies the

660

DAA by solving some case examples. Section 4 shows the ex-
periment design and its results. Finally, conclusions and sugges-
tions on further research are presented in Sect. 5.

2 Deadlock detection method

2.1 Graph-theoretic cycle detection method

The Resource-allocation graph is recognized as a powerful tool
that can describe deadlocks precisely?[1, 5]. This graph is a bi-
partite digraph of the equation, G = (V, E), which consists of
a set of vertices V = {1, 2, . . ., |V |} and a set of edges E = V ×
V . The set of vertices V is composed of two kinds of resources,
A = {a1, a2, . . ., an}, which is the set consisting of all AGVs
in the system, and Z = {z1, z2, . . ., zm}, which is the set con-
sisting of all zones in the AGV path layout. A path from u to
w, u, w ∈ V is a sequence of nodes v0, v1, v2, . . ., vk , such that
v0 = u, vk = w and (vi , vi+1) ∈ E for 0 � i < k. A cycle is de-
fined as a path from u to w, where u = w and the path has at least
two edges. On the other hand, a graph is acyclic if it contains no
cycles.

For a more detailed explanation, the edges comprise two
types of edge: the requested edge and the assigned edge. The re-
quested edge, ai → zj , is a directed edge from the AGV ai to
zone zj , and it implies that the AGV ai has requested zone zj and
is currently waiting for that zone to reserve. On the contrary, the
assigned edge zj → ai , is a directed edge from zone zj to AGV
ai , which means that the zone zj has been already allocated or
reserved to the AGV ai . Since a AGV cannot exist on more than
two zones simultaneously and a zone cannot receive more than
two AGVs coincidently, there is only one assigned edge zj → ai

for each zone zj . Figure 1 shows a resource-allocation graph of
its corresponding AGV system, where a cycle means a deadlock.

We define the path matrix representation of a graph G as
a |V |× |V | matrix P = [i, j] 1� i, j � |V | with,

[i, j] =
{

l if there are l � 1 different paths from i to j

0 if there are l < 1 different paths from i to j

We denote a column j of a path matrix P by P[∗, j] and a row i
by P[i, ∗] and the cross product between the column vector and

Fig. 1. A resource allocation graph and its corresponding path matrix

the row vector is defined as P[∗, j]⊗ P[i, ∗]. Furthermore, we
denote an identity column vector of size |V | by Ij , which con-
sists of zero elements anywhere except at element i, and denote
the transpose of Ij by IT

j . Figure 1b shows the path matrix cor-
responding to its resource-allocation graph in Fig. 1a.

We need the dynamic change of the path matrix whenever
an edge is inserted or deleted as shown in Fig. 1. Let’s consider
the situation where an edge (u, v) is inserted. Then, under the
condition of the path matrix P of an acyclic digraph G, the num-
ber of paths passing through the edge (u, v) forms a path matrix
P(u,v), which is defined as the outer product of the column vector
P[∗, v]+ Iv and the row vector P[u, ∗]+ IT

u , that is,

P(u,v) = (P[∗, v]+ Iv)⊗
(

P[u, ∗]+ IT
u

)
.

The number of paths reaching node u corresponds to the col-
umn vector P[∗, u], and the number of paths starting from node v

corresponds to the row vector P[v, ∗]. Since the edge (u, v) is
newly inserted, we should take it into consideration that there
are paths just starting at u or just ending at v. Semantically, the
identity vector Iu means the paths starting at u and the I ′T

v cor-
responds to the paths ending at v. The outer product means all
the newly created paths passing through an edge (u, v). That
is, each element of P(u,v)[i, j] is the product of the number of
paths reaching u from i and the number of paths ending j from
v, where 1 � i, j � |V |. Adding P(u,v) to the current path ma-
trix P represents the changed path matrix by the insert of an
edge (u, v). In the case of deleting an edge (u, v), instead of
adding P(u,v) to the current path matrix P, we subtract P(u,v)

from the current path matrix P. Throughout these matrix cal-
culation procedures, the number of paths can be kept in the
path matrix dynamically. The following example shows P(u,v)

and new path matrix Pnew in the case where edge (u, v) is
inserted.

P(u,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊗
[

(1, 2, 0, 0, 2, 1, 1)

+(0, 0, 0, 1, 0, 0, 0)

]

Pnew = Pold + P(u,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 2 1 1
0 0 0 0 1 0 0
1 2 0 1 2 1 1
1 2 0 0 2 1 1
0 0 0 0 0 0 0
0 1 0 0 1 0 0
0 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, how can the deadlock, in other words, cycles in the re-
source allocation graph, be identified from the path matrix, when
inserting an edge (u, v). It is sufficient to check whether the sum
of diagonal elements of the path matrix is zero or not, which
means there are no cycles.

661

2.2 Petri-net-based deadlock detection method

The Petri-net-based modeling technique has been frequently
used to detect deadlock. It has many useful characteristics in rep-
resenting the current state and in generating future states to ana-
lyse the deadlock in AGV systems. Its characteristics are given
as follows [6]: graphical representation, concurrent and dynamic
description, state generation, conflicting representation.

A Petri net is a five-tuple graph 〈P, T, I, O, Mo〉, where
P = {p1, p2, . . ., pm} denotes a finite set of places, where
m refers to the total number of places in the PN, and T =
{t1, t2, . . ., tn} denotes a finite set of transitions, where n refers
to the total number of transitions in the PN. I : (P × T) → N is
the input function where N = {0, 1, 2, 3, . . .}. O : (P × N) → N
is the output function. Mo is the initial marking of the PN.
A PN with tokens distributed in some places is also known as
a marked PN.

Now the deadlock detection method that uses a Petri net can
be introduced. First of all, the object system is described using
a Petri-net formalism, and then the system states are generated
by activating certain events (or transitions). In the middle of
a transition, it may be possible to arrive at a certain odd state
that has no enabled transition, i.e., infeasible marking. This state
is the deadlock state. In this way, deadlock situations can be
detected.

2.3 Comparison between the two deadlock detection methods

The advantage of the graph-theoretic approach is its status-
modeling flexibility. This approach has great advantages in two
aspects. One is an easy system modeling; the other is an easy
model modification.

From the view-point of system modeling, this approach can
represent the corresponding systems easily and quickly.

Figure 2 describes the object system. The comparison of
Figs. 3 and 4 shows how easily this approach can model
a system.

As shown in Fig. 4, the Petri-net model is quite complex.
Hence, system modeling using a Petri net is a time-consuming

Fig. 2. An object system example for modeling

Fig. 3. A model of the graph-theoretic approach

Fig. 4. A model of Petri net approach

task. Furthermore, if the systems layouts are altered, the Petri-
net model must be redesigned. This requires excessive time and
effort.

From the viewpoint of modeling modification, this approach
can modify the existing model freely. Figure 5 represents a situ-
ation, where an AGV is added to the system and the layout is
slightly changed (zone 4 is created). Even though the system
configuration is altered, there is little change in the model.

Fig. 5. The example of a model modification

662

3 Deadlock avoidance method

Figure 6 shows a certain pilot FMS plant, which is composed
of 11 N/C machining centres, three AGVs, three conveyors, and
a robot.

In this figure, a “part-flow deadlock” and an “AGV dead-
lock” situation can be easily found. The former occurs when
a part on machine “J” intends to move to machine “K” and
at the same time a part on K intends to move to J with each
buffer full. The latter takes place when AGV1 has its routing as
“Z3 → Z2 → Z1” and AGV2 as “Z1 → Z2 → Z3”. In this sec-
tion, the “AGV deadlock situation” is focused on. The subject of
a “part-flow deadlock” may be found in the report by Kim and
Tanchoco [5]

3.1 Deadlock avoidance algorithm

The dynamic resource-allocation policy decides how each AGV
will request a resource, that is, a zone, which may affect the
resource utilization and throughput. One extreme resource-
allocation policy is the “request all policy”. This policy reserves
all of the zones to be used by the AGV within its whole rout-
ing in order that it can prevent deadlock. However, it causes
extremely low resource utilization. Contrary to the request all
policy, a simple and efficient resource allocation policy is pro-
posed by Kim [7], which provides not only easy deadlock control
but also high resource utilization to automated manufacturing
systems.

The DAA in the case of two AGVs, which are operated in
a 3× 3 grid-type AGV layout as the above figure, is proposed
as in the following pseudo-code. The DAA requests the AGV id
and the current zone-requesting stage as arguments. The zone-
requesting stage is the number of step since an AGV is entered
into the system. Initially, an AGV demands the zone z1 as well
as z2. Thereafter, it requests only the second zone zcurrent+2 from
the current zone zcurrent since the next zone zcurrent+1 has al-
ready been requested in the previous request. After checking the

Fig. 6. A pilot FMS plant example

zone-requesting stage, the DAA requests the control system sta-
tus information on whether or not the next zone zcurrent+1 is idle.
If the zone zcurrent+1 is idle, the DAA moves to the deadlock de-
tection module. Otherwise, it sends a “waiting” message to the
AGV via the control system. The following provides brief details
of the proposed DAA:

[Algorithm 1] DAA in the case of 2 AGVs

Deadlock Avoidance Algorithm (ai , current)
{
if current == 0) then

insert request edges ai → z(i, current +1) and
ai → z(i, current +2)

else
delete assignment edge z(i, current) → ai

insert request edge ai → z(i, current +2)

end if
calculate new path matrix
if (z(i, current +1) is idle) then

if (P[ai , z(i, current +1)] > 0) then
if (ai has alternative routings) then

delete ai → zj which Φ(ai , zj) == 1 for all j
GetNewRouting (ai) //new routing
insert request edges ai → z(i, current +1)

and ai → z(i, current +2)

calculate new path matrix
else

delete a′
i → zj which Φ(a′

i , zj) == 1 for all j
GetNewRouting (a′

i) //new routing
insert request edges a′

i → z(i, current +1)

and a′
i → z(i, current +2)

calculate new path matrix
endif

else
change a′

i → z(i, current +1) to z(i, current +1) → ai

endif
else //z(i, current +1) is busy

wait //No action: not deadlock state but blocking state
endif
}

In the above algorithm, ai and a′
i stand for the ith AGV and

the other AGV, respectively. Zone zj denotes the zone j . The
zone identification number may be named at the layout design-
er’s or the programmer’s discretion. Φ is the graph representation
matrix, which has a binary value. Therefore, Φ(ai , zj) = 1(0)

means that there is (or is not) a directed arc from the AGV i
to zone j . P is the path matrix, which has an integer value,
P(ai , zj) = n means that there are n paths from the AGV i to
zone j . Lastly, the argument “current” is the current resource
requesting stage number. “current = 0” means that the current
stage is the initial resource requesting stage of a AGV, which is
associated with the current event, i.e., the AGV is currently en-
tered into the system. “current = m” means that the current stage

663

is the mth resource requesting stage, which is related with the
current event. In other words, the AGV is located on the mth
routing sequence.

3.2 Verification of the DAA in the case of 2 AGVs

The graph in Fig. 8 is called the resource-allocation graph
(R-A graph). It has two columns (left column: the AGV column
and right column: the zone column). In the R-A graph, the dotted
line represents the newly added request edge. The double point

Fig. 7. A typical AGV system layout

Fig. 8. An example in the
case of two AGVs

line represents the newly added assignment edge, which is re-
placed by the request edge in the previous step. The normal line
means there are no changes. Lastly, the check mark stands for
the activated AGV. The “activated” AGV means that it has the
priority in receiving commands from the control system.

Initially, AGV1 is located on Z1 and is destined for Z5, and
AGV2 is on Z5 and is destined for Z4. Since Z1 and Z5 are
already occupied by AGV1 and AGV2, respectively, Fig. 8a ex-
presses this situation as the assignment edges (the normal line).
In addition, both AGV1 and AGV2 are headed for Z2. Figure 8a

664

expresses this situation as request edges (the dotted lines). Fig-
ure 8b represents the one-step advanced situation. AGV1 is acti-
vated by the check mark on the AGV1 node. However, the inser-
tion of a request edge (AGV1 → Z5) makes the graph cyclic. In
other words, it causes a deadlock situation, as shown in Fig. 8b.
Therefore, an alternative routing for the AGV needs to be found.
The rerouting function in the DAA searches an alternative rout-
ing, Z1 → Z4 → Z7 → Z5. The solution by the DAA is shown
in Fig. 8c. AGV1 moves to Z4 (the double point line) not to Z2
and it is destined for Z7 (the dotted line). In these ways, the pro-
posed deadlock avoidance procedure is performed. As a result,
both AGV1 and AGV2 reach their own destinations safely, as
shown in Fig. 8g.

Fig. 9. An example showing the advantages of
the proposed DAA

3.3 Advantages to using the graph-theoretic approach

The advantages are classified as follows (1) the deadlock de-
tection method and (2) the modeling advantage. The former is
shown in Fig. 9b and the latter is represented in Fig. 9i,j.

Suppose that Z9 is allowed to travel in either direction with
a double capacity, so that two AGVs can travel through it. If
this layout is modeled using a Petri net, it will require too much
time and effort to take Z9 into consideration. In particular, if we
already have the Petri-net model, which considers Z9 with nor-
mal capacity, the Petri-net model needs to be totally redesigned
in order to include the new property of Z9. However, the new
method provides a very simple solution to include the new prop-

665

erty. Only another Z9 node (Z9′ here after) needs to be added
to the existing model. As shown in Fig. 9i, adding the Z9′ node
makes the graph acyclic, otherwise the graph would have a cycle.
Furthermore, as shown in Fig. 9j, Zone 9 accommodates with
AGVs without any conflict.

In summary, the example in Fig. 9 shows graphically both
how the modified AGV layout can be easily modeled and how to
control the layout to avoid a deadlock.

3.4 Data structure and flow chart for AGV control system

The AGV layout usually forms cross stripes or modified cross
stripes, as shown in Fig. 10.

On these layouts, an AGV moves from the “START” position
to the “DESTINATION” position, as the AGV controller com-
mands. To control the AGVs without deadlock or conflict, it is
necessary to know the information on the layout and the system
status precisely. The following [Data structure 1] shows the data
structure for the layout and system status in C language.

[Data structure 1] Data structure for layout and system sta-
tus information

struct Matrix {
int direction;
int penalty;
int next_direction;

} ZoneLayout[NO_ZONE+1][NO_ZONE+1];
int PathMatrix[NO_AGV+NO_ZONE+1][NO_AGV+NO_ZONE+1];

First of all, the zone layout is expressed as a structure tem-
plate “ZoneLayout[i][j]”. Its structure variable is made up of
(1) “direction”, (2) “penalty”, and (3) “next_direction”. Items
(1) and (3) represent the direction of the AGV in the current
zone and the next zone, respectively. In Fig. 10, it can be deter-
mined what the direction of the AGV means and how import-
ant it is. For example, if AGV A moves downward, the short-
est path from the starting point (Z1) to the destination (Z3) is

Fig. 10. Example showing the advantages of the proposed DAA

Z1 → Z4 → Z6 → Z3, whereas if AGV A is moved upward,
the shortest path is Z1 → Z3. In this example, since AGV A
moves downward, it is impossible for AGV A to have its rout-
ing as Z1 → Z3. Consequently, the direction of the AGV has
a considerable effect on the AGV routing. In detail, the struc-
ture template “ZoneLayout[i][j]” means that an AGV moves
from Zi to Zj . Accordingly, the structure variable “direction” and
“next_direction” mean the direction of the AGV in Zi and Zj ,
respectively. The direction is symbolized by an integer variable.
That is, “1” means the direction “→” and “↓”, and “2” means the
direction “←” and “↑”. For example, “ZoneLayout[4][6]” has
{1, 2, 2} as its structure variables. The first value in the brack-
ets means that the direction of the current AGV in Z4 is toward
“→”, and the third value means that the direction of the AGV
entering Z6 after being released in Z4 is “↑”. The third value
“penalty” refers to the cost of moving from Z4 to Z6.

Secondly, consider the matrix representation, which repre-
sents the current system status information. A two dimensional
array “int PathMatrix[i][j]” represents the number of paths con-
necting i and j , which was explained in Sect. 2.

Lastly, the two dimensional array “Boolean GraphRe-
present[i][j]” reveals whether or not there is a link between i
and j . Thus far, the proposed data structure related to the layout
and system status information, and its usage has been explained.

An AGV needs to know the sequence in order to reach its
destination from its starting point, that is, its routing informa-
tion. First of all, structure template “JobList[n][m]” represents
the mth job of the AGV n and its structure variables “From” and
“To” mean the starting point and the destination, respectively.
A job means a task, for instance, inventory replenishment, for
which an AGV should move products from an unloading area
(zone A) to the warehouse (zone B) in a retail or wholesale ware-
house. Lastly, structure template “Routing_AGV[p][q]” repre-
sents the qth route of AGV p and its structure variables “zone”
and “direction” mean the zone it passes through and the direc-
tion(“1” or “2”), respectively.

[Data structure 2] Data structure for layout and system sta-
tus information

struct Job {
int From;
int To;

} JobList[NO_AGV+1][NO_JOB+1];
struct Routing {

int zone;
int direction;

} Routing_AGV[NO_AGV+1][NO_ROUTE+1];

The AGV control system consists of several functions. These
functions include the current system status information gathering
function, feasible action generation function, the deadlock check
function, and the action command function. Figure 11 shows
what sequence these functions are executed in an AGV control
system in order to avoid deadlocks and conflicts.

666

Fig. 11. The flow chart of AGV control system

4 Experiments

In this paper, two kinds of routing strategies (algorithms) are
proposed: (1) the shortest path algorithm and (2) the load-based
path algorithm. Load means the number of reservation on each
zone by each job. In other words, as a zone is more likely to be
occupied by AGVs, the zone has heavier load than other zones
by the number of anticipated occupations. Each algorithm has
its own characteristics. The former focuses on the total distance
of the vehicle and the latter focuses on the load. The shortest
path algorithm provides the shortest distance but it may result
in a deadlock situation. The load-based path algorithm suggests
the routing that takes the load into account. Hence, it provides
a relatively long distance, but can prevent a deadlock situation.
For example (see Fig. 12), suppose that AGV1 is headed for Z9
and AGV2 is headed for Z1.

In the case of applying the “shortest path algorithm”, the
routing of AGV1 from Z1 to Z9 is Z1 → Z4 → Z9 and that
of AGV2 from Z9 → Z1 is Z9 → Z4 → Z1. Then AGV1 and
AGV2 will definitely face the deadlock situation. On the other
hand, in the case of applying the load-based algorithm, the rout-
ing of AGV1 from Z1 to Z9 is Z1 → Z2 → Z5 → Z7 → Z9.

Fig. 12. Two different routing strategies

It will require a longer distance and time than the shortest path
algorithm, but since a deadlock situation will not occur, the load-
based algorithm is consequently more efficient.

In the following section, an experimental design and results
are shown. Through these experiments, it will be verified that no
deadlocks occur.

4.1 Experimental design

Simple experiments were performed to compare the two strate-
gies. As shown in Fig. 12, the layout has a cross stripes form and
bi-directional guide-paths. Two AGVs are on the layout and the
DAA is applied for the two AGVs (see Sect. 3) in order to control
the AGV system.

The AGV operational strategy is as follows. First, the AGV
receives its own task (from the starting point to its destination,
i.e., Z3 → Z12) and performs that task. While under opera-
tion, if the deadlock detection module finds that an AGV will
face a deadlock situation in advance, the DAA takes actions
(re-routing) to avoid the deadlock. Lastly, two steps are per-
formed before its check point, and the AGV receives its next
task (i.e., another destination or battery charging area). One hun-
dred experiments were performed with different random num-
bers (seed). The random number was generated by using C code
for the PMMLCG with m = 231 −1 and a = 630, 360, 016 based
the report by Marse and Roberts [8]. Each experiment performs
20 jobs per AGV. An experiment ends when each AGV com-
pletes its particular jobs.

4.2 Experimental results

The algorithm tests were performed with 100 different seeds.
Table 1 shows the results of the experiments.

The “No.” columns show the trial number. The “S.P.” columns
show the number of deadlocks detected in advance, when the
shortest path algorithm is applied to the routing strategy and the
DAA to the control system. The “L.P.” columns show the number

667

of deadlocks detected in advance, when the load-based path algo-
rithm and the DAA are applied. The bottom row in Table 1 shows
some helpful statistics in understanding the results. In terms of
the total number of deadlocks avoided, the number of deadlocks
in the case of S.P. (total number: 301) is more than that in the case
of L.P. (total number: 276). The result reflects the better effective-
ness of applying the load-based path algorithm.

In order to verify the effectiveness statistically, the paired-t
confidence interval was obtained and the two-sample t-tests were
performed. Let X1i and X2i be the observations of samples 1 and
2, respectively. The paired-t confidence interval is defined as fol-
lows [9] (n is the number of observations, i.e., the number of
replications):

Z(n) =
∑n

i=1 Zi

n
, where Zi = X1i − X2i for i = 1, 2, . . ., n

and Var [Z(n)] =
∑n

i=1 [Zi − Z(n)]2

n(n −1)

and the 100(1−α)% confidence interval is

Z(n)± tn−1,1−α/2

√
Var [Z(n)].

Thus, the confidence interval when α = 0.10 and 0.132 is
[−0.503, 0.003], and [−0.481,−0.019], respectively. As a re-
sult, although the confidence interval does not include the zero
point (0) at the 0.10 level, it includes the zero point at the 0.132
level. In the final analysis, it is not significant, but there is non-
neglibile evidence of a difference.

In addition, the two-sample t-tests were performed as fol-
lows [10]:

1. H0 : µ1 = µ2 or µdiff = µ1 −µ2 = 0.
2. H1 : µ1 �= µ2 or µdiff = µ1 −µ2 �= 0.

Table 1. The experimental result of two routing strategies

3. α = 0.10.
4. Critical region: t < −1.660, and t > 1.660, where t = Z(n)−0

sd/
√

n
with v = 100 degrees of freedom.

5. Computations: The sample mean and standard deviation for
the Zi ’s are Z(n) = −0.2500,

and sd =
∑n

i=1[Zi − Z(n)]2

(n −1)
= 1.5267.

Therefore, t = Z(n)−0

sd/
√

n
= −0.25−0

1.5267/
√

100
= 1.638.

6. Conclusions: The t-statistic is not significant at the 0.10
level. However, the p-value is P = P(|T | 1.638) ∼= 0.105.
As a result, there is non-negligible evidence of a difference.

5 Conclusions

5.1 Concluding remarks

With the rapid development of computer and automation tech-
nologies, most of today’s manufacturing systems and material
handling and distribution systems are evolving toward automated
manufacturing systems (AMS). This is because they have the
potential for providing a high level of performance, i.e., high
productivity, reduction in lead time, and high adaptability to con-
tinuously changing demand. In this study, a deadlock avoidance
algorithm was proposed in order to operate the whole AMS with-
out deadlocks. Even though many researchers have presented
many deadlock avoidance methods, almost all use additional de-
vices such as detours, spurs, or buffers. The deadlock avoidance
method proposed in this paper required no additional devices.

Many researchers devised modeling techniques for the sake
of easy deadlock control, for example Petri nets. However, mod-
eling an AMS using a Petri net is a time-consuming task. To
make matters worse, whenever a small change in physical lay-
out (structure) and/or a logical structure occurs, it takes too much
time to revise the model. Revising the model causes system-wide
changes in the existing model. In this paper, a simple and easily
adaptable modeling technique and a DAA for AGV systems was
applied. This technique can also be used in various areas, for ex-
ample, manufacturing system, material handling and distribution
system, and so on.

Lastly, a preferred AGV routing strategy is suggested, which
was appropriate for the proposed DAA. As a result, the load-
based path routing strategy was chosen, which shows better per-
formance to the shortest path routing strategy.

5.2 Further research

In Sect. 3, only a basic idea for the DAA in the case of more than
2 AGVs was suggested. If the DAA is complete in the case of
more than 2 AGVs, the AGV deadlock avoidance and collision-
free control is fully accomplished. Thus, the remaining study, if
any, involves improvements in the system performance, such as

668

reducing lead time and minimizing the total distance of the AGV.
It would be desirable to develop a full set of shop-floor con-
trollers that include a scheduler, a dispatcher, and a monitoring
module as well as a deadlock controller.

References

1. Belik F (1990) An efficient deadlock avoidance technique. IEEE Trans
Comput 39(7):882–888

2. Kundo S, Akyildiz IF (1989) Deadlock free buffer allocation inclosed
queueing networks. Queueing Syst 4:47–56

3. Viswanadham N, Narahari Y, Johnson TL (1990) Deadlock prevention
and deadlock avoidance in flexible manufacturing systems using Petri-
net models. IEEE Trans Robot Automat 6(6):713–723

4. Wysk RA, Yang BN, Joshi S (1994) Resolution of deadlocks in flexible
manufacturing systems: avoidance and recovery approaches. J Manuf
Syst 13(2):128–138

5. Kim CW, Tanchoco JMA (1991) Conflict-free shortest-time bidirec-
tional AGV routing. Int J Prod Res 29:377–2391

6. Lee CC, Lin JT (1995) Deadlock prediction and avoidance based on
Petri nets for zone-control automated guided vehicle systems. Int J Prod
Res 33(12):3249–3265

7. Kim C-O, Kim SS (1996) An efficient real-time deadlock-free con-
trol algorithm for automated manufacturing systems. Int J Prod Res
35:1545–1560

8. Marse K, Roberts SD (1983) Implementing a portable FORTRAN uni-
form (0, 1) generator. Simulation 41:135–139

9. Law AM, Kelton WD (1991) Simulation modeling & analysis. McGraw-
Hill

10. Walpole RE, Myers RH (1985) Probability and statistics for engineers
and scientists. Maxwell Macmillan

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

