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Abstract As an important optimisation problem with a strong
engineering background, stochastic flow shop scheduling with
uncertain processing time is difficult because of inaccurate ob-
jective estimation, huge search space, and multiple local min-
ima, especially NP-hardness. As an effective meta-heuristic,
genetic algorithms (GAs) have been widely studied and ap-
plied in scheduling fields, but so far seldom for stochastic cases.
In this paper, a hypothesis-test method, an effective method-
ology in statistics, is employed and incorporated into a GA
to solve the stochastic flow shop scheduling problem and to
avoid premature convergence of the GA. The proposed ap-
proach is based on statistical performance and a hypothesis
test. It not only preserves the global search ability of a GA,
but it can also reduce repeated searches for those solutions
with similar performance in a statistical sense so as to en-
hance population diversity and achieve better results. Simula-
tion results based on some benchmarks demonstrate the fea-
sibility and effectiveness of the proposed method by com-
parison with traditional GAs. The effects of some parame-
ters on the performance of the proposed algorithms are also
discussed.
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Nomenclature

n Number of jobs
m Number of machines
pij Processing time of job i on machine j
Pij Expected processing time
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Cmax, C∗ Makespan, optimal makespan value or lower bound
value

Ps Population size
P(k) Population at kth generation
Pt(k) Temporary population at kth generation
θ, θ∗ Solution, and the best solution found so far
pm Mutation probability
pc Crossover probability
J Performance expectation
L Sample performance
µ Theoretical mean
σ2 Theoretical variance
J̄i, s2

i Estimated performance and sample variance of ith in-
dividual

J̄∗, s2∗ Estimated performance and sample variance of best so-
lution

H0, H1 Null hypothesis, and alternative hypothesis
α Evidence level
τ Absolute bound of critical region
N, ni Simulation times
k, l, j Index number
ξ Noise
η Noise magnitude
BEM The best expected makespan calculated with expected

processing time
AEM The average expected makespan calculated with ex-

pected processing time
WEM The worst expected makespan calculated with ex-

pected processing time

1 Introduction

Because of the complexity and Non-deterministic Polynomial
(NP)-hardness of many real engineering scheduling problems
and their key role in manufacturing systems, it is very import-
ant to develop efficient and effective advanced manufacturing
and scheduling technologies and approaches. Among them, flow
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shop scheduling is one of the most well-known and well-studied
production scheduling problems with a strong engineering back-
ground [1, 2]. The permutation flow shop problem with n jobs
and m machines can be defined as follows. Each of the n jobs
is to be sequentially processed on machine 1 through to m. At
any time, no job can be processed on more than one machine,
while no machine can process more than one job simultaneously.
Moreover, the permutation of the n jobs to be processed on each
machine is the same. The objective widely used is to minimise
the completion time of the last job, i.e. makespan Cmax [1, 2].
It has been proven that the above scheduling problem under the
criterion of Cmax is strongly NP-hard when m ≥ 3 [1].

Up to now, various methods including constructive
methods [2–4] and meta-heuristics [5–11] have been proposed
for solving scheduling problems. But in many real scheduling
problems, uncertainty is so prevalent that it is more important
and practicable to study stochastic scheduling problems than
deterministic ones. In this paper, flow shop scheduling with
a stochastic processing time is considered, where the process-
ing time pi, j of job i on machine j is assumed to be random.
In such a case, the expected makespan is often used to evaluate
the performance of the solutions [12]. Kamburowski [13] pre-
sented sufficient conditions for job processing time distributions
that stochastically minimise the makespan of three-machine flow
shop problems with unlimited intermediate storage. De et al. [14]
presented solution algorithms for the single-machine flow-time
problem with the variance as a performance measure in add-
ition to expectation. Honkomp et al. [15] presented an approach
to incorporate schedules into a simulator to validate the sched-
ule and test rescheduling methodologies when stochastic events
occur. Mathematical programming [16–18], constructive ap-
proaches [19], and fuzzy method [20] have also been studied for
scheduling problems with stochastic or fuzzy processing times.

Borrowing the notion of “survival of the fittest”, genetic al-
gorithms (GAs) [21, 22] are one of the evolutionary computation
algorithms with learning capability and have gained wide appli-
cations in a variety of fields, but mostly for deterministic optimi-
sation problems. In addition, it is often found that a GA is very
prone to converge prematurely. From the statistical viewpoint,
a class of hypothesis-test-based genetic algorithms (HTGA) is
proposed for stochastic flow shop scheduling in this paper, which
applies a hypothesis test based on a mean value comparison
to enhance population diversity so as to avoid premature con-
vergence and improve the effectiveness of search space explo-
ration via genetic operators. Simulation results based on some
benchmarks demonstrate the feasibility and effectiveness of the
HTGA by comparison with traditional GA. In addition, the ef-
fects of some parameters on the optimisation performances are
also discussed.

The organisation of the remaining contents is as follows. In
Sect. 2, the HTGA is proposed after briefly reviewing the hy-
pothesis test and GAs. The implementation of the HTGA is
described in Sect. 3 for flow shop scheduling with random pro-
cessing times. Computational simulation and the effects of some
parameters on optimisation performance are given in Sect. 4, and
some conclusions follow in Sect. 5.

2 Hypothesis-test-based genetic algorithm

2.1 Hypothesis test

Generally speaking, a stochastic optimisation problem can be de-
scribed as follows [23].

min
θ

J(θ) = E[L(θ, ξ)] , (1)

where θ is a feasible solution of the problem in a finite set and J
is the expectation of L , the sample performance as a function of
θ and ξ (noise or uncertain factors).

A hypothesis test is an important statistical method that is
used to test for a predefined hypothesis based on experimental
data [24]. Performing a hypothesis test for different solutions
when optimising stochastic problems often needs multiple inde-
pendent simulations to provide a suitable performance estima-
tion for decision solutions. If ni independent simulations are car-
ried out for solution θi , then its unbiased estimated mean value J̄i

and variance s2
i can be calculated as follows.

J̄i = J̄(θi) =
ni∑

j=1

L(θi , ξ)

ni
(2)

s2
i =

ni∑

j=1

[L(θi , ξ)− J̄i]2

ni −1
(3)

Consider two different solutions θ1 and θ2, whose estimated per-
formances Ĵ(θ1) and Ĵ(θ2) are two independent random vari-
ables. According to the law of large numbers and the central limit

theorem [24], the estimation Ĵ(θi) is subject to N
(

J̄i,
s2
i

ni

)
when

ni approaches ∞. Suppose Ĵ(θ1) ∼ N
(
µ1, σ

2
1

)
and Ĵ(θ2) ∼

N
(
µ2, σ

2
2

)
, and the unbiased estimation values of µ1, µ2, and

s2
1, s2

2 are given by Eqs. 2 and 3, respectively, then let the null hy-
pothesis H0 be “µ1 = µ2” and the alternative hypothesis H1 be
“µ1 �= µ2”.

If σ2
1 and σ2

2 are known, then the critical region of H0 is as
follows [24].

∣∣∣ J̄1 − J̄2

∣∣∣ ≥ zα/2

√
σ2

1

n1
+ σ2

2

n2
= τ , (4)

where α is the evidence level with the meaning that φ(zα/2) =
1−α/2.

If σ2
1 and σ2

2 are unknown and n1, n2 are large enough
(say 50), then the critical region of H0 can be simplified as fol-
lows [24].

∣∣∣ J̄1 − J̄2

∣∣∣ ≥ zα/2

√
s2

1

n1
+ s2

2

n2
= τ , (5)

where s2
1 = ∑n1

j=1
[L(θ1,ξ)− J̄1]2

n1−1 and s2
2 = ∑n2

j=1
[L(θ2,ξ)− J̄2]2

n2−1 are
the unbiased estimation of σ2

1 and σ2
2 , respectively.
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If σ2
1 = σ2

2 = σ2 and σ2 is unknown, then the critical region
of H0 is described as follows [24].
∣∣∣ J̄1 − J̄2

∣∣∣ ≥ tα/2(n1 +n2 −2) ·Y1Y2 = τ , (6)

where Y1 =
√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 , Y2 =

√
n1+n2
n1n2

.

Thus, if | J̄(θ1)− J̄(θ2)| < τ , i.e. the null hypothesis holds,
then it can be regarded that the performances of these two so-
lutions are not significantly different in a statistical sense; oth-
erwise their performances are significantly different. Further-
more, for the stochastic minimisation problem, θ2 is better than
θ1 if J̄(θ1)− J̄(θ2) ≥ τ , and θ1 is better than θ2 if J̄(θ1)−
J̄(θ2) ≤ −τ . In addition, for a specific problem it is often sup-
posed that the theoretical performance variances of all solutions
are the same [24], so the hypothesis test can be made accord-
ing to Eq. 6. For multi-modal stochastic optimisation problems,
a comparison under pure hypothesis test can often be trapped
into local optima. This motivates us to combine the hypothe-
sis test with the effective search ability of a GA to solve the
problem.

2.2 Genetic algorithm

The first genetic algorithm was proposed by Holland [21]; it bor-
rows the ideas of natural selection and survival of the fittest.
GA is naturally parallel and exhibits implicit parallelism [21, 22],
which does not evaluate and improve a single solution but ana-
lyses and modifies a set of solutions simultaneously. Even if
random initialisation is used, a selection operator can select some
“good” solutions as seed ones and the crossover operator can
generate new solutions, hopefully retaining the good features
from the parents, and the mutation operator can enhance the di-
versity and provide the opportunity to escape from local optima.
A GA is an iterative learning process with a certain learning abil-
ity and thus it is regarded as a type of computational intelligence
for optimisation. Although many weaknesses still exist, such
as premature convergence, parameter dependence, and hardness
for determining stopping criterion, GAs have been intensively
studied and applied in many fields, especially in the production
scheduling field. Not much use of it, however, has been made for
stochastic cases.

2.3 Hypothesis-test-based genetic algorithm

In this section, we will incorporate a hypothesis test into a GA for
stochastic optimisation problems.

After generating all new solutions by genetic operators, the
solutions will be ordered based on their estimated mean perfor-
mances, from the best to the worst, and the first solution will be
put into the next population. Then, one by one from the second
solution to the last one, the current solution is compared with
the nearest former solution that has not been discarded. Based
on the idea of a hypothesis test, if there is no significant dif-
ference between their performances (say null hypothesis holds),
then the current solution will be discarded to avoid a repeated

search; otherwise, the solution is retained and put into the next
population. After finishing such a hypothesis-test-based compar-
ison process, all the discarded solutions will be replaced by new
solutions, randomly generated, and the new ones will be put into
the next population to enhance the population diversity to some
extent.

Thus, a class of hypothesis-test-based genetic algorithms
(HTGA) for stochastic optimisation problems is proposed as
follows:

Step 1. Randomly generate Ps solutions to form the initial popu-
lation, P(0). Estimate the performance J̄i and variance s2

i of each
solution with multiple independent simulations. Let k = 0.

Step 2. Let the best solution of P(k) be θ∗ with the estimated
performance J̄∗ and variance s2∗. If the stopping criterion is
satisfied, then output the best solution and its performances;
otherwise, sort the individuals of P(k) in ascending order, i.e.
J̄1 ≤ J̄2 ≤ . . . ≤ J̄Ps and continue the following steps.

Step 3. Repeat genetic operators (including selection, crossover,
and mutation) Ps

2 times for P(k) to form a temporary population

Pt(k), and estimate the performance J̄ t
i and variance st2

i of every
new solution by multiple independent simulations.

Step 4. Order all the solutions of Pt(k) by J̄ t
1 ≤ J̄ t

2 ≤ . . . ≤ J̄ t
Ps

,
and denote the resulted solutions θ t

1, θ
t
2, . . . , θ t

Ps
, respectively.

Let l = 1, j = 2, and put θ t
1 into P(k +1) and denote it as θl .

Fig. 1. Framework of the HTGA



1160

Step 5. Perform the hypothesis test for θ t
j with θl , which is in

P(k + 1). If the null hypothesis holds, i.e. Eq. 6 does not hold,
then θ t

j is discarded from Pt(k); otherwise, θ t
j is put into P(k +1)

and denoted as θl+1, and let l = l +1.

Step 6. If j < Ps, then let j = j +1 and go to step 5; otherwise,
randomly generate ps − l new solutions and put them into P(k +
1), and replace the worst solution of P(k +1) by the best solution
of P(k), let k = k +1, then go to step 2.

It can be seen from above procedure that the algorithm firstly
inherits the fundamental framework and operators of GAs to
keep the generality and effective optimisation ability. Secondly,
for stochastic optimisation problems a hypothesis test based
on statistical performance can enhance the population diversity,
avoid the repeated search, and deal reasonably with the random
factor to some extent. The elitist strategy in step 6 guarantees
the reservation of the best solution found so far. For the sake of
clarity, the framework of the HTGA is briefly illustrated in Fig. 1.

3 Implementation of HTGA for stochastic flow shop
scheduling

An encoding scheme based on job permutation is widely used
in many papers for permutation flow shop scheduling [11, 22],
so such an encoding scheme is also adopted in this paper. Next
the implementation of the HTGA for permutation stochastic flow
shop scheduling will be discussed.

3.1 Implementation of step 1

Since no prior knowledge is available, random sampling is used
to generate the initial population. Of course some problem-
dependent information or heuristic methods can also be applied,
e.g. the NEH heuristic [3]. To guarantee a certain estimation
accuracy, N independent simulation replications are performed
for each individual of the initial population to estimate its per-
formance J̄i (i = 1, 2, . . . Ps) and the corresponding sample vari-
ance s2

i .

3.2 Implementation of step 2

A maximum evolution generation Gmax is often set as the stop-
ping criterion of the algorithm, i.e. once Gmax generations is
reached the best solution found so far θ∗ will be output. In add-
ition, since order is easier to determine and more robust than
value for stochastic optimisation problems [23], all the solutions
of the current population will be ordered in ascending order and
an order-based selection [25] will then be used.

3.3 Implementation of step 3

In this step, selection based on the order of each individual in-
stead of the exact value of performance is used, so that the
transition from objective value to fitness value in the traditional

value-based proportional selection operator can be avoided and it
is not necessary to estimate the exact performance [23, 25]. Here,
the ith ordered solution of the current population is assigned
a probability 2(Ps−i+1)

Ps(Ps+1)
of being selected. Then a crossover oper-

ation is performed between the selected solutions.
The widely used linear order crossover (LOX) [26] is applied

here, which is reported to have a good capability for solving per-
mutation flow shop problems. It was considered that LOX could
preserve as much as possible the relative positions between the
genes and the absolute positions relative to the extremities of the
chromosome [26]. The LOX step can be explained briefly with
an example as follows. Two cutting sites of the parents, e.g. (2
6 4 7 3 5 8 9 1) and (4 5 2 1 8 7 6 9 3), are chosen randomly,
e.g. 2 and 5. Secondly, the symbols that appear in the cross sec-
tion of the first parent (the area situated between the two cutting
sites) are removed from the second parent leaving some “holes”,
i.e. (H 5| 2 1 8| H 6 9 H) and (H 6| 4 7 3 |5 H 9 H). Then the
holes are slid from the extremities towards the centre until they
reach the cross section, i.e. (5 2| H H H| 1 8 6 9) and (6 4| H
H H|7 3 5 9). Finally the cross section is substituted with that
of the corresponding parent to obtain the children, i.e. (5 2| 4
7 3| 1 8 6 9) and (6 4| 2 1 8| 7 3 5 9). After performing such
an order-based selection and crossover Ps/2 times, Ps new so-
lutions will be generated, which will perform the next mutation
operation.

As we know, crossover can explore the search space by com-
bining the individuals in the current population, and mutation can
maintain population diversity to some extent. With a probabil-
ity pm , the SWAP mutation [26, 27] is applied for all solutions
generated by crossover, i.e. two distinct elements are randomly
selected and swapped. Then, the resulted Ps individuals form the
temporary population Pt(k).

3.4 Implementation of step 4

To preserve good solutions and to perform an hypothesis-test-
based comparison, all individuals of Pt(k) will firstly be sorted
in ascending order according to their estimated performance
through N independent simulation replications for each solution.

3.5 Implementation of step 5

In this step, from the second individual of Pt(k) to the last one,
a hypothesis-test-based comparison will be performed between
each individual and the nearest former one that has not been dis-
carded. If the null hypothesis holds, then the two individuals will
be considered similar in a statistical sense and the current indi-
vidual will be discarded from Pt(k) to maintain population diver-
sity; otherwise, the current individual will be put into P(k +1),
the two individuals are considered statistically different.

3.6 Implementation of step 6

After the hypothesis-test-based comparison, all discarded solu-
tions will be replaced by new solutions generated randomly to
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form the entire population P(k + 1). An elitism strategy is ap-
plied to reserve the best solution found so far, i.e. the worst
solution of P(k +1) will be replaced by the best solution of P(k)
if necessary. Then the genetic search with exploration and ex-
ploitation abilities will continue by going back to step 2 till the
stopping criterion is satisfied.

4 Numerical test

Computational simulation is often carried out with some bench-
marks. In this paper, eight benchmarks named car1–car8 by Car-
lier [28] and 21 benchmarks named rec01, rec03, . . . , rec41 by
Reeves [7] are used, which have been used widely and most of
them have been found to be particularly difficult to solve [11].
Meanwhile, pi, j is supposed to be subjected to a uniform dis-
tribution U((1−η)Pi, j , (1+η)Pi, j ), where Pi, j is the expected
processing time provided by benchmarks, and η denotes noise
magnitude.

4.1 Simulation results of HTGA and SGA

Setting Ps = 40, pc = 1.0, pm = 0.1, and η = 5%, we respec-
tively carry out 20 independent simulations for the HTGA and
the simple genetic algorithm [22, 26] (namely SGA-20) both
with 20 simulation replications for estimation (i.e. N = 20). The
statistical results are shown in Table 1. For those solutions ob-

Problem n, m C∗ HTGA SGA-20
BEM AEM WEM BEM AEM WEM

Car1 11, 5 7038 7038 7038.0 7038 7038 7038.0 7038
Car2 13, 4 7166 7166 7176.5 7376 7166 7208.0 7376
Car3 12, 5 7312 7312 7331.6 7400 7312 7378.7 7422
Car4 14, 4 8003 8003 8003.0 8003 8003 8009.3 8129
Car5 10, 6 7720 7720 7728.8 7821 7720 7773.2 7821
Car6 8, 9 8505 8505 8511.5 8570 8505 8544.0 8570
Car7 7, 7 6590 6590 6590.0 6590 6590 6611.4 6753
Car8 8, 8 8366 8366 8366.0 8366 8366 8377.1 8530
Rec01 20, 5 1247 1247 1256.5 1308 1249 1269.5 1326
Rec03 20, 5 1109 1109 1113.8 1122 1111 1116.4 1130
Rec05 20, 5 1242 1242 1251.9 1269 1245 1253.0 1273
Rec07 20,10 1566 1566 1585.9 1600 1584 1594.4 1619
Rec09 20,10 1537 1537 1564.6 1588 1538 1574.7 1608
Rec11 20,10 1431 1431 1462.9 1498 1445 1488.6 1536
Rec13 20,15 1930 1930 1974.4 2011 1962 1993.5 2022
Rec15 20,15 1950 1950 1988.6 2033 1979 2011.7 2049
Rec17 20,15 1902 1919 1974.0 2014 1924 1977.6 2019
Rec19 30,10 2093 2131 2169.3 2205 2137 2172.1 2218
Rec21 30,10 2017 2050 2077.6 2126 2050 2089.4 2141
Rec23 30,10 2011 2058 2082.1 2133 2069 2096.9 2140
Rec25 30,15 2513 2568 2620.8 2659 2595 2639.7 2671
Rec27 30,15 2373 2423 2465.1 2494 2423 2483.7 2531
Rec29 30,15 2287 2357 2413.9 2453 2380 2428.3 2507
Rec31 50,10 3045 3129 3176.4 3215 3131 3184.7 3245
Rec33 50,10 3114 3140 3173.8 3225 3140 3179.9 3233
Rec35 50,10 3277 3277 3302.1 3347 3284 3319.4 3370
Rec37 75,20 4951 5211 5281.3 5352 5211 5290.8 5368
Rec39 75,20 5087 5252 5373.8 5440 5298 5387.3 5486
Rec41 75,20 4960 5227 5308.1 5378 5227 5320.0 5414

Table 1. Comparisons between
SGA and HTGA

tained for stochastic scheduling problems, it is more meaningful
to show their expected makespan values than sample or esti-
mated performances [12]; therefore, only the best, average, and
worst expected makespan (denoted by BEM, AEM, and WEM,
respectively), calculated with the expected processing time for
those solutions obtained by the algorithm with estimated perfor-
mances, are illustrated.

From Table 1, it can be concluded that the HTGA can
achieve much better solutions than the SGA for stochastic flow
shop scheduling problems. Secondly, the results obtained by
the HTGA are very close to the true optimum of the problems
(in expectation sense). Thirdly, the average performances of the
HTGA are also better than that of the SGA, especially for the
large-scale problems. It can also be concluded that the HTGA is
more robust for initial solutions than the SGA because the BEM,
AEM, and WEM values are much closer than those of the SGA.
The reason is that in the process of the SGA, it is very easy to
become trapped in local minima, resulting in premature conver-
gence due to the loss of population diversity and the uncertainty
of performance estimation. The HTGA can maintain the diver-
sity by discarding the individuals similar in a statistical sense, so
as to prolong order-based genetic evolution.

4.2 Effect of noise magnitude on HTGA

For stochastic optimisation problems, as the magnitude of the un-
certainty increases, a larger noise will be added in performance
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Fig. 2. Effect of uncertainty magnitude on HTGA

estimation so that it is harder to estimate the performance accu-
rately, and consequently it would be more difficult to solve the
problems. With the same parameters as the above except η, we
carry out 20 independent simulations for the HTGA with η = 5%
and η = 10%. The effect of noise magnitude (i.e. η) on the rela-
tive error of AEM with respect to the theoretically optimal value,
i.e. AEM−C∗

C∗ , is shown in Fig. 2, where HTGA-n denotes the
HTGA with η = n%.

From Fig. 2, it is shown that as the magnitude of the un-
certain noise increases, the optimisation problems become more
difficult to solve. That is, the larger the uncertainty magnitude
is, the poorer the resulting performance (AEM values or the
relative error with respect to the theoretically optimal value is
shown in Fig. 2). The reason is that the increase in the uncer-
tainty magnitude may cause a larger variance and a more in-
accurate estimation so that more solutions will be discarded by
applying the hypothesis test during the evolutionary search of
the HTGA. Consequently, worse optimisation quality may re-
sult when the maximum evolve generation is fixed. Next it will
be shown that the optimisation quality, when the noise mag-
nitude increases, will be improved by using more simulation
replications.

4.3 Effect of simulation replication on HTGA

For stochastic optimisation problems, the objective value can
usually be estimated only through certain numbers of indepen-
dent random experiments. The accuracy of estimation of objec-
tive value plays an important role in optimisation. A widely used
method to improve estimation accuracy is to increase the number
of simulation replications. Setting η = 10% and other parameters
the same as the above, we carry out 20 independent simulations
for the HTGA with 10, 20, and 40 replications for estimation (de-
noted by N = 10, N = 20, and N = 40). The effect of simulation
replication (i.e. N) on the relative error of AEM with respect to
the theoretically optimal value is shown in Fig. 3.

From Fig. 3, it is shown that with multiple-replication esti-
mation the HTGA can achieve better results (AEM or its relative

Fig. 3. Effect of estimation replication on HTGA

error with respect to the theoretically optimal value is decreased).
This is because through multiple replications the performance of
each individual can be estimated more precisely so that more ge-
netic searching will be made for “real” good solutions and the
global optima can be obtained more accurately. Together with the
results of Sect. 4.2, although noise magnitude increases, a better
performance can be achieved by using more simulation repli-
cations for estimation. However, as we know, more simulation
replications means more computing effort. It is found that the
quality of improvement from N = 20 to N = 40 is not larger than
that from N = 10 to N = 20, but the increased simulation repli-
cations from N = 20 to N = 40 are much larger than that from
N = 10 to N = 20. So, considering both the optimisation quality
and the optimisation time performance, we recommend perform-
ing 20–30 replications for the performance estimation of each
solution.

5 Conclusion

In this paper, a class of hypothesis-test-based genetic algorithms
has been proposed for flow shop scheduling problems with
stochastic processing times, which not only applies the evolu-
tionary searching mechanism of a GA to perform exploration and
exploitation efficiently, but is also combined with a hypothesis
test to perform a statistical comparison to maintain population di-
versity. Using statistical comparisons and using the hypothesis
test to maintain the population diversity, much repeated search-
ing can be avoided and performance estimation with multiple
replications can lead to a better performance of the algorithm for
stochastic optimisation problems. This has been demonstrated by
benchmark-based computational simulation. The effects of some
parameters on the optimisation quality have been discussed. Fu-
ture work will theoretically study the convergence behaviour of
the HTGA, as well as develop some adaptive mechanisms. Due
to the generality and easy implementation of the HTGA, other
applications will be attempted.
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