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Abstract Discrete event simulation (DES) has been widely ap-
plied to modelling and simulation of computer and engineering
systems and is an active field of research that has now evolved
from 2D to 3D discrete event simulation. This paper attempts
to address several key issues in a successful implementation of
DES models based on our own and the previous experiences of
others. It describes the common basis, which forms the core for
the application of modelling and simulation methodologies that
are available to support manufacturing systems analysis, design
and performance evaluation. Through a comprehensive literature
survey, this paper summarises and compares the most widely
used optimisation techniques for simulation of manufacturing
systems; an overview of the recent and popular simulation lan-
guages and packages available for the modelling and simulation
community and the classification of their utility for modelling
and simulation of manufacturing systems is also given. Finally,
this paper summarises and reports the latest development in the
most exciting world wide web (www)-based simulation tech-
niques that represent a future that may completely change the
nature and future exploitation of modelling and simulation tech-
nology in industry.

Keywords Internet · Manufacturing systems · Modelling ·
Optimisation · Simulation

1 Introduction

Among specialists, it is widely accepted that mathematical or
analytical modelling techniques are not sufficient if a detailed an-
alysis is required of complex manufacturing systems [1–9], the
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major weaknesses in using mathematical or analytical method-
ologies are:

1. When analysing a complex system, stochastic elements can-
not be accurately described by a mathematical model and
cannot be evaluated analytically as modern manufacturing
systems consist of many discrete operations that occur ran-
domly and nonlinearly. Therefore, the objective function may
not be expressible as an explicit function of the input pa-
rameters; hence, mathematical models or other methods are
impractical.

2. Dynamic systems involve randomness that changes with
time, such as an assembly line, where the components be-
ing assembled change with time. The modelling of complex
dynamic systems theoretically requires too many simplifica-
tions, and the emerging models may not therefore be valid.

3. Purely analytical methods are often insufficient for optimisa-
tion because a mathematical model can only be built based on
simplifying assumptions; therefore, accuracy often becomes
a major problem for system optimisation.

In some cases, one must resort to simulation even though in
principle some systems are analytically tractable; that is because
some performance measures of the system have values that can
be found only by running the simulation model or by observing
the actual system. Consequently, the analytical effort required to
evaluate the solution may be so formidable that computer simu-
lation is the only realistic option.

Instead of using experts to build an extensive mathemati-
cal model by using the analytical approach, where the method
of analysing the system is purely theoretical, computer-based
simulation is used. Computer-based simulation is seen as an in-
tegral business tool giving flexibility and convenience in design-
ing, planning and analysing complex manufacturing processes
and/or systems. This is because the computer-based modelling
and simulation method has the capability of representing the
complex static structure as well as the dynamic behaviour of
manufacturing systems [10–12]. As shown in Fig. 1, modelling
and simulation for manufacturing systems is the technique of
building an abstract logical model that represents a real system,
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and describes the internal behaviour of its components and their
interactions including stochastic variability. This model, which is
represented by a computer program that gives information about
the system, can be used to mimic the operation of a real system,
such as the day-to-day operations of an assembly flow line in
a factory, and to predict the behaviour of complex manufacturing
systems by calculating the movement and interaction of system
components.

Almost any type of manufacturing system can be modelled
as a discrete event system. Discrete event systems are dynamic
systems, which evolve in time by the occurrence of events at
regular and irregular time intervals; examples are flexible manu-
facturing systems, production assembly lines and traffic trans-
portation systems. Although there are a number of modelling
and simulation tools available for analysis and evaluation of
manufacturing systems, when dealing with complex manufactur-
ing systems it is often difficult to find the most effective way
to describe the functions that must be performed and the rela-
tionships between these functions. In simulating manufacturing
systems, we are concerned with systems in which performance
is principally affected by competition for resources (machines,
workers, material-handling devices, etc.). There are several basic
problems when trying to model these systems: determining the
resources and their characteristics that most affect performance;
formulating a model or description representing these resources
and their relationships; and determining the values of the per-
formance measures of interest under given scenarios.

Hence, computer-based simulation of manufacturing systems
focusses on:

1. Design and analysis of factory layouts, equipment decisions,
alternative operating policies, problem evaluation, etc. These
traditional management requirements are frequently assisted
by computer-based simulation models.

2. Scheduling, particularly with automated systems. This al-
lows the decision-maker to explore and plan changes to the
existing schedule and/or to find the optimal schedule start-
ing with current conditions. For example, current conditions
may include the fact that a particular piece of equipment has
broken down. The model would then generate an alternative
schedule that would be used until the equipment has been
repaired [7, 11, 13–21].

A typical stochastic system has a large number of control pa-
rameters that can have a significant impact on the performance of
the system. A simulation model that explicitly tries to capture the
important random components of the system is called a random
or stochastic model. Discrete event simulation models (which
represent the system) typically have stochastic components that
mimic the probabilistic nature of the system.

Almost all manufacturing systems are stochastic rather than
deterministic. Common sources of randomness in manufacturing
systems are:

1. Arrival times of entities, i.e., parts or raw materials moving
throughout the system

2. Processing or assembly times at each workstation or machine
for different types of parts

Fig. 1. Simulation methods to evaluate systems

3. Operation times for each workstation or machine without
failure or breakdown

4. Repair times for system failures or breakdown
5. Set-up times for systems

Stochastic models typically depend upon various uncertain
and uncontrollable input parameters that must be estimated from
existing data sets. Therefore, the inputs for the models are criti-
cal elements and must be determined properly. Examples of such
input include the arrival rate of entities to the system, the pro-
cessing times required at various machines, reliability data (e.g.,
the pattern of breakdowns of machines), the time needed to re-
pair machines, etc. Thus, input data analysis is one of the most
important procedures in simulation tasks.

The input data analysis involves modelling an element (e.g.,
arrival, process and service times) in a discrete event simulation
given a data set collected on the element of interest. This stage
performs intensive error checking on the input data, including
external policy, random and deterministic variables. Successful
input data requires a close match between the input data model
and the true underlying probabilistic mechanism associated with
the system. To establish a basic knowledge of the behaviour
of a system under variation of input parameter values and to
estimate the relative importance of the input parameters, sensi-
tivity analysis applies small changes to the nominal values of in-
put parameters. Sensitivity analysis is concerned with evaluating
sensitivities (gradients, Hessian, etc.) of performance measures
with respect to parameters of interest. It provides the guidance
for design and operational decision and plays a pivotal role in
identifying the most significant system parameters as well as bot-
tleneck subsystems [4, 8, 10, 12, 14, 20].

2 Modelling system randomness

Figure 2 presents an example of statistical procedures using an
ARENA ‘input analyser’ facility to analyse and process the ex-
ternal modelling (empirical) data in terms of a histogram to fit
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and to form a standard distribution for model uses. The right win-
dow shows the input data and the left window displays the entire
shape of the histogram that conforms to a normal distribution.
The bottom window displays a summary report of the recom-
mended distribution.

The main idea of statistical inference is to take a random
sample from a population (i.e., the entire group from which we
may collect data) and then use the information from the sam-
ple to make inferences about particular population characteristics
such as the mean (measure of central tendency), the standard
deviation (measure of spread) or the proportion of units in the
population that have a certain characteristic. A sample is gen-
erally selected for study because the population is too large to
study in its entirety. The sample should be representative of the
general population. This is best achieved by random sampling.

Because a sample examines only part of a population, the
sample mean will not exactly equal the corresponding mean of
the entire population. Thus, an important consideration for those
planning and interpreting sampled results is the degree to which
the sample produces an accurate estimate of reality. In practice,
a confidence interval is used to express the uncertainty in a quan-
tity being estimated. Inferences are based on a random sample

Fig. 2. Fitting empirical data as
a sample distribution using ‘Input
Analyser’

of finite size from a population or process of interest. Therefore,
one gets different data (and thus different confidence intervals)
each time [4, 10, 12, 20, 22].

The sampling distribution is the probability distribution or
probability density function of the statistic. It describes probabil-
ities associated with a statistic when a random sample is drawn
from a population. If the parameter in a system varies continu-
ously then it is possible that it conforms to one of the standard
statistical probability distributions, such as: uniform, normal, ex-
ponential, or Poisson. Thus, this behaviour can be sampled from
a distribution.

For instance, operation times at a workstation can be sam-
pled from a distribution. First, the type of distribution must be
determined, and its parameters must be calculated. To do that,
the actual operation times are studied and plotted as a frequency
distribution. If the shape of the distribution suggests that it does
conform to one of the standard distributions, the ‘goodness of fit’
of the observed data can be assessed and the parameters for that
distribution can be computed. If the frequency distribution of the
actual times do not conform to a standard distribution, the ob-
served data can be expressed as a histogram and samples drawn
from that. It could also be sampled from the histogram giving
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the probability of an operation being performed at each worksta-
tion [7, 22–24].

2.1 Input data acquisition and analysis for stochastic system
models

The essence of this procedure is abstraction and simplification;
the real difficulty in modelling is to determine which elements
should be considered and included in the model [24–26]. For es-
tablishing a flexible manufacturing system (FMS) model, these
inputs could be abstracted by considering:

1. The basic configuration of the FMS, and its production
scheduling, which defines the entities and activities involved
in the model and the logic sequences that occur for each
activity.

2. The number of workstations or machines that should be in-
cluded in the simulation model.

3. How many types of processed parts need to move through the
FMS; do they have similar processing requirements or not?

4. Buffer capacities for each machine.
5. Transport: conveyor or AGV and their track.
6. Profile of operations allocated to each workstation or

machine.

Once these elements, together with logical functional rela-
tionships and their relevant descriptive information (descriptive
variables), are determined, the simulation model can be built as
a logical flow block (or pseudo-code) to describe and represent
the real system to be investigated [12, 16, 27–29].

The authors believe that the input data collection and analy-
sis play a key role in successful implementation of simulation
model construction and simulation execution. Typically, more
than one third of project time is spent on identification, collec-
tion, validation and analysis of input data. Although very little
research work has paid attention to the development of system-
atic approaches to input data gathering, a number of researchers
have raised issues surrounding data collection [10]. Basically, the
quality of available data is a key factor in determining the level of
detail and accuracy of the model.

Stochastic models typically depend upon various uncertain
parameters that must be estimated from existing data sets if avail-
able; otherwise, if the data does not exist they can be sampled
directly from theoretical probabilistic distributions. With manu-
facturing systems, there is no standard method for collecting the
required information [24]. Data resources can possibly be col-
lected from a literature survey, interviews with domain experts,
industrial data reviews and state of the art assessments.

System design documentation includes data such as: draw-
ings, specifications, production records and so on; it is important
that such data reflects the current configuration of the system.
Although these resources are usually reasonably accurate, they
may be inaccurate or insufficient as historical records often do
not represent the performance of the current system. Even though
there is frequently copious data from reliable sources, simula-
tion experts always argue over how we should use the data. If
we sample directly from the empirical data, we may faithfully
replicate the past but no values other than those experienced in

the past can occur. If we fit the data to a theoretical distribution
and then sample from it, the simulation may give values either
bigger or smaller than the historical data, so the accuracy of rep-
resenting the system is in doubt. This debate still continues, and
an appropriate solution is still unclear.

If empirical data is to be used, it is input in the form of
a cumulative probability distribution, which can be plotted by
appropriate tools such as the so called ‘Input Analyser’ which
arranges data in ascending order, grouping identical values and
computing their relative frequencies. To organise raw data, first
the collected data can be summarised and grouped into classes
or categories so that we can determine the number of individu-
als belonging to each class. The observed number is called the
class frequency. We can then form frequency distributions by
determining the largest and smallest numbers in the raw data,
thereby defining the range and breaking the range into a conve-
nient number of equal class intervals. Next, we can determine
the number of observations falling in each class interval to find
out the class frequencies, and then the frequency distribution can
be graphically plotted as a histogram, which represents a relative
frequency distribution. Several excellent software packages, in-
cluding ARENA, can perform these functions. These packages
can simplify manual tasks in selecting and evaluating a distribu-
tion for model input data [4, 10, 14, 20].

The most difficult case in simulation studies is when the data
for modelling systems does not exist either because the system
does not exist or because it is not possible to obtain the data. Nev-
ertheless, there are a number of possibilities to get data input for
systems’ models: estimation or theoretical distributions.

Vendors, designers and modellers can make the estimations.
This greatly depends on factors from different people who have
different experiences and use different measurement systems.
The research has shown that people are very poor at estimat-
ing events even though they are very familiar with the systems.
Therefore, the input data based on estimations may be highly
unreliable; also in many cases it is hard to estimate. Instead,
more popularly, we can choose a probability distribution based
on theoretical considerations, i.e., using well-known statistical
knowledge, so that we only need to determine how close this
distribution is to reality by specifying the appropriate parameter
values associated with the specific system [4, 28, 29].

One of the important skills of a simulation expert is to know
how to summarise the data, to simplify the modelling process
and to minimise the sensitivity of the results to errors in data
estimates. Thanks to past studies of the industrial engineering
statistics, we already know many statistical distribution func-
tions that can be used particularly to ‘represent’ (or generate)
various types of activity in industrial processes. For instance, it
is already known among simulation experts that for a random
process, inter-arrival times of customers (assembled parts) nor-
mally follows the exponential distribution, represented as EXPO.
(ParamSet), which is thus often used to model random arrival
times of events (and breakdown processes), but it is generally
inappropriate for modelling process delay times. Also, the expo-
nential distribution is typically not a good choice for representing
service times, as most service processes do not exhibit the high
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variability that is associated with the exponential distribution.
The normal distribution is used for the processing times when
the mean is at least three standard deviations above zero. The
uniform distribution is used when all values over a finite range
are considered to be equally likely, which is generally used to
represent ‘worst case’ results.

Each distribution has one or more parameter values (mean,
standard deviation, etc.) associated with it. However, the parame-
ter values associated with relevant distributions are also based on
statistical estimations that often depend on the phenomena being
represented. For example, the mean value of inter-arrival times
can be estimated, if the times vary independently and randomly,
and the estimated value is not large, then the time between ar-
rivals can be modelled as an exponential distribution. This esti-
mation can be considered reasonable [4, 14, 22].

As discussed above, the determination of what data to use
is a very difficult and a time-consuming task. Regardless of the
method used to collect the data, the decision of how much to
collect is a trade-off between cost and accuracy. Perera [10] has
summarised and ranked a number of factors that affect accuracy
of analysis and identification of the collected data, namely:

1. Poor data availability
2. High-level model details
3. Difficulty in identifying available data sources
4. Complexity of the system under investigation
5. Lack of clear objectives
6. Limited facilities in simulation software or packages to or-

ganise and manipulate input data
7. Wrong problem definitions

2.2 Simulation model programming translation, validation,
verification and execution

The development of an appropriate conceptual, logical simula-
tion model by programming is one of the major tasks in simu-
lation model construction. Although there are many simulation
languages commercially available and there are hundreds of
other locally developed languages being used by companies and
universities, the trend for simulation software development has
been an emphasis on an integrated simulation environment to
provide ease of use [30–32].

Figure 3 shows an example of part of the logic program to
build a model of a printed circuit board assembly (PCBA) sys-
tem based on ARENA using two approaches. As shown in Fig. 3,
an ARENA model that is constructed by placing and connect-
ing modules, which have already been developed individually
as integrated ‘blocks or modules’ using the SIMAN simula-
tion language to represent distinct process modelling functions
in the model window. The appropriate input data can be en-
tered through the modules’ dialogues. A model is constructed
by selecting standard modules from the available set. The blocks
are arranged and linked in a linear logical sequence, based on
their functional operation and interaction, to depict the process
through which the entities move in the system.

The definition of the model boundary is usually a trade-off
between accuracy and cost. However, a valid model should in-

clude only those aspects of the system relevant to the study
objectives.

Model verification is a process of determining the computer
code of a model to ensure that the simulation program is a cor-
rect implementation of the model. This process does not ensure
that the model appropriately represents the real system; it only
ensures that the model is free of errors. Validation is concerned
with the correspondence between the model and reality, i.e.,
model validation is a process of determining that a model is
a sufficiently adequate approximation of the real system that the
simulation conclusions drawn from the model are correct and ap-
plicable to the real-world system.

Although most simulation tools can automatically detect cer-
tain types of errors introduced by a programmer and may be able
to display intentional errors in a model’s logic, it cannot automat-
ically correct or debug the errors. It is also unable to find errors
of the model to represent the system, even though its program
is correct. Furthermore, a manual verification process is used to
avoid common errors, such as: data errors, initialisation errors,
errors in the units of measurement, flow control, blockages and
deadlocks, arithmetic errors, overwriting variables and attributes,
data recording errors and language conceptual errors. It is found
to be very useful to detect and expose such errors by running an-
imation as a verification aid; such direct observation of errors in
model execution, speeds the debugging process.

The increasing size of the systems and designs requires more
efficient simulation strategies to accelerate the simulation pro-
cess. At present, parallel and distributed simulation approaches
seem to be promising moves in this direction. Topics currently
subjected to intensive investigation are: synchronisation, mem-
ory management, randomised and reactive or adaptive algo-
rithms, partitioning and load balancing [4, 12].

3 Simulation-based optimisation techniques

The purpose of simulation is not only performance evaluation but
also optimisation. Although computer-based simulation mod-
elling has emerged as a powerful tool for the analysis of complex
systems and processes, it is not easily used to optimise processes.
Because the objective functions (throughput, machine utilisation,
etc.) of simulation models are not explicitly expressed in terms
of the decision variables but rather as outputs of simulation repli-
cations, any attempt to find an optimal solution is complex and
this is without having to consider the additional complexity of
the stochastic nature of the simulation output.

For instance, discrete event simulation is the primary an-
alysis tool for designing complex systems; however, it of-
ten needs to be linked with optimisation techniques to be
used effectively for systems design. For a simulation model
and for each set of feasible input parameters to its simula-
tion experiment, the output, which is stochastic, is not op-
timised. Hence, optimisation techniques, such as genetic al-
gorithms (GA), need to be employed to optimise objective
functions. Genetic algorithms have been widely applied to
the optimisation of asynchronous, stochastic automatic as-
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Fig. 3. Two approaches for ARENA
model programming

sembly systems, such as assembly line balancing problems
in a flow-type production line that manufactures a variety of
parts by optimising the buffer capacity between each machine
tool [33].

The following is based on a literature survey of some of the
above techniques that are mostly used for optimisation of manu-
facturing systems [12, 34–38].

3.1 Heuristic search techniques

The heuristic search technique is widely used along with math-
ematical analysis in optimising manufacturing systems per-
formance, such as in optimisation of the assembly system per-
formance. It is also the least sophisticated scheme mathemati-

cally, and it can be thought of as an intuitive and experimental
approach.

The analyst determines the starting point and stopping rule
based on previous experience with the system. After setting the
input parameters (factors) to levels that appear reasonable, the
analyst makes a simulation run with the factors set at those lev-
els and computes the value of the response function. If it appears
to be a maximum (minimum) to the analyst, the experiment is
stopped. Otherwise the analyst changes parameter settings and
makes another run. This process continues until the analyst be-
lieves that the output has been optimised. However, if the analyst
is not intimately familiar with the process being simulated, this
procedure can turn into a blind search and can expend an inordi-
nate amount of time and computer resources without producing
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results commensurate with the effort. Heuristic search can be in-
effective and inefficient in the hands of a novice.

3.2 Pattern search techniques

Pattern search techniques assume that any successful set of oper-
ations used in searching for an approximated optimum is worth
repeating. These techniques start with small steps; then, if suc-
cessful, the step size is increased. Alternatively, when a sequence
of steps fails to improve the objective function, this indicates
that shorter steps are appropriate, so we may not overlook any
promising direction.

These techniques start by initially selecting a set of incre-
mental values for each factor. For instance, starting at an initial
base point, they check whether any incremental changes in the
first variable yield an improvement. The result of improved set-
tings becomes the new intermediate base point. One repeats the
process for each of the inputs until one obtains a new setting
where the intermediate base points act as the initial base point for
the first variable. The technique then moves to the new settings.
This procedure is repeated, until further beneficial changes can-
not be made with the given incremental values. Then, the incre-
mental values are decreased, and the procedure is repeated from
the beginning. When the incremental values reach a pre-specified
tolerance, the procedure terminates, and the most recent settings
are reported as the solution. Pattern search techniques include
conjugate direction search, steepest ascent (descent), and Tabu
(Taboo) search technique, etc. Among them, the most effective
technique in achieving local optimality for discrete optimisation
is the Tabu Search technique.

3.3 Genetic techniques

In today’s short cycle time production environments genetic
techniques (GT), also called genetic algorithms (GA), are most
frequently used to optimise manufacturing systems’ effective-
ness while simulation serves as a system performance evaluation
tool (such as using ARENA). As a powerful and broadly appli-
cable stochastic search and optimisation technique, GT have suc-
cessfully been applied in various areas of industrial engineering
in manufacturing, such as production scheduling and sequenc-
ing, reliability design, vehicle routing and scheduling, group
technology (GT), transportation and many others. However, to
evaluate these complex systems, this technique must be used
together with simulation modelling techniques. Therefore, this
combined method is also called the GA-enhanced simulation
technique.

Genetic techniques, first proposed by Holland (1975), are
heuristic search and optimisation techniques that imitate the
principle of natural selection and genetic biological evolutionary
processes. Furthermore, genetic algorithms are optimisers in that
they use evolutionary techniques (computationally) to optimise
a system that is too difficult for traditional optimisation methods.
Evolutionary techniques are robust optimisers as they utilise na-
ture’s optimisation mechanisms to find acceptable solutions to
intractable problems.

Precisely, a GT is an adaptive search algorithm that operates
with a population of ‘individuals’; each individual is assigned a
‘goodness or fitness score’ and represents a potential solution ac-
cording to how good a solution it is to a given problem. It seeks
to produce superior (fitter) individuals (solutions) by combining
the better of the existing ones (through the mechanics of natu-
ral selection and genetics). As an example, the fitness score for
manufacturing systems optimisation can be the utilisation and
the buffer sizes required at each machine, where each machine
is represented as an individual in the population. Therefore, the
factors that are used to define the goodness of each solution
are crucial for developing the genetic algorithms, which should
aim at the incorporation of various performance variables in the
manufacturing system. They are such factors as machine util-
isation, queue length, buffer size at each of the machines and
material handling costs while satisfying the total demand.

GT differs from traditional optimisation procedures in that
GT works with a coding of the decision parameter sets, not
the parameters themselves. GT searches a population of points,
not a single point. GT uses objective function information, not
derivatives or other auxiliary knowledge and finally; GT uses
probabilistic transition rules, not deterministic rules. GT are
probabilistic search optimising techniques that do not require
mathematical knowledge of the response surface of the system
which they are optimising.

GT is well suited for qualitative or policy decision optimi-
sation such as selecting the best queuing disciplines or network
topologies. It can be used to help determine the design of the
system and its operation and find an optimal solution. The areas
of application of GT involve inventory systems, job-shop, and
computer time-sharing problems. GT does not have some of the
shortcomings of other optimisation techniques, and it will usu-
ally result in superior optima to those found when using the tra-
ditional techniques. It can search a response surface with many
local optima and find (with a high probability) the approximate
global optimum. One may use GT to find an area of potential
interest and then resort to other techniques to find the optimum.

GT-enhanced simulation is now being used in such tasks as
machine learning, job scheduling, engineering design and as-
sembly line planning. Assembly line design in particular has
attracted much attention over the years. Figure 4 shows how the
genetic algorithm is used to optimise simulation results in op-
timisation of a semi-automatic assembly line for compressors.
The system variables of interest are encoded as genes of chromo-
somes, which are decoded and input into the simulation model
along with the mandatory simulation parameters. Therefore, GA-
enhanced simulation techniques have the ability to optimise the
operation of the assembly line in such tasks as machine utilisa-
tion, throughput and tardiness.

Another similar technique called simulated annealing (SA)
borrows its (evolutionary technique) basic ideas from statistical
mechanics. SA as an optimisation technique was first introduced
to solve problems in discrete optimisation, mainly combinatorial
optimisation. Subsequently, this technique has been successfully
applied to solve optimisation problems over the space of continu-
ous decision variables. SA is a simulation optimisation technique
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Fig. 4. Genetic algorithm-enhanced simulation technique

that allows random ascent moves in order to escape the local
minima, but a price is paid in terms of a large increase in the
computational time required. It can be proven that the technique
will find an approximated optimum. The annealing schedule
might require a long time to reach a true optimum.

4 Software selection and web-based simulation
techniques for evaluating manufacturing systems

Analysts using computer-based simulation methods may develop
their simulation models for manufacturing systems or industrial
processes by means of general-purpose computer language at
different levels: FORTRAN, C, C++, Java and MATLAB, etc.,
or advanced simulation languages: GPSS/H, SIMAN, Visual

SLAM (SLAM II), and Simscript II.5. All these general algorith-
mic languages are capable of expressing the desired model. They
are languages developed for discrete events or combined discrete
and continuous simulations.

4.1 Simulation software selection and classification

Nevertheless, a vast amount of well-developed commercial tools
and simulation packages for discrete event simulation are avail-
able for users in the market today. The simulation model is
automatically created using high level modelling languages and
notation that allows the user to validate and optimise the line per-
formance, including throughput, bottlenecks, resource utilisation
and buffer sizing. These models permit evaluation of different
manufacturing scenarios and maximisation of their throughput
potential [20]. Some major simulation software tools, which are
widely used for modelling and simulation of manufacturing sys-
tems, are summarised below through a comprehensive survey.

The most popular simulation packages in recent years in-
clude: SIMAS II, which is devoted to the simulation of industrial
mass production installations using automated assembly lines.
WITNESS provides a graphical environment to design discrete
event simulation models. It allows simulation experiments to
optimise material flows across the facilities and generates an-
imated 3D virtual reality models. SIMUL8 is mainly used for
discrete event simulation. By providing a user-friendly visual in-
terface, SIMUL8 allows the user to pick from a predefined set of
simulation objects and statistical distributions to create the sys-
tem’s model; it also allows hierarchical modelling. Taylor ED
(Taylor enterprise dynamics) is an object-oriented software ap-
plication used to model, simulate, visualise and monitor business
processes, whether the process is manufacturing, material hand-
ling, logistics or administration. ShowFlow is designed to model,
simulate, animate and analyse processes in logistics, manufac-
turing and material handling. It provides powerful visualisation
and reporting tools, in particular for simulation animation. The
model is facilitated by the availability of many simulation com-
ponents ready to run. ARENA is developed based on the SIMAN
modelling language, which has an object-oriented design and
the ability to be tailored to any application area. The original
version of ARENA was called SIMAN. Many of the basic con-
cepts included in SIMAN are based on the previous work of
other simulation language developers such as GPSS at IBM in
the process-orientation and GASP at US steel. SIMAN also con-
tains features from SLAM. The SIMAN language was originally
designed to be a general purpose modelling language, but the de-
sign also includes many special purpose manufacturing features
to make the language particularly useful in modelling large and
complex manufacturing systems. Compared to others, ARENA
is a simulation package that is specially used to model and sim-
ulate manufacturing environments. It combines most features of
the other packages referred to [39, 40].

All the above packages are specially dedicated software for
modelling, simulating and evaluating the manufacturing environ-
ment. They can help determine plant capacity, measure utilisa-
tion of resources, balance manufacturing production lines, iden-
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tify and manage bottlenecks, solve inventory and WIP problems,
verify designs of manufacturing systems and test new schedul-
ing practices, optimise production rates or processes and justify
capital expenditures.

However, each of these packages has its own user interface
for building models, consequently: building, running and ana-
lysing simulation models by using different tools can be a very
time-consuming and error-prone process. The National Institute
of Standards and Technology (i.e., NIST) in the manufacturing
systems integration division (i.e., MSI) in the USA has pro-
posed the development of neutral libraries of simulation com-
ponents and model templates, which contain detailed formal in-
formation models of all commonly used simulation components
(queues, machines, transportors, and so on). Each of these com-
ponent models will form different modelling templates such as
an equipment simulation, a material flow simulation, a supply
chain simulation and so on [24, 41]. This work may simplify the
model-building process, reduce complexity, enable component-
based modelling, and speed Internet-based simulation services in
the future.

4.2 Web-based modelling and simulation techniques

The authors believe that the aim of concurrent engineering sys-
tems can only be fully realised when the protagonists can apply
internet-based technologies, which are able to link the clien-
t’s remote workplaces directly to the hub facilities that allow
data exchange between remote independent systems so that any
changes on new product designs from CAD/CAM databases
may be immediately implemented. When this technology is fully
implemented, web-based simulation will play a key role in the
manufacturing design environment. Figure 5 depicts an imple-
mentation framework for web-enabled concurrent engineering.

Web-based simulation (or WebSim) represents the marriage
of web technologies and simulation science; it is a convergence
of computer simulation methodologies and applications within

Fig. 5. Web-enabled concurrent engineering

the World Wide Web (WWW). The major benefit of web-based
modelling and simulation is that it provides an open channel
between a simulation service provider and a simulation client.
Hence, the service provider can offer a simulation and applica-
tion software warehouse (models and tools) on its web servers.
Clients can work with and modify models or make new models.
The models can run applets on the client machine or on the
provider’s server; this mode of operation is called distributed
simulation. In another scenario, the service provider can build
a customised model and carry out a complete simulation study.
This is the most commonly used approach associated with the
term web-based simulation. This includes both the remote ex-
ecution of existing simulations from a browser through HTML
forms and CGI scripts and the development of mobile code simu-
lation (e.g. applets) that run on the client side.

There are many possible future application areas for simu-
lation over the web. Web-based simulation will not only deliver
‘distributed simulation’ or ‘simulation documentation’ for manu-
facturing and business. The introduction and widespread use of
the web suggests that there are many new areas where web sci-
ence and technology will utilise simulation to generate new ap-
plication scenarios.

At present, there are many successful applications of e-
commerce or e-business, where consumers and businesses use
the Internet for e-mail, searching, advertising, selling and buy-
ing. Nevertheless, there is evidence from the first implementa-
tions of business-to-business (B2B) developments, that failures
have vastly outnumbered successes, many applications using
internet-based techniques are still in development and are fo-
cussed on practical applications. The development of applica-
tions for rapid manufacturing using internet-based technologies,
i.e., e-manufacturing, represents a typical example that is in-
volved in internet-supported integration of design, manufactur-
ing and supply to achieve agile manufacturing and resource op-
timisation; this technology will ultimately include web-based
workflow modelling and simulation methods for manufactur-
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ing products or systems design etc. In e-manufacturing, the
manufacturing data from CAD/CAM systems enable separate
design engineering tasks to be performed concurrently by the
updating of common design databases remotely controlled by
computers.

Thanks to advances in technology, in only a few years web-
based (Internet) simulation has quickly emerged as an area of
significant interest for both simulation researchers and simula-
tion practitioners. This interest in web-based simulation is a nat-
ural outgrowth of the proliferation of the world wide web and
its attendant technologies, e.g., HTML, HTTP, CGI, etc., and the
surging popularity of computer simulation as a problem solving
and a decision support systems tool.

The appearance of network-friendly object-oriented pro-
gramming languages, such as XML, Java and C++, for internet
applications and of distributed object technologies, like the
‘common object request broker architecture’ (CORBA) and the
‘object linking and embedding or component object model’
(OLE/COM), have had a major impact on the state of simula-
tion practice. For instance, CORBA provides a support platform
for the building of distributed systems. It allows a user to in-
voke objects located in other machines, handles all information
conversions required and allows the communication between
heterogeneous machines.

A number of discrete event simulation tools based on Java
have been developed recently including Simjava, Silk, DEV-
Java, JSIM, JavaSIM, JavaGPSS etc. A successful example in
development for web-based discrete event simulation tools is
called Silk (developed and marketed by ThreadTec Inc.). Silk
is a general purpose simulation language based on the Java
programming language with object-oriented language features,
i.e., it is a Java-based modelling tool for the simulation, study
and improvement of computer, manufacturing and industrial
systems and is a modelling tool that merges the process de-
scription modelling methodology within an object-oriented lan-
guage. In the Silk simulation language, models are developed
directly in the java programming language using a package of
classes consisting of a relatively few powerful process-oriented
modelling features. The key feature that makes Silk very at-
tractive is that it allows modellers to develop domain specific
simulation objects using the JavaBeans methodology. JavaBeans
are software components written in Java; these components
are self-contained, reusable software units that can be visu-
ally composed into applets or applications using visual applica-
tion builder tools. JavaBeans provide a Java platform that has
opened up an entirely new world of opportunities for build-
ing fully portable network-aware applications. The JavaBeans
component architecture is a platform-neutral architecture for the
Java application environment. The JavaBean architecture ex-
tends ‘write one, run anywhere’ capability to reusable compon-
ent development, this facilitates the development of web-based
simulation.

In the Silk environment, the simulation entities, resources
and queues are provided as classes. The modeller develops
problem-specific entities, queues and resources by directly ex-
tending and inheriting these classes from Silk. Silk also provides

animation features by providing a set of JavaBeans that have an-
imation features. Entities, queues and resources defined by the
modeller can be linked to these animation JavaBeans to provide
process animation. In addition, other Silk classes can be used
to perform other routing simulation tasks such as random dis-
tribution generation, statistics collection and output generation.
Silk has been designed in such a manner that it can be extended
and customised for a particular domain such as manufacturing
industry. This can be accomplished by developing JavaBeans
and integrating them into a simulation model developed using
Silk.

Due to the above features of Java-based Silk, it can be
chosen as a support tool to implement ‘virtual reality applica-
tions’, such as a virtual factory, which is a system that allows
the modelling and simulation of a factory based on a virtual
reality environment and simulation tools within a web-based
simulation environment. The continuous development of this
technology is still ongoing; a potential solution for a standard-
ised virtual model is the most exciting development of VRML,
i.e., the Virtual Reality Modeling Language, a new addition
to the World Wide Web. The first version of VRML (VRML
1.0) was developed by a consortium of computer graphics pro-
fessionals and became available on the World Wide Web in
1995. It quickly gained broad support and, after redefining the
language, the specifications for VRML 2.0 followed in 1996.
This version, with a few minor differences, became an inter-
national standard (ISO/IEC 14772) in 1997 under the name
VRML97. While HTML, the Hyper-Text Markup Language,
is the current standard for authoring home pages, VRML sup-
ports the distribution of three-dimensional models over the Inter-
net. These models have all the characteristics of virtual models
(as described above). They are based on a polygonal repre-
sentation and can be animated, they can include functionality
and dynamic behaviour and can be interactively controlled by
the user.

VRML was not originally specifically designed for engineer-
ing applications in design, manufacturing and operational simu-
lation etc. Using VRML on the World Wide Web provides an
excellent tool for sharing virtual models with remote users and
for supporting collaborative work and concurrent engineering. It
is extremely cost effective since the required infrastructure (net-
worked computers) exists almost everywhere and the viewing
software (VRML plug-in) is available to everyone. Today’s limi-
tations are dictated by network capabilities (download times for
large VRML files describing complex virtual models) and the
speed of the user’s local computer (responsible for real-time ren-
dering and interactions). The current development trend towards
high capacity networks like the Internet and more powerful desk-
top and laptop computers with 3D graphics acceleration will
remove theses limitations in the near future.

Although there are obvious advantages, the challenge comes
in fully implementing the system including details of product
data management (PDM), network security, bandwidth and over-
all system reliability. A key problem with the use of the WWW
as a platform for distributed simulation model execution is trans-
parency, i.e., the problem of transparent access to net resources.
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Currently, researchers in the field of web-based modelling and
simulation are focussed on the following issues:

• Java-based modelling and simulation
• Methodologies for web-based model development
• Collaborative model development over the Internet
• Distributed modelling and simulation using web technolo-

gies
• Education and training with web-based simulation
• Multimedia-enriched simulation modelling

However, analysts generally agree that web-based simulation
applications may be successful only if it provides real value for
industry. It seems to be a trend that, in the near future, it will
be increasingly difficult to draw a line between techniques using
web-based simulation, i.e., e-simulation, and traditional simula-
tion [39, 42–56].

5 Discussion and conclusions

Clearly, simulation has become one of the most popular tech-
niques applied to the analysis of complex manufacturing systems
at both the justification phase and the design phase within the
manufacturing life cycle. Therefore, many researchers continue
to explore a range of modelling methodologies and tools, which
contribute to established modelling frameworks. Nevertheless,
these techniques are developed based on a common foundation
or principle, which has been presented and discussed in this
paper.

Furthermore, with the growing use of computer modelling
and simulation, the scope of simulation domains must be ex-
tended to include much more than traditional optimisation. Opti-
misation techniques for simulation must also account specifically
for the randomness inherent in estimating the performance mea-
sures and satisfy the constraints of stochastic systems for manu-
facturing systems’ design, analysis and performance evaluation.
This review has reported on the latest developments in optimisa-
tion techniques for manufacturing systems and summarised their
merits or pitfalls.

A comparison based on several studies indicates pattern
search techniques are more effective for constrained problems.
Genetic techniques are robust and can produce near-best solu-
tions for large problems. The pattern search technique is most
suitable for small sized problems with no constraints; it requires
less iteration than genetic techniques. The heuristic search tech-
nique is widely used with mathematical analysis in optimising
manufacturing systems.

However, no single technique works effectively and/or effi-
ciently in all cases.

Finally, we have reported on the most popular simulation
tools available and their strengths for use for different aspects of
modelling and simulation of manufacturing systems. Web-based
(also may be called Internet) simulation techniques will become
increasingly important for modelling and simulation of manufac-
turing systems.
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