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Abstract Tool wear identification and estimation present
a fundamental problem in machining. With tool wear
there is an increase in cutting forces, which leads to a
deterioration in process stability, part accuracy and
surface finish. In this paper, cutting force trends and tool
wear effects in ramp cut machining are observed exper-
imentally as machining progresses. In ramp cuts, the
depth of cut is continuously changing. Cutting forces are
compared with cutting forces obtained from a progres-
sively worn tool as a result of machining. A wavelet
transform is used for signal processing and is found to
be useful for observing the resultant cutting force trends.
The root mean square (RMS) value of the wavelet
transformed signal and linear regression are used for
tool wear estimation. Tool wear is also estimated by
measuring the resulting slot thickness on a coordinate
measuring machine.

Keywords Cutting forces Æ Ramp cuts Æ Signal
processing Æ Tool wear and Wavelet transform

1 Introduction

Monitoring cutting forces and tool wear effects in end
milling is a necessary step toward the full automation of
milling operations. To monitor the end milling process
successfully, the selection of an appropriate signal and
signal processing algorithm is very important. Several
signals in a milling operation have been considered for
monitoring tool failure, for example, cutting force,

torque, vibration, acoustic emission, and spindle motor
current.

This paper is concerned with monitoring the cutting
force in ramp cuts in end milling. The ramp cuts are
unique in that they have: (1) variation in the depth of cut
and (2) the cutting force trends also depend on the feed
direction [1]. Extensive experimental results have been
observed progressively as new tools are being worn
during machining, rather than focusing on new and/or
broken (or pre-worn) tools.

The traditional signal processing approaches, such
as segmental averages and Fourier transforms, gener-
ally assume that the sensor signals are constant.
However, the sensor signals in tool wear monitoring
usually vary. Thus, approaches that deal with varying
signals are more appropriate for process monitoring.
The wavelet transform is a convenient tool for pro-
cessing time varying signals [2]. The wavelet transform
is better suited than the Fourier transform for moni-
toring the cutting force as it provides time frequency
localisation of the signal. The Fourier transform has a
problem in that it transforms the signal from a time
domain to a frequency domain, assuming that the
signals are constant or infinite in nature [3]. However
Fourier transforms have problems with describing
transient components and do not convey any infor-
mation pertaining to the translation of the signal from
the time domain to the frequency domain. Accordingly,
the wavelet transform is used to analyse the force sig-
nal.

The rest of the paper is organised as follows. First, a
brief background on process monitoring, tool wear and
cutting force modelling is provided. The experimental
setup used to make the ramp cuts is described next. A
short section on the wavelet transform for signal pro-
cessing is included. Experimental data, explanation of
trends in cutting force, effect of tool wear and its estima-
tion with linear regression and metrology with a coordi-
nate measuring machine (CMM) are provided next.
Finally, conclusions and future research directions are
presented.
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2 Related work

The monitoring of tool failure and tool wear has been
the subject of active research. Tool wear is a complex
phenomenon occurring in different metal cutting pro-
cesses. Generally, worn tools adversely affect the surface
finish of the workpiece and therefore there is a need to
develop tool wear condition monitoring systems that
alert the operator to the state of the tool, thereby
avoiding undesirable consequences.

The cutting force signal provides rich information for
tool failure detection in end-milling operations and in
drilling [4]. For process monitoring purposes, segmental
averages and Fourier transforms have been used exten-
sively. However, the wavelet transform is increasingly
being used for process monitoring. Wavelet transforms
have two advantages over segmental averaging [5]: first,
they represent the system more accurately if the wave-
forms are optimised by considering signal characteris-
tics. Secondly, wavelet parameters can be used for many
other purposes such as identification of tool breakage,
run out and flute deviation. Tansel et al. [6] used both
segmental averaging and wavelet transforms as encoding
methods for tool wear estimation and found the wavelet
transform to be superior. Wavelet transformations re-
quire less computation than fast Fourier transforms
(FFT). For example, FFT requires N log2 N operations
for the transformation of a set of N numbers, while fast
wavelet transformations require N operations and the
number of operations halves when the transformations
are repeated. Tansel et al. [7] studied the characteristics
of normal and broken tool signals in end-milling oper-
ations with wavelet approximation coefficients. They
observed that the variation of the estimated parameters
of the wavelet transformations is very distinctive at
different cutting conditions and when the tool is broken.

Gong et al. [8] estimated tool wear in turning oper-
ations with wavelet transform based on the cutting
force. Wang, Mehrabi and Kannatey-Asibu [2] used a
vibration signal and the wavelet transform to monitor
tool wear in turning. They found the vibration signals
from sharp and worn tools showed clear differences. A
recent review of tool wear condition monitoring in
turning with particular emphasis on using the acoustic
emission (AE) signal may be found in [9]. Lee and Tarng
[10] used spindle motor current to monitor tool failure in
end milling. They used a wavelet transform to perform a
multilevel signal decomposition to extract the tool fail-
ure feature and found the four-level wavelet decompo-
sition to be adequate (decomposition up to the fourth
level). Li and Wu [11] used wavelet analysis and AE
signals in boring to monitor the tool wear state.

Li et al. [12], devised a tool breakage detection system
for drilling, based on sensor fusion of AE and electrical
current sensors. They found that the discrete wavelet
transform could clearly diagnose tool breakage. Mori
et al. [13] remarked that to predict drill bit breakage, it is
necessary to detect and distinguish the signal behaviours

that indicate pre-failure phenomena. They proposed a
method for extracting pre-failure information from the
cutting force to predict the breakage of a small drill bit.
Li [14] also used the a.c. servo motor current signal and
the wavelet transform to detect breakage of small
diameter drills, while Li et al. [15] used wavelet trans-
forms and fuzzy techniques to monitor tool breakage
and wear conditions according to the measured spindle
and feed motor currents.

Tool wear estimation under different cutting condi-
tions is important to allow for increases in cutting force
and other effects such as vibration. The cutting force
models, which mainly model the cutting force under
ideal conditions, can then be suitably modified and used
in simulation and model-based process monitoring. Tool
wear estimation can also lead to optimal tool usage by
changing the tool at the most appropriate time.

The modelling of cutting forces in machining has
been extensively studied and a recent review may be
found in [16]. The mechanistic approach for modelling
of cutting force has been successful. The mechanistic
method views the machining process as a combination of
the chip load solidus cutting force relationship, cutting
tool geometry, cutting process geometry, workpiece
geometry, and machining conditions.

The end-milling process has been modelled mecha-
nistically [17] and EMSIM software [18] simulates forces
in end milling. To obtain a complete representation of
the forces on an end mill at any given instant, the cutter
is discretised into thin, disk-like sections, similar to a
stack of coins. The location of each flute on each disk is
determined and the elemental force is calculated for each
flute that engages the workpiece. The instantaneous chip
thickness, the flute entry angle and the exit angle are
needed in order to compute elemental cutting forces. For
a small feed per tooth compared to the radius of the
cutter, the instantaneous chip thickness is calculated as

tc i; j; kð Þ ¼ ft sin b i; j; kð Þ ð1Þ

Where, b is the wrap around angle due to the helix
angle, and i, j, and k refer to the ith angular increment,
jth axial height, and kth flute and ft is the feed per tooth.
The expressions for the elemental force acting normal to
the rake face dFN, and the friction force dFT, are:

dFN i; j; kð Þ ¼ KN � dZ � t
dFT i; j; kð Þ ¼ l � dFN

ð2Þ

Where, dZ is the disk thickness, and the coefficients
KN and l are determined experimentally by running a
series of end milling or turning experiments and mea-
suring forces for each workpiece/tool material combi-
nation. Once the normal and friction forces are
calculated for a given element, they are transformed
from the KN-l coordinate system to the X-Y-Z coordi-
nate system. The total force is found by integrating the
elemental forces. A comprehensive modelling of end-
milling forces for arbitrary cutter geometry may be
found in [19].
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Advances have been made in incorporating the effect
of tool wear in cutting force modelling. Elanayar and
Shin [20] developed a method to separate the ploughing
forces from the shear forces on the shear plane. The
forces are decomposed by first separating the shear forces
from the total forces and then employing an iterative
procedure to calculate the normal forces on the shear
plane. The ploughing forces are modelled by taking into
account the change in geometry with flank wear. Smithey
et al. [21] observed experimentally that in 3D cutting
operations in which the nose of the tool is engaged, the
region of plastic flow grows linearly as the total wearland
width increases. Plastic flow occurs at the front of the
wearland and elastic contact is assumed at the back of the
wearland. The flank of the tool is discretised into small
2D elements and a contact model is used to determine the
stresses on the individual elements. These stresses are
added to the mechanistic force model for a sharp tool to
determine the total cutting force.

From the literature it is evident that wavelet based
signal analysis has been successful in tool breakage
detection and also in the estimation of tool wear. De-
tailed wavelet coefficients have been used for breakage
detection, particularly in drilling [4, 12, 13, 14, 15] and
wavelet approximation coefficients have been used in
monitoring tool wear in end milling [5, 6, 7, 10]. In
previous work in the literature, tool wear has been
estimated by comparison with pre-worn tools. There is
no documented work on the estimation of progressive
tool wear using the wavelet transform as the machining
cuts are carried out. Further, the depth of cut within a
machining cut has usually been taken as a constant,
whereas this study used a variable depth of cut. Both
these features make the work in this paper new. The
estimation of tool wear in ramp cuts in end milling is
carried out in this work by applying the wavelet trans-
form to the resultant cutting force signal. The incorpo-
ration of progressive tool wear effects into a mechanistic
model for cutting force modelling is a rich area that the
authors are beginning to explore.

3 Experimental setup

As shown in Fig. 1a, a dynamometer is mounted on the
table of a three-axis Fadal CNC machining centre. The
workpiece is fixed in the vice, which is bolted to the top
of the dynamometer. The DAQ card has 16 channels
and a ()10 V �+10 V) display range. The amplifier has
3 channels to send data to the DAQ card for each x, y,
and z force signals. The sampling rate is set at 500 Hz.

Ramp cutmachiningwas carried out with a high-speed
steel end mill on an AISI1018 steel workpiece (see
Table 1). Theworkpiece and cut configuration is shown in
Fig. 1b. Two types of ramp cut were machined as shown
in Fig. 2 and are referred to as: (1) Low to high forward
and (2) Low to high backward. The terms low and high
refer to the axial depth of cut and the terms forward and
backward refer to the tool feed direction.

As shown in Fig. 1b, at first the tool moves in the
forward direction to create a forward ramp cut. Cutting
force data is recorded and then the tool is moved in the
backward direction to create the backward ramp cut.
Repeated forward and backward cuts are made until
the bottom of the workpiece is reached. Experimental

Fig. 1a, b Experimental set up and machining. a Schematic
diagram of experimental set up. b Schematic diagram of machining

Table 1 Experimental conditions

Workpiece AISI 1018 steel
50.8 mm·76.2 mm·25.4 mm

Tool High-speed steel (12.7 mm/0.5 in diameter
flat end mill with 4 flutes)

Depth of cut 0–1.27 mm, 0–2.54 mm, and 0–3.81 mm
for ramp cut

Feed rate 25.4 and 50.8 cm/min
Spindle speed 1000 and 2000 rpm (CW)

Fig. 2a, b Two types (low to high) of ramp cuts and their contact
area between tool and workpiece. a Forward (odd) cut. b Backward
(even) cut
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conditions used for the ramp cuts are shown in Table 1.
Specific cutting conditions and parameters used for the
ramp cuts are displayed in Table 2. Three choices of
DOC (depth of cut), two values of feed rate and two
values for the RPM were tried.

The target is to make 12 rectangular slots/6 work-
pieces (2 slots in each workpiece) by making ramp cuts.
The size of each slot is 12.7 mm·76.2 mm·22.9 mm. To
achieve this target with the conditions mentioned above,
the required machining time and cut numbers are dif-
ferent. Cutting conditions 1 and 2 require 432 cuts to
machine 12 slots (36 cuts in each slot) while cutting
conditions 3 and 4 require 216 cuts (18 cuts in each slot)
and cutting condition 5 needs 144 cuts (12 cuts in each
slot). The required machining time for cutting condi-
tions 2 and 4 is half of that for cutting conditions 1, 3,
and 5 owing to the feed rate being faster by a factor of
two. It is noted that the cutting forces shown in this
paper are all in pounds.

4 Wavelet transform

Wavelets are a class of function that are the basic
functions for a wavelet transform. Wavelets have proved
useful in the analysis of signals that contain transients,
image analysis, and image/signal compression. The
wavelet transform decomposes a signal into a represen-
tation that shows signal details and trends as a function
of time. This representation can be used to characterise
transient events, reduce noise and many other applica-
tions. The wavelet transform maintains a constant time
resolution regardless of frequency [3].

For many signals, the low-frequency content reflects
the general trend, whereas the high-frequency content
usually shows details of the process. In a wavelet trans-
form, there are approximations and details. The
approximations are the high-scale (low frequency) com-
ponents of the signal and the details are the low-scale
(high-frequency) components. Figure 3 shows the
decomposition of a signal into approximations and de-
tails.

5 Experimental data and observations

Experimental data are presented for all five machining
parameter sets for each forward and backward ramp

cut. Cutting forces in the X-, Y- and Z-direction are
measured. The +X-direction is the forward feed direc-
tion. The +Z-direction points downward. The +Y-axis
forms a left-handed coordinate system. The resultant
cutting force is obtained as shown in Eq. 3. A Daube-
chies wavelet transform is applied to the force data.
The tool is assumed to be rotating in a clockwise
direction.

Resultant force ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2 þ Y 2 þ Z2ð Þ
q

ð3Þ

In each machining set the forward ramp cuts have
odd numbers and the backward ramp cuts have even
numbers. The process for forward and backward
machining is repeated until 12 slots are machined in each
machining condition.

Figure 4 shows the X, Y, and Z and the resultant
cutting force for both the forward and backward ramp
cut for a particular machining condition. All signals
show either increasing or decreasing trends in cutting
force, since the DOC in ramp cuts is either increasing or
decreasing. These trends are not noticed in straight slot
machining as the DOC is fixed. The cutting force trends
for forward and backward cuts tend to be different as
noted by Choi and Narayanaswami [1].

For the forward ramp cut, the X force increases
continuously with increasing axial depth of cut. The Y
force signal shows a downward sloping trend. It starts
from the positive side of the axis at the first stage and
tends to go to the negative side after the tool moves into
the second half of the workpiece. The Z force is down-
ward sloping and also may cross the axis.

For the backward ramp cut, the X force continuously
decreases (increases in negative direction). The Y force
signal shows an upward sloping trend (tool feed direc-
tion reversed). The Z force is downward sloping and
crosses the axis.

The difference in cutting force trend between Figs. 4a
and 4e is obvious. The crossing of the axis for the Y
force in Fig. 4b needs some explanation. As can be seen
from Fig. 2a and with respect to the bottom tool sur-
face, both front and rear teeth (rear teeth with unit depth
of cut) are engaged in machining for the forward ramp
cut. For the backward ramp cut, however, only the front
teeth are engaged in machining and rear teeth are con-
tacting the workpiece surface without active machining.

Fig. 3 Wavelet decomposition of a signal

Table 2 Machining parameter sets

Cutting
conditions

Depth of cut Feed rate Spindle speed
(mm) (cm/min) (rpm)

1 0–1.27 25.4 1000
2 0–1.27 50.8 1000
3 0–2.54 25.4 1000
4 0–2.54 50.8 2000
5 0–3.81 25.4 1000
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Based on tool contact for the forward ramp cut, the key
point to be noted is that teeth at the back are cutting
only a unit amount of volume (principally at the bottom
of the teeth). However, the teeth at the front side are
removing more chips with both the sides and bottoms of
the teeth as the tool moves down. The rear teeth provide
the positive Y-force and the front teeth provide the
negative Y-force. Therefore, as the depth of cut in-
creases, the negative Y force exceeds the positive Y force.
The Y signals therefore show the trend of crossing the
axis to the negative side.

The Z-force trend for both forward and backward
cuts also needs some more explanation. In Fig. 5a, it can
be seen that �I� is the force due to the uniform downward
pressure exerted by the bottom teeth of the tool and is
independent of the depth of cut. The side cutting teeth
on the front of the cutter are exerting an upward force
(direction of chip exit), and as the axial depth of cut
increases, the magnitude of this force increases. This is
the negative Z force (II) in Fig. 5a. The net Z force is the

summation of I+II. So ‘‘I+II’’ can cross the axis
depending on the depth of cut. In Fig. 4c, the Z signal
did not cross the axis because �I� was sufficiently large
enough. In Fig. 4g the Z force crosses the axis and al-
lows us to deduce that the downward pressure (i ) is
smaller in this case than the corresponding forward
ramp cut because the tool does not contact the work-
piece (Fig. 5b).

In summary, the forward and backward ramp cuts
have different trends in cutting force because of dif-
ferences in tool contact. In the case of the forward
ramp cut, the back teeth on the bottom surface of the
cutting tool are performing some cutting. Moreover,
the downward thrust force or pressure exerted by the
cutting tool is greater in the case of the forward ramp
cut, as the tool is pressing down in the +Z direction.
So the resultant cutting force (RMS or mean) in for-
ward machining is higher than the cutting force in
backward machining, particularly for larger depths of
cut.

Fig. 4a–h X, Y, Z, and
resultant force signals (lbs) for
forward and backward
machining (machining
parameters of 0 to 1.27 mm
DOC, 25.4 cm/min feed rate,
1000 rpm, and total 432 cuts)
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6 Wavelet based signal processing of cutting force

The signal for one revolution of the tool is shown in
Fig. 6. Thirty data points correspond to one revolution
of the tool with a sampling rate of 500 Hz and a spindle
rpm of 1000 revmin. The figure displays two graphs of
cutting force each with four peaks and four valleys
corresponding to a four-fluted end mill. The graph with
the lower magnitude peaks corresponds to the entry
region of the cut (lower depth of cut) and the graph with
the higher magnitude peaks corresponds to the exit re-
gion of the cut (higher depth of cut). As the depth of cut
increases, it is observed that both the mean cutting force
(approximation) and its oscillation (detail) increase.

6.1 Approximation coefficients

Figure 7 shows the resultant cutting force (RF) and its
wavelet approximation coefficients at approximation
level 9 (A9) as an example. A clear comparison is shown
between an initial cut, cut number 4, (Fig. 7a) when the
tool is new and the last cut, cut number 432 (Fig. 7b)

when the tool is worn. From Fig. 7 it is clear that the
cutting force increases within each cut and also the
cutting force magnitude increases considerably with tool
wear. The wavelet approximation A9 clearly shows the
cutting force trend by filtering out the oscillations. The
oscillations are captured by the detail wavelet coeffi-
cients.

The RMS value of the A9 coefficients within each cut
is calculated as shown in Eq. 4. The RMS value of A9
within each cut is shown in Fig. 8, along with a linear
regression fit. Figure 8 has 10 sub-graphs covering for-
ward and backward machining cuts for all 5 experi-
mental conditions.

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

i¼1 x2i
n

� �

s

x ¼ values of A9s
n ¼ number of data

ð4Þ

In Fig. 8, the X-axis represents the cut number and
the Y-axis represents the RMS value of the resultant
cutting forces at A9 at each graph. Data marked on the
graphs are for cut number 3 or 4 (depending on forward
or backward) and bottom cuts at each slot for both
forward and backward cuts. The range of cut numbers
in each subplot in Fig. 8 is different accordingly.

In all cases except two, Fig. 8g and 8i, the measured
data fit into the linear equations well. Figures 8g and 8i
both represent forward machining cuts with a higher
DOC compared to machining parameter sets 1 and 2
making them somewhat severe machining conditions.
As explained earlier, the forward ramp cuts generate
more cutting force, and with larger DOC a linear
regression is not appropriate. For high DOC forward
ramp cuts, the cutting force is expected to have a non-
smooth trend (locally) as shown in Figs. 8g and i, and
with an increasing trend overall as machining contin-
ues.

Fig. 6 Sample resultant force signal (lbs) for one revolution of the
tool with scan rate of 500 Hz and spindle RMP of 1000 (cut
number 215 of cutting condition 3)

Fig. 7a, b Sample resultant force signals (lbs) for ramp cuts and
their A9 s (machining parameters of 0 to 1.27 mm DOC, 25.4 cm/
min)1 feed rate, 1000 rpm, and total 432 cuts)

Fig. 5a, b Explanation of Z force signal for ramp cut. a Forward
machining. b Backward machining
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The graphs in Fig. 8 can be compared with respect to
changes in the machining conditions. Graphs for for-
ward machining, Figs. 8a, e, and i, show that the RMS
maximum and minimum values of RMS clearly in-
creased with increased DOC while maintaining other
cutting conditions the same. The same trend is also
noticed for backward machining cuts as shown in
Figs. 8b, f, and j where the depth of cut is increased and
other cutting conditions are the same.

The effect of feed rate is another important parameter
to be observed. A comparison between Figs. 8a and c
for forward cuts and between Fig. 8b and d for back-
ward cuts, where the feed rate is doubled, indicates

that cutting forces have increased with increase in feed
rate.

Cases shown in Fig. 8g and h are difficult to compare
directly to other graphs since they have changes in two
different conditions (increased rpm) and feed rate as
compared to other graphs.

6.2 Detail coefficients

The importance of maintaining details in the wavelet
transform is to capture any discontinuities in the fre-
quency that occurs within the time domain. Disconti-

Fig. 8a–j Linear regression of
root mean square of A9s of
resultant cutting forces (lbs)
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nuities may occur in the event of a cutting edge being
chipped or broken, for example. The details will show
these phenomena, while the approximations will
still reflect tool wear. Other process faults such as run
out and flute deviation, can further complicate the
signal and an entire set of wavelet coefficients is nec-
essary to handle the many process faults, tool wear
and the possibility of tool chipping or breakage in

order to establish a reliable process monitoring system
[1].

The RMS values of the detail coefficients at level 1 are
displayed in Fig. 9. The X-axis shows cut numbers at
each machining condition and the Y-axis shows the
RMS value of the detail coefficients. Each subfigure has
two graphs for forward and backward machining. One
trend to notice is that detail coefficients increase with
increased feed rate or DOC. A higher detail value means
higher oscillation of the original signal. In Figs. 9a, b
and d there is a gradual increase in the value of the detail
coefficient. This is suggestive of larger cutting force
oscillation as a result of tool wear. These trends are not
so noticeable in Figs. 9c and e.

7 Tool wear

Fig. 8 shows that repeated machining with the same tool
leads to an increase in the cutting force as a result of tool
wear. The wavelet approximations of the resultant forces
show an increase in the mean force of ramp cuts, as
shown in Fig. 7. A sample SEM picture of one side flute
of the worn tool is shown in Fig. 10. The amount of tool
wear may be estimated using linear regression as well as
metrology of the machined slot. Both of these are con-
sidered below.

7.1 Tool wear estimation with linear regression

The value of 1.0 minus residual variance is referred to as
R-square or the coefficient of determination. The R-
square value is an indicator of how well the model fits
the data (e.g. an R-square close to 1.0 indicates that
almost all of the variability has been accounted for with
the variables specified in the model). Table 3 shows all
the R-squares of the linear regression in Fig. 8. All
values are close to 1.0 except for Fig. 8g and i, where
linear regression is not appropriate.

As can be seen from Table 4, each linear equation fits
the measured value of the RMS well. Only machining
parameter sets 1, 2, and 3 have been tested since sets 4
and 5 are considered somewhat severe conditions. The
maximum difference between measured and linear

Fig. 9a–e RMS of D1 for each machining set (lbs)

Fig. 10 Sample SEM photograph of a single flute of a worn 4
fluted end mill
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equation of RMS is 5.38%. Two cut numbers, for both
forward and backward cuts for each machining param-
eter set, were selected randomly and tested.

7.2 Metrology

A coordinate measuring machine (CMM) was also used
to estimate the tool wear. For each machining set, first
the slot width at the top part of the first workpiece is
measured (very first machining) and then the slot width
at the bottom of the cut for each workpiece in consec-
utive order is measured next. These slot sizes are com-
pared relative to the initial size of the first measurement
(at the top of the first workpiece). Results are shown in
Table 5.

For each machining parameter set, the slot width is
reduced from the first cut to the last cut. This is indic-
ative of tool wear. It can be seen that as the machining
conditions become more severe with higher feed rate or
DOC, the amount of tool wear is increasing (slot size is
become smaller). Machining parameter set 5 is the most
severe machining condition (highest tool wear). The
measured slot width can therefore also serve as an
indicator of tool wear and can be used as an indicator
for tool changing.

8 Conclusions and future work

Experimental cutting force data in ramp cuts in end
milling were generated and analysed for tool wear

effects. The ramp cuts are unique in that they have a
changing depth of cut. A wavelet transform was used to
generate a multilevel decomposition of the cutting force
signal. Cutting force trends have been observed pro-
gressively as new tools are worn using different cutting
parameters. The RMS value of the approximation
coefficients of the resultant cutting force signal was used
to model and estimate tool wear. For smaller depths of
cut, a linear regression fit of the RMS value of the
approximation coefficients was obtained. Under these
conditions, tool wear was estimated within an error of
6%. Metrology was also used to estimate the tool wear.
The slot thickness is continuously reduced as the tool is
worn and can serve as another indicator for tool wear
estimation.

The estimation of tool wear can be used to plan
optimal tool replacement. The addition of tool wear into
existing cutting force models presents an interesting fu-
ture research direction. The next phase of the work will
involve mechanistic modelling of the cutting force,
including the effect of tool wear. This will result in an
effective model-based tool monitoring system for end
milling that can be useful in industry. The new mecha-
nistic model of cutting force may be used in simulations
and in planning optimal tool replacement.
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Table 3 R-squares of linear regressions in Fig. 8

Cutting conditions Sub-figures R)square

1.27 mm, 25.4 cm/min,
1000 rpm, and 432 cuts

(a) 0.993
(b) 0.991

1.27 mm, 50.8 cm/min,
1000 rpm, and 432 cuts

(c) 0.964
(d) 0.985

2.54 mm, 25.4 cm/min,
1000 rpm, and 216 cuts

(e) 0.969
(f) 0.985

2.54 mm, 50.8 cm/min,
2000 rpm, and 216 cuts

(g) 0.578
(h) 0.900

3.81 mm, 25.4 cm/min,
1000 rpm, and 144 cuts

(i) 0.407
(j) 0.983

Table 4 Comparison of
measured RMS of resultant
force at A9 and linear
regression models

Direction Cut number Measured Linear Equtation Difference %

DOC: 1.27 mm Forward 63 27.4868 28.094 2.21
Feed: 25.4 cm/min 235 47.5376 46.67 )1.83
Speed: 1000 rpm Backward 100 33.2808 33.65 1.11
Total 432 cuts 280 50.0618 50.03 )0.06
DOC: 1.27 mm Forward 119 54.4915 54.068 )0.78
Feed: 50.8 cm/min 379 87.9340 85.788 )2.44
Speed: 1000 rpm Backward 208 58.0055 57.576 )0.75
Total 432 cuts 416 75.7522 75.672 )0.11
DOC: 2.54 mm Forward 31 54.6216 57.151 4.63
Feed: 25.4 cm/min 115 81.5575 78.235 )4.07
Speed: 1000 rpm Backward 140 91.6803 86.75 )5.38
Total 216 cuts 190 100.2500 97.6 )2.64

Table 5 Measurements of relative slot thickness (mm) using a
CMM

Cutting
conditions

Locations Relative slot
thickness

1.27 mm, 25.4 cm/min,
1000 rpm, and 432 cuts

Bottom at 3rd wkpc )0.0457
Final size )0.0483

1.27 mm, 50.8 cm/min,
1000 rpm, and 432 cuts

Bottom at 3rd wkpc )0.0559
Final size )0.0940

2.54 mm, 25.4 cm/min,
1000 rpm, and 216 cuts

Bottom at 3rd wkpc )0.1397
Final size )0.2388

2.54 mm, 50.8 cm/min,
2000 rpm, and 216 cuts

Bottom at 3rd wkpc )0.1575
Final size )0.2718

3.81 mm, 25.4 cm/min,
1000 rpm, and 144 cuts

Bottom at 3rd wkpc )0.1829
Final size )0.2921
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