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Abstract The selection of optimal machining parameters plays
an important part in computer-aided manufacturing. The optimi-
sation of machining parameters is still the subject of many stud-
ies. Genetic algorithm (GA) and simulated annealing (SA) have
been applied to many difficult combinatorial optimisation prob-
lems with certain strengths and weaknesses. In this paper, genetic
simulated annealing (GSA), which is a hybrid of GA and SA,
is used to determine optimal machining parameters for milling
operations. For comparison, basic GA is also chosen as another
optimisation method. An application example that has previously
been solved using geometric programming (GP) method is pre-
sented. The results indicate that GSA is more efficient than GA
and GP in the application of optimisation.

Keywords Genetic algorithm · Genetic simulated
annealing · Milling

1 Introduction

The determination of efficient machining parameters has been
a problem confronting manufacturing industries for nearly a cen-
tury, and is still the subject of many studies. Optimal machining
parameters are of great concern in manufacturing environments,
where economy of machining operation plays a key role in the
competitive market, and computer numerically controlled (CNC)
machines are extensively employed. Most work done on the op-
timisation of cutting conditions in machining is mainly focused
on turning operations, while multi-pass milling has received rela-
tively little attention with regard to the optimisation of cutting
parameters.

Although the importance of using optimal cutting parame-
ters was identified in the early 1900s, advances in the develop-
ment of optimisation strategies have been very slow [1], since
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the problem is too complex due to the nonlinear dependence of
machining variables. Several types of methods have been used
for the optimisation of cutting parameters. The direct search
method is one of the most popular mathematical optimisation
methods. It computes the first derivative of an objective func-
tion and sets it to zero, where the function becomes a maximum
or minimum [2, 3]. The second derivative of the objective func-
tion is then used to determine the maxima or minima. Clearly,
therefore, the objective function in classical and direct optimi-
sation must be continuous and twice differentiable. However,
this requirement is generally not met in real-world problems.
Rad-Tolouei and Bidhendi [4], Wang [5–7], Armarego et al. [8],
and Kilic et al. [9] used graphical techniques for the optimisa-
tion of machining conditions by mapping the relevant constraints
and objective functions in the planes. The constrained optimi-
sation strategies were also used for selecting the optimal cut-
ting conditions [8, 10]. Kayacan et al. [11] and Agapiou [12]
used knowledge base and machining topology; Jang [13] pre-
sented a unified optimisation approach for the selection of the
machining parameters. Wang [14] used a neural network based
approach to optimise cutting parameters. However, optimisation
using these methods often ends in local minima or fails to con-
verge on a result. Sönmez et al. [1], Ermer [15], Wang [16],
Agapiou [12] and Shin and Joo [17] used the dynamic program-
ming (DP) optimisation method. DP can solve both continuous
and discrete variables and yield a global optimal solution. How-
ever, if the optimisation problem involves a large amount of inde-
pendent parameters with a wide range of values such as cutting
parameters, the use of DP is limited. In addition, the geometric
programming (GP) method was used for optimisation by Sön-
mez et al. [1], Wang [16] Petropoulos [18] and Jha [19]. Jha
has attempted to optimise cutting parameters in milling by GP
and concluded that the GP-based program was very slow to pro-
duce good results [19]. Dereli et al. [20] indicated that it needed
long execution times for good outcomes of the objective function
by Sönmez et al., who developed a system for the constrained
optimisation of cutting parameters to be used in the multi-pass
plain and face milling operations using DP plus GP. The above-
mentioned optimisation techniques either tend to result in local
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minima or take a long time to converge on a reasonable result.
In order to overcome the long execution time using DP plus GP,
Dereli et al. [20] used genetic algorithm to develop an optimisa-
tion system that had better performance.

Genetic algorithm (GA) and simulated annealing (SA) are
two new optimisation approaches that have been developed in-
dependently. Both of these algorithms are probabilistic search
algorithms that are capable of finding globally optimal results
to complicated optimisation problems. For application in ma-
chining processes, besides Dereli et al., Shunmugam et al [21]
used GA to optimise the multi-pass face-milling and obtained
optimal cutting parameters. Liu et al. [22] improved the con-
vergence speed of traditional GA and obtained good results by
defining and changing the operating domain of GA. GA and SA
have their strengths and weaknesses. In this paper, a new method
generic simulated annealing (GSA) that combines the recombi-
native power of GA and local selection of SA is presented to
optimise the cutting parameters for milling operations. The fol-
lowing section describes and compares GA and GSA.

2 State of the art

2.1 Genetic algorithms

In a GA approach to solve combinatorial optimisation problems,
a population of candidate solutions is maintained. To generate
a new population, candidate solutions are randomly paired. For
each pair of solutions, a crossover operator is first applied with
a moderate probability (crossover rate) to generate two new so-
lutions. Each new solution is then modified using a mutation
operator with a small probability (mutation rate). The resulting
two new solutions replace their parents in the old population to
form a temporary new population. Each solution in the tempo-
rary population is ranked against other solutions based on a fit-
ness criterion. A roulette wheel process is then used to determine
a new population identical in size to the previous population,
such that higher-ranked candidates are allowed to assume higher
priority in the new population. GA iterates over a large number
of generations and, in general, as the algorithm executes, solu-
tions in the population become fitter, resulting in better candidate
solutions. Last but not least, GA is a search strategy that is well
suited for parallel computing.

2.2 Genetic simulated annealing

GA and SA are both independently valid approaches toward
problem solving with certain strengths and weaknesses. While
GA can begin with a population of solutions in parallel, it suffers
from poor convergence properties. SA, by contrast, has better
convergence properties, but it cannot easily exploit parallelism.

In order to retain the strengths of GA and SA, GSA blends
both approaches into a single approach. GSA is naturally par-
allel by exploiting the population-based model and crossover-
mutation operator of GA by creating a multiplicity of candidate
solutions. At the same time, GSA employs the temperature gra-

dient property of SA by using a local acceptance policy based on
the fitness of a new solution compared to its parent, and a proba-
bility based on a global temperature gradient [23]. By using this
approach, the algorithm maintains the parallelism of GA while
overcoming its poor convergence weakness by following a tem-
perature schedule as in SA. It has been shown that GSA can
perform better for optimisation problems than either GA or SA
separately [24].

GSA has been successfully applied to optimisation prob-
lems like wire routing, scheduling, transportation, etc. However,
there is no clear understanding on how to blend GA and SA to-
gether and use it to find global optima for problems with many
nonlinear constraints. This paper presents the use of GSA to
optimise cutting parameters of milling process with nonlinear
constraints.

3 Optimisation of end milling

3.1 Objective function

The minimum production time has been chosen as the objec-
tive function. Production time for a component is the total time
required to produce a component and is composed of the fol-
lowing items: (i) Preparation time Tp, (ii) Loading/unloading
time TL , (iii) Process adjustment and quick return time Ta, (iv)
Machining time Tm and (v) Tool change time per component
Tc (In the single-tool optimisation approach, tool changing time
is considered to be related to the frequency of tool replace-
ment). Therefore, the total production time per component can
be represented by the following equations: Tpr = Tp + TL + Ta

+Tm + Tc.
For a multi-pass operation in which Np passes are required to

remove the total depth of cut:

Tpr = Ts

Nb
+ TL +

Np∑
i=1

(
Tai + Tmi + Td

Tmi

T

)

If machining time (Tm) and tool life (T ) is expressed in terms of
cutting speed and feed rate, then Tpr can be represented in the
following form [1].

Tpr = Ts

Nb
+ TL + NpTa +

Np∑
i=1

(
πDL

fZi z1000vi

+ TdπLv
1/m−1
i aev/m

i f uv/m−1
zi Brv/mznv/m−1λ

qv/m
s

1000C1/m
v Dbv/m−1(Bm Bh Bp Br)1/m

)

where Bm, Bt, Bh , Bp, are correction coefficients of tool life
equation; D, outer diameter of the cutter (mm); L , length of cut
(mm); v, cutting speed (m/min); z, number of teeth on the cutter;
fz , feed rate per tooth (mm/tooth); Cv , a constant taking into ac-
count the influence of all factors that appear separately in the tool
life formula: λs, cutting inclination angle (degrees); a, depth of
cut (mm); Nb, total number of parts in the batch.
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Constraint Expression in variables

1 Feed rate constraint fz min � fz � fzmaz = fmax
zNmax

2 Cutting speed constraint vmin � v� vmax = πDNmax
1000

3 Horsepower constraint Cz p BzDbz aez v f uz � Pmη6120

4 Arbor strength constraint Cz p BzDbz aez f uz � 0.1kbd3
a

0.08La+0.65
√

(0.25La)2+(0.5αD)2

5 Arbor deflection Cz p BzDbz aez f uz � 4Eed4
a

L3
a

where Pm , nominal motor power (kW); η, overall efficiency; n, spindle speed (rpm); B, milling width
(mm); Cz p, Constant of the cutting force equation; da, arbor diameter (mm); e, permissible values of
arbor deflection; E, Modulus of elasticity of arbor material (kg/mm2); kb, permissible bending stress of
the arbor material (kg/mm2); La, arbor length between supports (mm)

Table 1. Constraints and their expressions in
terms of common variables

Since the machining parameters do not influence the set-up
time, loading and unloading time and process adjustment and
quick return time, the final optimisation model per operation
becomes:

T ′
pr = πDL

fZi z1000vi

+ TdπLv
1/m−1
i aev/m

i f uv/m−1
zi Brv/mznv/m−1λ

qv/m
s

1000C1/m
v Dbv/m−1(Bm Bh Bp Br)1/m

where bv, bz, ev, ez, m, nv, nz, q, qv, rv, rz, uv, uz , are deter-
mined empirically.

3.2 Constraints

For a meaningful optimisation of the machining process, there
exists a number of constraints that must be satisfied. The con-
straints are presented in Table 1 [2].

3.3 An application example [1]

We now illustrate the proposed methodology based on the GA
and GSA using the example taken from Sönmez et al. [1]. Spe-
cifications of the required parameters and values of the constants
are given as follows: Type of machining is plain milling, Pm =
5.5 kW, η = 0.7, D = 27 mm, Ls = 210 mm, kb = 140 MPa =
14.27 kg/mm2, kl = 120 MPa = 12.23 kg/mm2, E = 200 GPa =
20, 387 kg/mm2, Spindle speed ranges: 31.5 ∼ 2000 rpm, feed
rate ranges: 14 ∼ 900 mm/min, Tool material is HSS, D =
63 mm, z = 8, workpiece material is structural carbon steel (C �
0.6%), tensile strength is 750 MPa, brinell hardness is 150, L =
160 mm, B = 50 mm, a = 5 mm, TL = 1.5 min, Ts = 10 min,
Tc = 5 min, Ta = 0.1 min/part, Nb = 100, λs = 30◦.

4 The algorithms and results

4.1 Genetic algorithm procedure

In the optimisation, GA uses the objective function (produc-
tion time) as the fitness function to measure the goodness of the

chromosomes. New chromosomes of feed and cutting speed are
generated from the initial population by transitionally using the
genetic operators, crossover and mutation. The pseudo code in
Fig. 1 gives an overview of a traditional GA.

Following selection, crossover, and mutation, the new pop-
ulation is ready for its next evaluation. This evaluation is used
to build the probability distribution (for the next selection pro-
cess), i.e., for a construction of a roulette wheel with slots sized
according to current fitness values. The rest of the evolution is
just cyclic repetition of the above steps.

4.2 Genetic simulated annealing algorithm

One of the key problems in using GA is the handling of problem
constraints. There are three common ways of handling GA con-
straints [25]: feasible individuals, repair algorithms and the use
of penalties. The last approach was used successfully for numeri-

Fig. 1. The pseudo code of genetic algorithms
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cal optimisation problems, and so it is chosen as GSA constraints
handing method in this paper.

GSA introduces the concept of an SA temperature to the tra-
ditional GA operations of crossover and mutation, as illustrated
in Fig. 2.

In GA, two chromosomes are replaced by a pair of their
offspring after the crossover operator, while in GSA, after the
crossover operation, there are four chromosomes from which two
chromosomes are then selected to form the new population. The
selection criterion assumes that strings with higher fitness value
should have a greater probability of surviving to the next gen-
eration. Individuals that have a fitness value less than the best
obtained are not necessarily discarded, but are instead selected
with a probability proportional to the current temperature (as in
simulated annealing).

4.3 Optimisation results

It is believed that a large population size helps in better schema
processing and thus reduces the chances of premature conver-
gence. Therefore the population size in this optimisation is se-
lected as 512, and the crossover probability and mutation proba-
bility are selected to be 0.7 and 0.01 respectively, with the initial
temperature T = 100 and cooling rate α = 0.7. The results for the
example are summarised in Tables 2, 3 and 4, which show the
best cutting parameters at different depth of cut by using three
optimisation methods.

From Table 2, it is clear that the results computed by using
GSA are better than those by GA or GP, especially when the
depth of cut is 1 mm or 4 mm. In [1], Sönmez et al. used GP

Depth of cut Cutting speed (m/min) Feed rate (mm/rev) Machining time (min)
(mm) GP GA GSA GP GA GSA GP GA GSA

a = 1 mm 32.25 31.30 30.19 0.7044 0.9104 0.9584 0.2097 0.1746 0.1703
a = 2 mm 25.16 25.40 25.18 0.5700 0.5570 0.5695 0.3150 0.3193 0.3150
a = 3 mm 26.40 24.71 24.20 0.3380 0.3557 0.3670 0.4979 0.4994 0.4930
a = 4 mm 30.95 29.16 27.37 0.1490 0.2031 0.2187 0.9421 0.7476 0.7321

Table 2. Computed optimal results using GP, GA
and GSA

Cutting strategy Total production time per component (min)
(pass distribution) (mm) GP GA GSA

4-1 4.543 4.315 4.294
3-2 (Optimal strategy) 4.205 4.210 4.199
3-1-1 6.009 5.935 5.921
2-2-1 5.927 5.900 5.886
2-1-1-1 7.731 7.625 7.608
1-1-1-1-1 9.535 9.350 9.330

Table 3. Objective function results using GP, GA
and GSA

Optimisation method Calculation time (sec)
a = 1 mm a = 2 mm a = 3 mm a = 4 mm

GA 6.821 7.982 8.442 6.479
GSA 1.552 1.622 1.763 1.653

where a means depth of cut per path

Table 4. Computation time using GA and GSA

Fig. 2. Algorithm of genetic simulated annealing
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Fig. 3. Simulation of genetic algorithm

Fig. 4. Simulation of genetic simulated annealing

to optimise cutting parameters in the multi-pass plain and face
milling operations, but they found that long execution times were
needed to achieve good results of the objective function [20].
From Table 3, the same optimal solution can be obtained using
three different optimisation methods, and it means that all these
methods have the ability to find global optima. In Table 4, the
computing time using GSA is less than that by using GA, be-
cause GA has certain drawback and requires very intensive com-

putation. The computation time was recorded on a Pentium III-
450 PC with 320 MB of memory.

Figures 3 and 4 depict the typical movements toward the op-
timal solutions. Generation 1 shows the random initialisation of
the solutions in solution space, which are tracked as ×. While the
repeatability of finding the solution is established, it is found that
a reasonable solution can be reached when the generation num-
ber is about 31 by GSA. On the contrary, with GA, even when
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the generation number reaches 31, the optimal solutions are still
not obtainable. So it is obvious that more generations are needed
to reach an optimal solution using GA than by using GSA. The
fast convergence for GSA is due to the selection decisions after
crossover and mutation, which can ensure that good candidates
exist in the next generation so that the search space is narrowed
for the next generation as shown in Figs. 3 and 4.

5 Conclusions

Although GA and SA are two most popular methods for global
optimisation, they both have their strengths and weaknesses. In
order to exploit their strengths and overcome their weaknesses,
this paper presents a hybrid algorithm GSA to optimise the cut-
ting conditions in plain milling (feed rate and speed) subject to
a set of constraints. The proposed GSA algorithm uses a popu-
lation of solutions and crossover and mutation operations among
population members (as in GA) and a selection mechanism based
on a temperature cooling schedule (as in SA). From the given re-
sults, it can be seen that GSA is more suitable for optimising the
cutting parameters for milling operation than GA, as well as GP.
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