
ORIGINAL ARTICLE

Po-Chieng Hu

Minimising total tardiness for the worker assignment scheduling
problem in identical parallel-machine models

Received: 1 March 2003 / Accepted: 4 April 2003 / Published online: 5 November 2003
� Springer-Verlag London Limited 2003

Abstract The worker assignment scheduling problem
involves both the decisions of job scheduling and worker
assignment. In this research, only the performance
measure of total tardiness is investigated in the model of
identical parallel machines with nonpreemptive jobs.
Since the worker assignment scheduling problem in the
selected model can be shown to be NP-complete, heu-
ristics have been developed for minimising the total
tardiness. The worker assignment scheduling problem is
solved in two phases of job scheduling and worker
assignment. The SES (SPT, EDD, SLACK) heuristic is
used for the phase of job scheduling. For the phase of
worker assignment, the largest marginal contribution
(LMC) procedure is used to minimise the total tardiness.
From the simulation conducted, 88 out of 100 simulated
problems yielded optimal solutions while the others also
obtained very good results. In conclusion, the heuristics
developed have shown very impressive results in both
effectiveness and efficiency aspects.

Keywords Worker assignment scheduling problem Æ
Tardiness Æ NP-complete Æ SES heuristic Æ LMC
procedure

Notation

n Total number of jobs waiting to be processed
m Total number of machines available to pro-

cess the above jobs
Ji A set of n jobs are to be processed, i=1, ..., n
Mj A set of mmachines are used to process these

n jobs, j=1, ..., m
ti(Wj) The processing time needed for job Ji pro-

cessed on machine Mj, where Wj workers
have been assigned to Mj

tj,[k](Wj) The processing time function of the kth job
assigned to machine Mj, where Wj workers
have been assigned to Mj

di The due date of job Ji
dj,[k] The due date of the kth job assigned to

machine Mj

ri the ready time of job Ji
Ci The completion time of job Ji
Cj,[k](Wj) The completion time function of the kth job

assigned to machine Mj, where Wj workers
have been assigned to Mj; Cj; k½ � Wj

� �
¼

Pk

p¼1
tj; p½ � Wj

� �

Fi The flow time of job Ji, Fi=Ci ) ri
Li The lateness of job Ji, Li=Ci ) di
Ti The tardiness of job Ji, Ti=max{0, Li}
Tj,[k] The tardiness of the kth job assigned to

machine Mj, Tj,[k]=max{0, Cj,[k](Wj))dj,[k]}
Nj The number of jobs assigned to machine Mj

Wj The number of workers assigned to machine
Mj

W The total number of workers

1 Introduction

1.1 Scheduling problem in the model of identical,
parallel machines

In the real world, there are many examples of parallel-
machine processing, e.g. a gas station can serve several
cars simultaneously; bank counters can serve several
customer at the same time; and automotive assembly
lines can assemble several identical or nonidentical car
models. In the classic parallel-machine processing
model, there are two different conditions for the ma-
chines that are used: all the machines are identical or the
machines may be nonidentical.

Many studies have been presented in the area
of parallel-job scheduling. Some of these studies

Int J Adv Manuf Technol (2004) 23: 383–388
DOI 10.1007/s00170-003-1716-9

P.-C. Hu (&)
Department of Industrial Management,
National Huwei Institute of Technology,
632 Yunlin, Taiwan, R.O.C.
E-mail: pchu@sunws.nhit.edu.tw



investigated ways of solving more classic problems
with different performance measures [1, 2, 3, 4, 5, 6, 7].
Others studied such problems with some additional
constraints [8, 9]. Yamada and Nakano [10] presented
a genetic algorithm for the job-shop scheduling prob-
lem. Sule and Vijayasundaram [11] specifically dealt
with a different scheduling problem that involved n
jobs in m machine centres where each machine cen-
tre may have k number of identical processors.
Iwamoto [12], Yamada and Nakeno [13], and Jain and
Meeran [14] used different methods, such as fuzzy
decision-making, deterministic local search, and neural
networks, to solve specific problems.

In parallel-machine processing situations, minimis-
ing the total tardiness of the schedule is a very com-
plicated and difficult thing. Gupta and Rothkopf [15,
16] suggested that the dynamic programming method
could be used to get an optimal solution. However,
even a very small problem (i.e. the numbers of
machines and jobs are small), substantial computing is
needed to get the solution. Therefore, Dogramaci and
Sukis [17] proposed a heuristic to solve this kind of
problem. Even this does not promise an optimal
solution; however, the solution obtained will be the
optimal solution or is not far away from it. In addi-
tion, the time consumed by using the heuristic is
negligible compared to the dynamic programming or
exhaustive methods.

1.2 Worker assignment scheduling problems

In the classic scheduling problem [18, 19, 20], no
matter how many machines (work stations, processors,
etc.) are involved, the number of operators (workers)
at each machine may be ignored or assumed to be
fixed and is not taken into consideration. However, in
some cases, assigning more workers to work on the
same job will decrease job completion time. Hence,
ignoring worker assignment decision in these cases
may cause managerial problems. In order to solve
those problems and optimise the overall performance,
decisions about job scheduling and worker assignment
need to be resolved together.

In Hu�s [21] research, the scope of classic scheduling
problems had been extended in that the assumption of
constant job processing time was no longer necessary.
Under the original assumption, job processing time
was not affected by the number of workers work on
the job. But Hu�s research suggested that there exist
certain relationships between job processing time and
the number of workers assigned to work on the job.
Hence, job processing time is no longer a constant but
related to the number of workers assigned to work on
the job. Therefore, the worker assignment scheduling
problem needs to solve two subproblems: how to as-
sign jobs to machines and how to assign workers to
machines.

1.3 Purposes of this study

This research focusses on the model of identical, parallel
machines and uses total tardiness as the performance
measure, that is, how to effectively assign the jobs and
workers to machines to minimise the total tardiness in
the model of identical, parallel machines.

This research has two purposes: one is to establish a
mathematical model to describe the specific problem
presented; the other is to develop efficient and effective
heuristics to solve these two subproblems. In addition,
hopefully, these heuristics can be adopted by industries
to solve related problems.

2 Identical, parallel-machine processing worker
assignment scheduling problem

The only difference between the worker assignment
scheduling problem and the classic scheduling problem
is that the former has an additional worker assignment
problem. Hence, the processing times of jobs are no
longer constants but related to the number of workers
assigned to work on the job. Assumptions of the iden-
tical, parallel-machine processing worker assignment
scheduling problem are as follows [21]:

1. Each job needs only one operation.
2. Each job only needs to be processed by one ma-

chine.
3. Any machine can process any job.
4. No machine may process more than one job at a

time.
5. Machines will never break down and are available

throughout the scheduling period.
6. Job processing times are independent of the job

sequence.
7. Machine set-up time is negligible.
8. Transportation time between machines is negligible.
9. Number of jobs is fixed.
10. Number of machines is fixed.
11. There is a group of W workers that have the same

abilities to perform the duties assigned to them.
12. W is within reasonable bounds, i.e. m £ W £ Wc.

Wc is the maximum capacity of the resource.
13. These m machines, n jobs, and W workers are

available at time zero.
14. The processing time function has a simplified form

of ti(Wj)=Ai+Bi/(Ei · Wj), where ti(Wj) is the
processing time of job i that is processed on machine
j in which the number of Wj workers are assigned to
it, Ai is a fixed constant and not affected by the
number of workers, Bi/(Ei · Wj) is the variable part
and affected by the number of workers. In addition,
ti(Wj)=Ai+Bi/(Ei · Wj) is assumed to be a
decreasing function, i.e. Ai ‡ 0, Bi>0, Ei ‡ 1.

15. If any machine has work waiting to be processed,
workers must be assigned to this machine to process
the job. The machine cannot be kept idle.

384



16. The number of workers assigned to each machine
needs to be decided before any job can be processed
and they will not be reassigned until all the jobs have
been completed.

2.1 The mathematical model for minimising
the total tardiness in the model of the identical,
parallel-machine processing worker assignment
scheduling problem

Before solving this specific identical, parallel-machine
processing worker assignment scheduling problem, its
mathematical model should be constructed to understand
the problem�s characteristics. The performance measure
used for this specific problem is total tardiness. If the
tardiness of the kth job assigned tomachineMj isTj,[k] and
Tj,[k]=max{0, Cj,[k](Wj))dj,[k]}, then the total tardiness

will be
Pm

j¼1
PNj

k¼1 Tj k½ � ¼
Pm

j¼1
PNj

k¼1 max f0;Cj;½k�ðWjÞ�
dj;½k�g: In addition, let xi,j,[k]=1 when job Ji is the k

th job
assigned to machineMj, and xi,j,[k]=0, otherwise. And let
Y ¼

Pm
j¼1
PNj

k¼1 Tj; k½ �: Then, the mathematical model of
minimising total tardiness of the identical, parallel-
machine processing worker assignment scheduling
problem is as follows:

min Y

subject to:

Xm

j¼1
Nj ¼ n

– The sum of the jobs assigned to all machines is n.

Xm

j¼1
Wj ¼ W

– All the W workers must be assigned.

Xm

j¼1

XNj

k¼1
xi;j; k½ � ¼ 1 i ¼ 1; . . . ; n

– Each job can only be assigned to one machine and its
processing order is kth on that machine.

Xn

i¼1

XNj

k¼1
xi;j; k½ � ¼ Nj j ¼ 1; . . . ; m

– There are Nj jobs that are assigned to machine Mj.

Xn

i¼1

Xm

j¼1

XNj

k¼1
xi;j; k½ � ¼ n

– All the n jobs need to be assigned completely.

– xi,j,[k]=1 or 0, Nj andWj are integers greater than 0.

According to Garey and Johnson [22], the specific
problem presented in this research is NP-complete. Since
there is no way to obtain the optimal solution other than

with a mathematical model, heuristics, a guided ran-
dom/iterative search such as GA (genetic algorithm), or
simulated annealing could be used to solve this problem.

2.2 Heuristic for minimising the total tardiness
in the model of identical, parallel-machine
processing worker assignment scheduling problem

Since this research has two subproblems, how to assign
jobs and how to assign workers, the descriptions of these
two subproblems will follow accordingly. First, the job
assignment subproblem will be explored. In order to
solve this subproblem the heuristic developed by
Dogramaci and Surkis [17] can be applied after some
modifications.

2.2.1 Procedure 1 (for assigning n jobs)

Step 1. List these n jobs in an order using priority rules
SPT, EDD, and SLACK in sequence. LetWj=W for the
processing time functions of all jobs.

Step 2. Among those jobs that have not yet been as-
signed to a machine choose the first one in the ordered
list, assign it to the earliest available machine, then re-
move it from the ordered list. Repeat this step until
all n jobs are assigned.

Step 3. Consider separately each of the m machines with
the jobs assigned to it in step 2. Treat each as an indi-
vidual single-processor tardiness problem, and rese-
quence the assigned jobs to minimise the total tardiness.

Since the procedure presented above is mainly an
application of SPT, EDD, and SLACK rules, it is
referred to as the SES heuristic. After all n jobs have
been assigned, we turn to the worker assignment
subproblem. The solving procedures are as follows.

2.2.2 Procedure 2 (for assigning W workers)

Step 1. Assign one worker to every machine that has job
on it; therefore, m workers are assigned.

Step 2. Assign the next worker to the machine that can
minimise the total tardiness.

Step 3. Repeat step 2 until all these W workers have
been assigned completely.

Step 4. Consider separately each of the m machines with
the jobs assigned to it in step 3. Treat each as an indi-
vidual single-processor tardiness problem, and rese-
quence these assigned jobs to minimise the total
tardiness.

Because the W workers are assigned according to
their marginal contribution (i.e. the amount of total

385



tardiness reduced by adding one more worker.), the
procedure can be referred to as the largest marginal
contribution procedure (LMC procedure).

2.2.3 Procedure 3 (for choosing the final solution)

Step 1. If the total tardiness of the schedule obtained in
procedure 2 reaches zero, the schedule is the final solu-
tion. Otherwise, repeat procedures 1 and 2 until all the
priority rules have been applied.

Step 2. If none of these schedules yields zero total tar-
diness, compare the total tardiness generated by these
schedules. The schedule with the least total tardiness is
the final solution.

3 Performance evaluation of the heuristics developed

In order to evaluate the performance of the heuristics
developed in the previous section, the method of eval-
uation and the result of the evaluation will be described
in the following text.

3.1 Method of evaluation

In this research, a simulation procedure is used to
evaluate the performance of these heuristics; the proce-
dure is illustrated as follows.

Step 1. Assume that the processing time function of any
job Ji is ti(Wj)=Ai+Bi/(Ei·Wj), where Ai, Bi, and Ei

follow uniform distribution and 0 £ Ai<100,
1 £ Bi<100, and 1 £ Ei<100. Due date di=Ai+Bi/
(Ei · W)+ an integer between 1 and 99. This is because
due date cannot be less than the least possible processing
time.

Step 2. All the values of Ai, Bi, Ei and the integer part of
di are generated randomly.

Step 3. 100 sets of worker assignment scheduling
problems have been generated and each of them has the

following characteristic: there are 10 workers available,
6 jobs waited to be processed, and 3 machines ready to
process the jobs.

Step 4. An improved exhaustive search method is used
to find the optimal solution for each of the 100 simulated
problems. For example, some of the improvements are:
jobs assigned to each machine will be adjusted to follow
the EDD rule and once the total tardiness of any sche-
dule reaches zero the searching process is terminated.
Therefore, it is sometimes not necessary to exhaust all
the possible schedules to get the optimal solution. Then,
the heuristics are used to find the solutions of the 100
simulated problems. In order to compare the perfor-
mance of these two, two performance measures are used:

1. Ratio 1 = total tardiness / least possible total
processing time

Ratio 1 ¼ Rti=R Ai þ Bi= Ei � Wð Þ½ �

2. Ratio 2 = total tardiness / most possible total slack
time

Ratio 2 ¼ Rti=R di � Ai þ Bi= Ei � Wð Þ½ �f g

These two performance measures allow the results
obtained from the improved exhaustive method and
heuristics to be compared under the same conditions. In
addition, ratio 1 and ratio 2 can show the percentage
and severity of the total tardiness compared to the least
possible total processing time and the most possible total
slack time.

Step 5. Compare the values of ratio 1 and ratio 2 of
these 100 sets of simulated problems obtained from the
improved exhaustive search method and heuristics.

3.2 Result of the evaluation

The results of first 30 sets of these 100 sets of simulated
problems are shown in Tables 1, 2, and 3. According to
the results, 88 of the 100 sets of simulated problems
obtain the optimal solutions no matter whether the
improved exhaustive search method or the heuristics is

Table 1 Results of 1–12 sets of the simulated problems

Data Set 1 2 3 4 5 6 7 8 9 10 11 12

SPT Ratio 1 0 .074962 .013973 .063293 .008120 0 .051791 .008978 .007745 .082942 0 0
Ratio 2 0 .084365 .012659 .110908 .007096 0 .061351 .011027 .009442 .090788 0 0

EDD Ratio 1 0 0 .013973 .063293 0 0 .062874 .064007 0 .050388 0 0
Ratio 2 0 0 .012659 .110908 0 0 .074479 .078614 0 .055155 0 0

Slack Ratio 1 0 0 0 .082304 0 0 .047556 .008978 .010193 0 0 0
Ratio 2 0 0 0 .144221 0 0 .056334 .011027 .012425 0 0 0

Exhaus. Ratio 1 0 0 0 .037937 0 0 0 .008978 0 0 0 0
Search Ratio 2 0 0 0 .066478 0 0 0 .011027 0 0 0 0

386



used. For the remaining 12 sets, the average difference
between the exhaustive search method and the heuristics
are 0.0172 for ratio 1 and 0.0254 for ratio 2; all are
smaller than 3%. That is, even though the solutions
obtained from the heuristics are not optimal, they are
not far from it. In addition, by using a PC with Intel
Pentium 4 2.00 GHz CPU, it only took 4 s using the
heuristics compared to 117 s using the improved
exhaustive search method; a 96.58% savings. Therefore,
the heuristics developed in this research are efficient and
effective.

4 Conclusion

In this research, worker assignment scheduling prob-
lems are presented, defined, and formulated. Since only

the exhaustive search method can obtain optimal
solutions to these problems, heuristics have been
developed. After the simulation, results have shown
that the heuristics developed in this research can obtain
optimal or near optimal solutions for these simulated
problems.

In the future, the conclusions of this research may be
extended to scheduling problems in the real world. The
task may be highly complicated; nonetheless, it will be
an interesting and challenging mission.

5 Appendix A

Table 4 summarizes the data from one of the 100 sim-
ulated problems. The final sequence and worker
assignment for this problem is given in Table 5.

Table 3 Results of 25-30 sets of the simulated problems

Data Set 25 26 27 28 29 30

SPT Ratio 1 0 .048081 0 0 0 .052592
Ratio 2 0 .044608 0 0 0 .044201

EDD Ratio 1 0 0 0 0 0 0
Ratio 2 0 0 0 0 0 0

Slack Ratio 1 0 0 0 0 0 0
Ratio 2 0 0 0 0 0 0

Exhaus. Ratio 1 0 0 0 0 0 0
Search Ratio 2 0 0 0 0 0 0

Table 4 Data of one of the 100 simulated problems; ti(Wj)=Ai+
Bi/(Ei·Wj)

Jobs 1 2 3 4 5 6

A 46 29 62 64 26 27
B 83 82 59 98 91 23
E 69 98 25 53 11 99
due date 113 31 119 74 38 107
Due date – A 67 2 57 10 11 80

Table 2 Results of 13-24 sets of the simulated problems

Data Set 13 14 15 16 17 18 19 20 21 22 23 24

SPT Ratio 1 0 0 .045508 0 0 .066879 0 0 .125413 .080405 0 .024912
Ratio 2 0 0 .059321 0 0 .067299 0 0 .130697 .094587 0 .029622

EDD Ratio 1 0 0 .091851 0 .294293 .014092 0 0 .058481 .027577 0 .024912
Ratio 2 0 0 .119728 0 .286339 .014181 0 0 .060945 .032442 0 .029622

Slack Ratio 1 0 0 .040650 0 0 0 0 0 0 0 0 .021709
Ratio 2 0 0 .052987 0 0 0 0 0 0 0 0 .025813

Exhaus. Ratio 1 0 0 .037551 0 0 0 0 0 0 0 0 .021709
Search Ratio 2 0 0 .048948 0 0 0 0 0 0 0 0 .025813

Table 5 Final sequence and
worker assignment for the
problem data in Table 4

SPT EDD Slack Exhaus.
search

Wj 1 1 8 6 3 1 8 1 1 1 3 6
Mj 1 2 3 1 2 3 1 2 3 1 2 3
Job
sequence

5–1 6–3 2–4 2–1 5–6–3 4 2–1 4–6 5–3 2 5–6–3 4–1

Total
tardiness

0 0 0 0

Ratio 1 0 0 0 0
Ratio 2 0 0 0 0

387



References

1. Bruno J, Coffman EG Jr, Sethi R (1974) Scheduling indepen-
dent tasks to reduce mean finishing time. Commun ACM
17(7):382–387

2. Rajaraman MK (1975) An algorithm for scheduling parallel
processors. Int J Prod Res 13(5)

3. Barnes JW, Brennan JJ (1977) An improved algorithm for
scheduling jobs on identical machines. AIIE Trans 9(1)

4. Du J, Leung JYH (1989) Complexity of scheduling parallel task
systems. SIAM J Discrete Math 2(4):473–487

5. Ghosal D, Serazzi G, Tripathi SK (1991) The processor
working set and its use in scheduling multiprocessor systems.
IEEE Trans Softw Eng 17(5):443–453

6. Feitelson DG, Rudolph L (1992) Gang scheduling performance
benefits for fine-grain synchronization. J Parallel Distributed
Comput 16(4):306–318

7. Wand Q, Cheng KH (1992) A heuristic of scheduling parallel
tasks and its analysis. SIAM J Comput 21(2):281–294

8. Hurink J, Knust S (2001) List scheduling in a parallel machine
environment with precedence constraints and setup times. Oper
Res Lett 29:231–239

9. Sprecher A, Drexl A (1998) Solving multi-mode resource-
constrained project scheduling problems by a simple, general
and powerful sequencing algorithm. Eur J Oper Res 107:
431–450

10. Yamada T, Nakano R (1997) Genetic algorithms for job-shop
scheduling problems. In: Proceedings modern heuristic decision
support, UNICOM seminar, 18–19 March 1997, London,
pp 67–81

11. Sule DR, Vijayasundaram K (1998) A heuristic procedure for
makespan minimisation in job shops with multiple identical
processors. Comput Ind Eng 35(3–4):399–402

12. Iwamoto S (2001) Fuzzy decision-making through three dy-
namic programming approaches. Int J Fuzzy Syst 3(4)

13. Yamada T, Nakeno R (1990) Job-shop scheduling by simulated
annealing combined with deterministic local search. Kruwei
Academic, MA, pp 237–246

14. Jain AS, Meeran S (1998) Job-shop scheduling using neural
networks. Int J Prod Res 36(5):1249–1272

15. Gupta JND, Maykut AR (1973) Scheduling jobs on parallel
processors with dynamic programming. Decision Sci 4(4)

16. Rothkopf MH (1966) Scheduling independent tasks on parallel
processors. Manage Sci 12(5)

17. Dogramaci A, Surkis J (1979) Evaluation of a heuristic for
scheduling independent jobs on parallel identical processors.
Manage Sci 25(12):1208–1216

18. Baker KR (1973) Procedures for sequencing tasks with one
resource type. Int J Prod Resources 11(2)

19. Baker KR (1974) introduction to sequencing and scheduling.
Wiley, New York, pp 10–11

20. French S (1982) Sequencing and scheduling: an introduction
to the mathematics of the job shop. Ellis Horwood, Chichester,
pp 8–9

21. Hu P (1993) An efficient heuristic for the worker assignment
problem in the identical and nonidentical parallel-machine
models. PhD dissertation, Department of Industrial and
Management Systems Engineering, Pennsylvania State Uni-
versity, University Park, Pennsylvania, p 2

22. Garey MR, Johnson DS (1979) Computers and intractability, a
guide to the theory of NP-completeness. W.H. Freeman, New
York, p 245

388


