Int J Adv Manuf Technol (2003) 22: 828-835
DOI 10.1007/s00170-003-1689-8

ORIGINAL ARTICLE

L. Wang - L. Zhang - D.-Z. Zheng

A class of order-based genetic algorithm for flow shop scheduling

Received: 19 September 2002/ Accepted: 21 February 2003 / Published online: 29 August 2003

© Springer-Verlag London Limited 2003

Abstract A class of order-based genetic algorithm is
presented for flow shop scheduling that is a typical NP-
hard combinatorial optimisation problem with a strong
engineering background. The proposed order-based ge-
netic algorithm borrows from the idea of ordinal opti-
misation to ensure the quality of the solution found with
a reduction in computation effort and applies the evo-
lutionary searching mechanism and learning capability
of genetic algorithms to effectively perform exploration
and exploitation. Under the guidance of ordinal opti-
misation and with an emphasis on order-based searching
and elitist-based evolution in the proposed approach, a
solution that is “good enough’ can be guaranteed with a
high confidence level and reduced level of computation.
The effectiveness of the proposed algorithm is demon-
strated by numerical simulation results based on
benchmarks, and its optimisation quality is much better
than that of the classic genetic algorithm, the well-
known NEH heuristic, as well as being better than a
pure blind search. Moreover, the effects of some
parameters on optimisation performance are discussed.

Keywords Genetic algorithm - Ordinal optimisation -
Order-based genetic Algorithm - Flow shop scheduling

Nomenclature

n number of jobs

m number of machines

Dij processing time of job i on machine j
Cax, C* makespan, optimal makespan value or

lower bound value

P, | Pyl population at kth iteration and its size

L. Wang (X))

Department of Automation, CFINS, Tsinghua University,
100084 Beijing, P.R. China

E-mail: wangling@mail.tsinghua.edu.cn

Tel.: +86-10-62783125 ext. 272

Fax: +86-10-62786911

L. Zhang - D.-Z. Zheng
Department of Automation, CFINS, Tsinghua University,
100084 Beijing, P.R. China

S, |S] search space and its size

Do initial desired solution quality for G

De final desired solution quality for G

Pso initial desired probability that at least
one of the selected solutions is in G

Dse final desired probability that at least one
of the selected solutions is in G

G the set consist of the p percent "best"
feasible solutions

L sampling number

Pmut> P mut The first and second mutation probabil-
ities

/ best / solution selected from population

k iteration number

al, b[] parent strings

f fitness value

M a positive number large enough

], d[] children strings

RE the relative error of the result obtained to
C*

BRE the relative error of the best result ob-
tained to C*

ARE the relative error of the average result
obtained to C*

WRE the relative error of the worst result ob-

tained to C*

1 Introduction

Because of the complexity and NP-hardness of many
real engineering scheduling problems and their key
roles in manufacturing systems, it is very important to
develop efficient and effective advanced manufacturing
and scheduling technologies and approaches. Flow
shop scheduling is a class of widely studied scheduling
problems with a strong engineering background, which
illustrates at least some of the demands required by a
wide range of real-world problems and has earned
a reputation for being difficult to solve [1, 2]. The
permutation flow shop problem with n jobs and m

machines, as studied by many researchers, is commonly
defined as follows. Each of n jobs is to be sequentially
processed on machine 1, ..., m. The processing time p;;
of job i on machine j is given. At any time, each ma-
chine can process at most one job and each job can be
processed on at most one machine. The sequence in
which the jobs are to be processed is the same for each
machine. The objective widely used is to find a per-
mutation of jobs to minimise the maximum completion
time, i.e. makespan Cpn.x [1, 2, 3,4, 5,6, 7, 8,9, 10, 11,
12, 13]. Due to its significance both in theory and
applications, it still represents an important issue for
demonstrating the efficiency and effectiveness of newly
proposed optimisation methods, although it has been
widely studied so far.

Flow shop scheduling is a typical NP-hard combi-
natorial optimisation problem [1]. Exact techniques are
only applicable to small-sized problems in practice. The
solution quality of constructive methods such as CDS,
NEH, etc. [2, 3] is not quite satisfactory although the
process is very quick. Meta-heuristics such as simulated
annealing (SA) [5, 6], genetic algorithm (GA) [7, 8],
tabu search (TS) [9, 10, 11, 12] and evolutionary pro-
gramming [13] can obtain fairly satisfactory solutions,
but they are often very time consuming and parameter
dependent, as well as the fact that the stopping criteria
are either impracticable or hard to design. Recently,
due to the growing paper number in hybrid systems,
hybrid optimisation technology that combines the fea-
tures of different methods in a complementary fashion
has been a hot topic [14, 15, 16]. Ordinal optimisation
(O0), proposed by Ho et al. [17, 18] has been suc-
cessfully applied to many stochastic optimisation
problems. It concentrates on finding a “good enough”
solution with significantly reduced computation quan-
tities instead of on finding the exact best solution.
Borrowing the notion of “‘survival of the fittest”, GA is
an evolutionary computation algorithm with a learning
capability that has been used in wide application in a
variety of fields so far. In this paper, a class of order-
based genetic algorithm is proposed for flow shop
scheduling which borrows from the idea of OO to en-
sure the quality of the solution found with reduced
computation efforts and which applies the evolutionary
searching mechanism and learning capability of GA to
effectively perform exploration and exploitation. With
the guidance of OO, and by emphasising order-based
search and elitist-based evolution, a good enough
solution can be guaranteed with a high confidence level
and reduced computation quantity.

The organisation of the article is as follows. In
Sect. 2, the order-based genetic algorithm is proposed
after a brief review of OO and GA. The implementation
of the order-based genetic algorithm for flow shop
scheduling is provided in Sect. 3, and its effectiveness is
tested by simulation based on benchmarks in Sect. 4.
The effects of some parameters on the optimisation
performance are discussed in Sect. 5 and a conclusion
follows in Sect. 6.

829

2 Order-based genetic algorithm

Recently hybrid optimisation systems have developed
into promising tools by combining the features of dif-
ferent methods in a complementary fashion [14, 15, 16].
In this section, after briefly reviewing OO and GA, a
class of order-based genetic algorithm is proposed.

2.1 Ordinal optimisation

The basic idea of OO is that “order is easier to determine
than value” as well as “goal softening”. Instead of trying
to find the overall best solution, OO concentrates on
finding a good solution in some top percentile of all
solutions so that it can significantly reduce computation
time and greatly improve convergence [17, 18].

Let S be the search space with |S| solutions and let
the set G consist of the p, percent “best” solutions, i.e.,
p.=1G|/|S|. Usually |S| is extremely large, so it is very
hard and time consuming to find the best global solution
in S. If the goal is to obtain at least one solution in G
with the desired probability p,., then p,, = 1-(1-p,)* and
L=In(1-py.)/In(1-p,), where L is the number required
for random sampling. In Table 1, the required number L
is summarised according to a different py, and p,. For
example, the best of the 2301 randomly selected solu-
tions is within the top 0.1% of the whole solution space
with at least 90% probability. Obviously, if one uses
some prior information for the problem or guidance to
orient the search direction, much better results or
probability can be achieved even with the same sampling
number. This is the motivation behind replacing the
blind search with the GA evolution process under the
guidance of OO in this paper.

2.2 Genetic algorithm

Based on the mechanics of artificial selection and
genetics, GA combines the concept of survival of the
fittest among solutions with a structured, yet rando-
mised information exchange and offspring creation,
which repeats evaluation, selection, crossover and
mutation after initialisation until the stopping condi-
tion is satisfied. GA is naturally parallel and exhibits

Table 1 Sampling number required for good enough solution via
00

Desired
probability %

Desired solution quality

Top 1% Top 0.1% Top 0.01% Top 0.001%
50 69 692 6932 69314
90 229 2301 23025 230257
99 459 4603 46049 460515
99.9 688 6905 69075 690772
99.99 917 9206 92099 921029
99.999 1146 11508 115124 1151287

830

implicit parallelism [19, 20], which does not evaluate
and improve a single solution but analyses and mod-
ifies a set of solutions simultaneously. Even with
random initialisation, the selection operator can select
some ‘“‘good” solutions as seeds, the crossover opera-
tor can generate new solutions while retaining good
features from the parents, and the mutation operator
can enhance the diversity and provide a chance to
escape from the local optima. So, GA is an iterative
learning process with a certain learning ability and
thus is considered part of computational intelligence
for optimisation. Although a number of weaknesses
still exist, such as premature convergence, parameter
dependence and difficulty in determining stopping
criterion, GA has been extensively studied and applied
in a number of fields thus far, especially in production
scheduling.

2.3 Order-based genetic algorithm

Borrowing the idea of OO to ensure the quality of the
solution found with reduced computation efforts and
applying the evolutionary searching mechanism and
learning capability of GA to effectively perform
exploration and exploitation, a class of order-based
genetic algorithm (OGA) is proposed as follows.

Step I Randomly sample L solutions to form initial
population P,, where L is determined by OO
according to a predefined weak p, and p, . Let
k=0, and let ©* be the best state among the
initial solutions.

Select the best top-/ solutions from the current
population P;, and perform the first mutation
operator with probability p.. for all these
solutions; evaluate the newly generated solu-
tion if mutation happens and update =* if
necessary, else keep the old solution; then order
the resulted / solutions.

If stopping criterion is satisfied, stop the algo-
rithm and output the best solution found so
far, i.e. 7*; otherwise, continue the following
steps.

Perform |Pj . |/2 times order-based selection
and crossover operators using the / solutions
obtained by the first mutation operator to
generate |P,.;| new temporary solutions,
where |P;4,| can be determined by OO
according to predefined strong p,. and p,.
Perform the second mutation operator with
probability p’.. for all the temporary solu-
tions to generate | P, | solutions and evaluate
all the obtained solutions, and perform elitism
policy for n* simultanecously.

Select the best | Py, ;| solutions from the | Py . |
solutions obtained by the second mutation and
the / solutions obtained by the first mutation to
form the next population P,.;, and let
k=k+1, then go back to step 2.

Step 2

Step 3

Step 4

Step 5

Step 6

With the idea of OO, the OGA is able to guarantee a
top-py solution with at least a p,, confidence level at
initialisation stage. Moreover, some useful information
on solution space can be gained, which may provide help
for the GA’s evolutionary self-learning search. In the
later procedure, the OGA performs selection, crossover
and mutation operators to guide the evolution process,
with special emphasis on order-based searching and
elitist-based evolution. Thus, with the computational
time determined by the OO and the learning search
behaviour of the GA, the OGA can find a solution with
at least a p,, confidence level, which is of the much better
quality than the top p.. In comparison to exact searching
and to some meta-heuristics, the OGA is highly efficient;
in comparison to blind search and some constructive
heuristics, the OGA is of great effectiveness. For the sake
of clarity, the procedure is briefly illustrated in Fig. 1.

3 Implementation of the OGA for flow shop
scheduling

A job-permutation based encoding scheme has been
widely used in many papers for permutation flow shop
scheduling, so such an encoding scheme was also
adopted for this paper. Next, the implementation of the
OGA for permutation flow shop scheduling will be
discussed in detail.

3.1 Implementation of step 1

First, since there is no prior information and knowledge
available about the problem studied, only a blind search
can be performed in the solution space. To achieve a
certain search quality and an upper bound on the opti-
mal value, a weak confidence level py, and an initial
requirement p, are predefined, e.g., p,o=90% and
po=0.1%. Thus, it is concluded via OO that 2301 ran-
dom samples are required.

Obviously, after the above blind search is completed,
some knowledge about the search space can be gained
that will be useful for the GA in learning the evolu-
tionary search process. So, let n* be the best solution
among all the random samples, which is regarded as the
initial population. In addition, if some problem-depen-
dent information or heuristic is available, it can also be
used in the initialisation stage, e.g., the well-known
NEH heuristic can be applied to generate one solution
for flow shop scheduling.

3.2 Implementation of step 2

To emphasise the order-based search and elitist-based
evolution, only the best top-/ solutions among the cur-
rent population Py are selected to perform later genetic
operators. Obviously a good choice of / and | P/ is often
problem specific, so the effects of such parameters on the

Fig. 1 Brief procedure of the
OGA

831

The sample number is
determined by OO based on

Random sampling to form initial population P,

let k=0, and determine the best solution 77 *.

the predefined p, and p,.

Select the best top-/ solutions from P, , perform the first
mutation with probability p,,, for the selected ones, update

7T * if necessary and order the resulted / solutions.

Whether stopping criterion
is satisfied or not?

The stopping criterion is
determined by OO based on
the predefined p, and p_, .

Yes

‘No

Perform

‘Pk+l|/2

selection and crossover based on the /
solutions obtained by the first mutation to

times order-based

Output 77 *.

‘Pk+l| solutions and evaluate them. Perform

elitism policy for 77 * simultaneously.

enerate |P, new temporary solutions. ,]

£ [P PO |Piy| is determined by
¢ OO according to the

Perform the second mutation with probability predefined p , and p,.

P' e for all temporary solutions to generate

v

Select the best |P,| solutions from the |P,,| solutions

obtained by the second mutation and the / solutions obtained
by the first mutation to form P,,,.Let k=k+1.

search quality will be discussed in Sect. 5. To avoid
premature convergence, the selected / solutions perform
the first SWAP mutation operator [16] with probability
Pmuts 1.€., two distinct elements are randomly selected
and swapped. ©n* should also be updated if the newly
generated solution is better than 7*. Since pp,, 1S set to
be very small, the number of evaluation for the newly
generated solutions created by the mutation in this step
can be ignored.

3.3 Implementation of step 3

To guarantee the final quality of the solution obtained
by the OGA, a final desired confidence level p,, and a
final desired p, are predefined to determine the total
evaluation number by OO. For example, if p,,=99.99%
and p,=0.01%, then 92099 total samples are required.
Thus, if population size is set to 100 for each of the
remaining generations, almost 900 more generations are
needed for the GA, except for the initialisation stage. So
the stopping criterion for the OGA is to set maximum
generation to 900. Once the OGA stops, the best solu-
tion n* found so far becomes the output.

3.4 Implementation of step 4

The widely used proportional selection operator of GA is
based on fitness value, so that one needs to determine a
transfer from objective value to fitness value. Here, or-
der-based or rank-based selection is strongly suggested to
avoid transfer. That is, the / solutions obtained by the
first mutation operator are ordered from the smallest
objective value to the largest one, and let 2'~/(2'~1) be
the selected-probability of the ith solution. The crossover
operator is only performed for these selected solutions.
The crossover operator used here is a partial mapping
crossover (PMX), which may be the most popular one
for operating the permutation [20]. In the PMX step,
two crossover points are first chosen and the sub-sec-
tions of the parents between the two points are ex-
changed, then the chromosomes are filled up by partial
map. For example, let 3 and 7 be two crossover points
for parents (26473589 1)and (45218769 3). Then,
the children will be (234[1876/95)and (412/735§8|
9 6). It has been demonstrated that PMX satisfies the
fundamental properties enunciated by Holland, namely
that it behaves in such a way that the best schemata
reproduce themselves better than the others [21].

832

Moreover, in order to generate | Py, | new temporary
solutions for the next mutation operator, it needs to
perform such order-based selection and crossover
operators | Py |/2 times.

3.5 Implementation of step 5

The crossover operator can introduce new individuals by
recombining the current population, while the mutation
operator serves to maintain diversity in the population
and prevent the population from stagnating at local
minima. Besides the first mutation operator, the second
SWAP mutation operator is applied with mutation
probability p’,. for every solution generated by cross-
over. Mutation also can enhance local search, but to
avoid random search p’,, is usually set rather small or
with a certain adaptive policy. Then, all | Py .| solutions
resulting from the second mutation are evaluated.
Meanwhile, the elitism policy is used in the OGA to
avoid losing good solutions, i.e. the best solution found
so far, 7*, should be updated during the whole evolution
process when better a solution has been found.

3.6 Implementation of step 6

In this step, the best top-|P; | solutions are selected
from the | Py ;| solutions obtained by the second muta-
tion and the / solutions obtained by the first mutation.
These selected solutions are then used to form the next
population, i.e., P, . Then, the OGA lets k=k+1 and
goes back to step 2 to repeat the evolution process.

In the next section, some simulations based on
benchmarks are carried out and the performance of the
OGA is tested.

4 Numerical test and analysis
4.1 Benchmarks selected

Computational simulation is often carried out with
benchmarks. In this paper, 29 problems that were con-
tributed to the OR-Library by Mattfeld and Vaessens are
selected. The first eight problems were called carl, car2,...,
car8§, respectively by Carlier [22]. The other 21 problems
were called recO1, rec03,..., rec41, respectively by Reeves
[7], who used them to compare the performances of SA,
GA and neighbourhood search and found these problems
to be particularly difficult. All these problems can be
downloaded from http://mscmga.ms.ic.ac.uk. Thus far
these problems have been used as benchmarks for study
with different methods by many researchers [14].

4.2 Simulation results and analysis

Based on the implementation discussed in Sect. 3, 50
independent simulations are carried out for the OGA,

classic GA [19] and blind search (BS), respectively
with the same computational budget for the OGA,
and the statistical results, as well as the results
of NEH heuristic, are summarised in Table 2. The
parameters of the OGA are set as py=90%,
P0=0.1%, pee=99.99%, p.=0.01%, pmu=p"mu=0.1,
[=60, P,=100(k=1). In the classic GA, population
size, maximum evolution generation and initialisation
are the same as the OGA and PMX crossover, SWAP
mutation with probability 0.1, proportional selection
(f= M—C\h.x, Where f is fitness value, M is a positive
number large enough) are used. The sample number of
BS is approximately set to be 2301+900x100, i.e.,
92301.

From Table 2, it can be obviously concluded that
the OGA provides the best optimisation performance
for flow shop scheduling among all the methods
studied. The results obtained by the OGA are close to
being the best results available. In particular, the
average relative error of the OGA over the best known
is no more than 3.5%. Compared with the NEH
method, the OGA can obtain much better results.
Compared with the classic GA and BS, not only can
the OGA achieve much better results, but its perfor-
mance is also very stable as its BRE is always very
close to the corresponding WRE. Especially when
solving larger scale problems, the average performance
of the classic GA is only of the same quality level as
the NEH method, and the BS is much worse than
NEH, but the OGA can do much better than NEH,
GA and BS. Thus, it can be concluded that the OGA
is superior to NEH, GA and BS with respect to
optimisation quality and stability. It also can be con-
cluded that the OGA can achieve the same perfor-
mance as the classic GA and BS with much reduced
computational efforts because more computational ef-
fort is required for classic GA and BS to achieve the
same solution quality of the OGA. The effectiveness of
the OGA can be attributed to the order-based genetic
operators, the parallel and self-learning evolution
mechanism of GA, and the guidance of OO. In addi-
tion, the performance of the OGA is also comparable
or even superior to that of taboo search, simulated
annealing, genetic algorithm and evolutionary pro-
gramming and so on as presented in a number of
existing papers [5, 7, 9, 10, 13].

5 The effects of some parameters
5.1 Effect of selected size

From the procedure of the OGA presented in Sect. 2,
parameter [/ (number of the selected solutions in
every generation) is one of the most important
parameters related to the performance of the OGA.
The effect of parameter / on the average performance
when optimising the problem Rec21 is illustrated in
Fig. 2.

Table 2 The statistical results of testing algorithms

833

Problem n, m Cc* OGA NEH GA BS

BRE ARE WRE RE BRE ARE BRE ARE
Carl 11,5 7038 0 0 0 0 0 0.27 0 0
Car2 134 7166 0 0 0 2.93 0 4.07 2.62 3.54
Car3 12,5 7312 0 0 0 1.79 1.19 2.95 1.19 3.40
Car4 14,4 8003 0 0 0 0.39 0 2.36 0 1.98
Car5 10,6 7720 0 0 0 4.24 0 1.46 0.48 1.86
Car6 8,9 8505 0 0 0 3.62 0 1.86 0 0
Car7 7,7 6590 0 0 0 6.34 0 1.57 0 0
Car8 8.8 8366 0 0 0 1.09 0 2.59 0 0
Rec01 20,5 1247 0 0.04 0.16 8.42 2.81 6.96 6.50 8.95
Rec03 20,5 1109 0 0.0 0 6.58 1.89 445 5.41 7.02
Rec05 20,5 1242 0 0.21 0.32 4.83 1.93 3.82 2.63 3.53
Rec07 20,10 1566 0 0.79 1.15 5.36 1.15 5.31 5.68 7.84
Rec09 20,10 1537 0 0.35 1.17 6.77 3.12 4.73 8.00 11.02
Recll 20,10 1431 0 0.91 3.07 8.25 3.91 7.39 10.27 12.89
Recl3 20,15 1930 0.26 1.08 1.66 7.62 3.68 5.97 9.64 12.58
Recl5 20,15 1950 0.10 1.23 2.21 4.92 2.21 4.29 6.51 9.77
Recl7 20,15 1902 0 2.08 3.21 7.47 3.15 6.08 10.83 14.04
Recl9 30,10 2093 0.14 1.76 3.01 6.64 4.01 6.07 11.90 13.11
Rec21 30,10 2017 1.44 1.64 3.12 4.56 3.42 6.07 10.36 12.68
Rec23 30,10 2011 0.85 1.90 3.08 10.0 3.83 7.46 12.98 15.24
Rec25 30,15 2513 1.31 2.67 3.74 6.96 4.42 7.20 11.62 15.85
Rec27 30,15 2373 0.97 2.09 3.58 8.51 493 6.85 14.08 18.13
Rec29 30,15 2287 1.88 3.28 5.95 5.42 6.21 8.48 15.44 18.41
Rec31 50,10 3045 0.43 1.49 2.59 10.28 6.17 8.02 13.23 16.28
Rec33 50,10 3114 0.61 1.87 4.05 4.75 3.08 5.12 10.48 13.61
Rec35 50,10 3277 0 0 0.33 5.01 1.46 3.30 6.60 8.09
Rec37 75,20 4951 2.46 3.41 4.30 7.80 6.56 8.72 15.69 17.01
Rec39 75,20 5087 1.63 2.28 3.24 7.71 6.39 7.57 14.47 17.24
Rec41 75,20 4960 2.30 3.43 4.69 9.58 7.42 8.92 17.78 20.15

From Fig. 2, it can be concluded that when the value
of parameter / is small, the algorithm is easily trapped in
local minimums which can lead to premature conver-
gence because there are not enough solutions selected.
When [gets larger, the average performance becomes
better. But if / is too large, the algorithm allocates a large
amount of the search resources to low-quality solutions
which induces a decline in the quality of the algorithm.
The determination of an optimal parameter / and the
adaptive mechanism will the object of the authors’
further study.

2063

2058

2053

Average makespan value

2048 1 1 1 1 1 1 1 1
32 36 40 44 48 52 56 60 64
Selected size

68

Fig. 2 The effect of selected size / on the average performance when
optimising problem Rec21

5.2 Effect of population size

There’s a tradeoff in the OGA between population size
and generation number under the same computing
budget determined by OO, i.e., generationx|P;|. The
effect of population size | P;| on the average performance
under the same computing budget when solving the
problem Rec21 is shown in Fig. 3.

From Fig. 3 it can be concluded that when the value
of parameter |P,| is small, the algorithm can not con-
verge at satisfactory solutions in spite of using more

2060

2055

2050

Average makespan value

2045

60 70 80 920 100

Popul ati on si ze

110 120 130

Fig. 3 The effect of population size | P;| on the average performance
when optimising problem Rec21

834

Q
w
=
=
)

5135

5130

Average makespan value

5125

181 381 581 781 981 1181 1381 1581 1781 1981 2181 2301

Initial sample number

o

5280

5220

5160

Average makespan value

5100
2301

7301 12301 17301 22301 27301 32301

Initial sample number

Fig. 4 a The effect of initial sample number on the average
performance when optimising problem Rec4l and the initial
sample number is not large. b The effect of initial sample number
on the average performance when optimising problem Rec41 and
the initial sample number is large

generations of evolution because the advantages of the
order-based search mechanism can not be fully applied.
When |P;| grows larger, the result of the algorithm be-
comes better. But if |P;| is too large, there are so few
generations that the algorithm can not evolve efficiently
and the solution quality becomes much worse. Actually,
the population size can be variable during the evolution
process, which is also a focus of further research work
by the authors.

5.3 Effect of initial sample number

Besides parameter / and |Py/|, the initial sample number
of the algorithm is another important parameter for the
OGA. The effect of this parameter on the average per-
formance under the same total computing budget when
solving the Rec41 problem is shown in Figs. 4a and 4b.
If the initial sample number is not large, it can be seen
from Fig. 4a that the results of the algorithm fluctuate
very slightly when this parameter is changed. However,
if the initial sample number is large enough, it can be
seen from Fig. 4b that the search quality becomes much
worse when this parameter becomes larger because less
computational efforts are allocated to the OGA’s evo-
lutionary search. Since this stage is only used to con-
struct the initial population of the OGA, it is suggested
that moderate numbers of diversely random solutions

should be sampled to form a satisfied initial population
and speedy heuristics should be applied in this stage if
available.

6 Conclusions

Borrowing the idea of ordinal optimisation to ensure the
quality of the best solution found with reduced com-
putation effort, and applying the evolutionary searching
mechanism and learning capability of a genetic algo-
rithm to efficiently perform exploration and exploita-
tion, a class of order-based genetic algorithms was
proposed for flow shop scheduling problems. Under the
guidance of OO and with emphasis on order-based
searching and elitist-based evolution, a good enough
solution can be guaranteed with a high confidence level
and reduced computation quantity, which was demon-
strated by benchmark-based computational simulation.
Furthermore, the effects of some parameters on the
optimisation quality were discussed. Future work will
focus on enhancing the guided search ability in con-
junction with OO and theoretical study of the conver-
gence behaviour of the OGA, as well as on developing
an adaptive mechanism. In addition, due to the gener-
ality and easy implementation of the OGA, other
applications will be attempted.

Acknowledgement The authors would like to thank Prof. Y. C. Ho
(Harvard Univ.) for his helpful discussion on OO. This research is
partially supported by National Science Foundation of China
(60204008) and the Basic Research Foundation of Tsinghua Uni-
versity, as well as 973 program (2002CB312200).

References

1. Garey MR, Johnson DS (1979) Computers and intractability: a
guide to the theory of NP-completeness. Freeman, San
Francisco

2. Baker KR (1974) Introduction to sequencing and scheduling.
Wiley, New York

3. Nawaz M, Enscore E, Ham I (1983) A heuristic algorithm for
the m-machine, n-job flow-shop sequencing problem. Omega
11(1):91-95

4. Koulamas C (1998) A new constructive heuristic for the flow-
shop scheduling problem. Eur J Oper Res 105:66-71

5. Ogbu FA, Smith DK (1990) The application of the simulated
annealing algorithm to the solution of the n/m/C\,,x flowshop
problem. Comput Oper Res 17(3):243-253

6. Osman IH, Potts CN (1989) Simulated annealing for permu-
tation flow-shop scheduling. Omega 17(6):551-557

7. Reeves CR (1995) A genetic algorithm for flowshop sequenc-
ing. Comput Oper Res 22(1):5-13

8. Reeves CR, Yamada T (1998) Genetic algorithms, path re-
linking and the flowshop sequencing problem. Evol Comput
6:45-60

9. Nowicki E, Smutnicki C (1996) A fast tabu search algorithm
for the permutation flow-shop problem. Eur J Oper Res
91:160-175

10. Widmer M, Hertz A (1989) A new heuristic method for the flow
shop sequencing problem. Eur J Oper Res 41:186-193

11. Taillard E (1990) Some efficient heuristic methods for the flow
shop sequencing problem. Eur J Oper Res 47:65-74

12.

13.

14.

15.

16.

Grabowski J, Pempera J (2001) New block properties for the
permutation flowshop problem with application in tabu search.
J Oper Res Soc 52:210-220

Wang L, Zheng DZ (2003) A modified evolutionary program-
ming for flow shop scheduling. Int J Adv Manuf Technol
(in press)

Dimopoulos C, Zalzala AMS (2000) Recent development in
evolutionary computation for manufacturing optimization:
problems, solutions, and comparisons. IEEE Trans Evol
Comput 4(2):93-113

Wang L, Zheng DZ (2001) An effective hybrid optimization
strategy for job-shop scheduling problems. Comput Oper Res
28(6):585-596

Wang L, Zheng DZ (2003) An effective hybrid heuristic for
flow shop scheduling. Int J Adv Manuf Technol 21(1):38-44

20.

21.

22.

835

. Ho YC, Sreenivas R, Vakili P (1992) Ordinal optimization of

discrete event dynamic systems. Discret Event Dyn Sys 2(2):
61-88

. Ho YC, Cassandras CC, Chen CH, Dai L (2000) Ordinal

optimization and simulation. J Oper Res Soc 51(4):490-500

. Davis L (1991) Handbook of genetic algorithms. Van Nostrand

Reinhold, New York

Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley, Reading, MA

Croce FD, Tadei R, Volta G (1995) A genetic algorithm for the
job shop problem. Comput Oper Res 22(1):15-24

Carlier J (1978) Ordonnancements a contraintes disjonctives.
R.A.I.LR.O. Recherche operationelle/Oper Res 12:333-351

