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Abstract In this paper, a two-dimensional axisymmetric
quasic-static model for the chemical-mechanical polish-
ing process (CMP) was established. Based on the prin-
ciple of minimum total potential energy, a finite element
model for CMP was thus established. In this model, the
four-layer structures including the wafer carrier, the
carrier film, the wafer and the pad are involved. The von
Mises stress distributions on the wafer surface were
analysed, and the effects of characteristics of the pad and
the carrier film and the load of the carrier on the von
Mises stress and nonuniformity on the wafer surface
were investigated. The findings indicate that the profile
of the von Mises stress distributions correlates with the
removal rate profile. The elastic modulus and thickness
of pad and carrier load would significantly affect the von
Mises stress and nonuniformity, but those of the film did
not affect very much.

Keywords Chemical-mechanical polishing Æ Finite
element method Æ von Mises stress Æ Nonuniformity

1 Introduction

The chemical-mechanical polishing (CMP) mechanism
consists of the wafer carrier, the carrier film, the pad and
the platen as shown in Fig. 1. The carrier is attached to
the wafer back by means of a vacuum. The wafer
surface, i.e., the IC part to be planarised, is placed on the
platen with one or more layers of pads. Slurry is sprayed
continuously through a tube and uniformly scattered on
the pad. The wafer is placed between the carrier and
pad. The relative motion generated by the carrier and

platen brings the wafer in contact with particles in the
slurry, which generates multiple actions including
the mechanical friction, the chemical reaction and the
removal of the chemical solvent to accomplish the highly
efficient material removal.

The CMP mechanism in Fig. 1 is intrinsically very
complicated and not yet understood very clearly, and the
polishing mechanism is extremely difficult to analyse.
Therefore, it is necessary to simplify the CMP model.
Runnels and Renteln [1] assumed no force transmission
between the pad and wafer and an elastic pad, and
ignored the effect of slurry on establishing an axisym-
metric model. They simulated the stress distribution on
the wafer surface and rewrote Preston’s equation to infer
the correlation between the stress and material removal
rate. The result indicated that the normal stress had
a significant effect on the removal rate. Runnels and
Eyman [2] described the action of the chemical solvent
by applying fluid dynamics. The model is satisfied
simultaneously with the slurry transport model and the
physical erosion model, but the latter is much closer to
the experimental result. Kaanta and Landis [3] designed
a wafer carrier composed of two different materials. The
result showed that the upward deflection of the carrier
caused by the two different expansion coefficients com-
pensates the polishing effect produced by the irregular
abrasive distributions, but it seems difficult to precisely
control the deflection of the carrier. Warnock [4]
presented a phenomenological erosion model. The pad
compressibility was used to predict the polishing rate for
different patterns. However, the behaviour of the wafer
edge was unpredictable. Sivaram et al. [5] tried to use the
deflection of the pad to predict the polishing rate and
planarisation. The model became a more complex
mathematical problem if predicting the global planari-
sation because the model only considered the local wafer
surface. Wang et al. [6] established a two-dimensional
axisymmetric elastic model for CMP by using an
I-DEAS package ignoring the effect of slurry and
assuming that the shear stress of the wafer surface was
uniformly distributed on the surface. The von Mises
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stress distribution on the wafer surface was used to
explore the wafer nonuniformity. The results confirmed
that the von Mises stress distribution did have an effect
on the surface nonuniformity. Srinivasa-Murthy et al. [7]
developed a three-dimensional elastic model by using an
ANSYS package to study the stress variation on the
wafer surface when sustaining force during the CMP
process. The result showed that the von Mises stress
peaks at the edge. The profile of the stress distribution is
similar to that described by Wang et al. [6], but the site of
the peak stress is somewhat different. Lin and Lo [8]
established a two-dimensional axisymmetric quasic-
static model for CMP and developed a two-dimensional
axisymmetric quasic-static finite element model for
CMP. They found that the profile of the simulated von
Mises stress distributions is similar to that of the

experimental removal rate. The axial stress and the strain
are the dominant factors of the von Mises stress distri-
butions on the wafer surface and the wafer deformation,
respectively. Baker [9] presented a pressure profile model
and derived the deformation and the pressure distribu-
tions between the wafer and the pad while regarding the
pad as an elastic plane. The result was that the pressure
variation in the edge region matched the pressure vari-
ation in the nonuniform material removal.

2 Theoretical foundations

2.1 A two-dimensional axisymmetric
quasi-static model

CMP is used mainly for the material removal of the
wafer surface. The material removal rate (MRR) during
the CMP process can be considered as a function of the
applied normal pressure and the relative velocity. It is
usually expressed by Preston’s equation [10], i.e.:

MRR ¼ Cp � P � V ð1Þ

where P is the normal pressure, V is the relative velocity
and Cp is the Preston’s constant.

The normal pressure can be controlled during the
polishing process and the relative velocity can be de-
duced from the relationship between the wafer revolu-
tion and the pad revolution in Eq. 1. Fig. 2 illustrates
the relative motion between the wafer and the pad. For
point A on the wafer, its relative velocity to the pad can
be expressed as:

V
*

¼ V
*

w � V
*

p ð2Þ

where V
*

is the relative velocity of point A on the wafer to
the pad, V

*

w is the absolute velocity of pointAon thewafer
and V

*

p is the absolute velocity of point A on the pad.

Fig. 1 An illustration of CMP

Fig. 2 An illustration of the
relative motion between the
wafer and pad
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The absolute velocity quantities in Eq. 2 are given by:

V
*

w ¼ R
*

w � x
*

w

V
*

p ¼ R
*

p � x
*

p ð3Þ

where ~RRw is the distance from point A to the wafer
centre, O’; x

*

w is the revolution of the wafer, ~RRpis the
distance from point A to the pad centre and O; x

*

p is the
revolution of the pad.

By incorporating Eq. 3 into Eq. 2, we get:

V
*

¼ R
*

w � x
*

w � R
*

p � x
*

p

¼ R
*

w � x
*

w � x
*

p

� �
� R

*

wp � x
*

p ð4Þ

where R
*

wp is the distance between the pad centre and the
wafer centre, OO’.

Yu et al. [11] showed that stresses on the wafer
surface arise mainly from two sources, namely the
pressure exerted by the carrier and the shear stress due
to the relative motion between the wafer and the pad.
If both the wafer revolution and pad revolution are
assumed to be the same, i.e., ~xxw ¼ ~xxP , the relative
velocity of point A on the wafer to the pad, V

*

in Eq. 4
can be simplified as �R

*

wp � x
*

p. It is obviously a con-
stant value, and it results in a constant shear stress
uniformly distributed on the wafer surface-pad inter-
face; therefore, the effect of the shear stress can be
neglected and a quasi-static model is established.
Furthermore, since the force is axisymmetrically
distributed and the axisymmetric geometry of the pad
can be achieved by assuming that it possesses a huge
smooth surface, the CMP model in this paper can be
simplified into a two-dimensional axisymmetric quasi-
static model, as shown in Fig. 3.

2.2 Two-dimensional axisymmetric finite
element formulations

While an elastic body is exerted by a body force and a
surface force, its total potential energy can be defined as:

P ¼ UP � VP ð5Þ

where P is the total potential energy, Up is the strain
energy and Vp is the work done on the body by the
applied load.

The strain energy and the work done by the applied
load in Eq. 5 can be expressed, respectively, as:

UP ¼
1

2

ZZZ

V

ef gT rf gdV ð6Þ

where {�} is the strain row vector, {r} is the stress row
vector and V is the volume.

VP ¼
ZZZ

V

df gT Fbf gdV þ
ZZ

S

df gT Tdf gdS ð7Þ

where d is the displacement, {Fb} is the body force, {Td}
is the surface tractions and S is the surface of the body
on which the surface tractions are prescribed.

The principle of minimum potential energy can be
stated as that of all possible displacement states (u and v
for a two-dimensional case); it assumes that a body
satisfies a compatibility and a given kinematic or dis-
placement boundary condition, and in the meanwhile,
the state which satisfies the equilibrium equations makes
the potential energy be a minimum value. [12]

If the potential energy, P is expressed in terms of the
displacements u and v, the principle of minimum
potential energy gives, at the equilibrium state:

dP u; vð Þ ¼ dUp u; vð Þ � dVp u; vð Þ ¼ 0 ð8Þ

A displacement function of an arbitrary point in an
element is defined as:

df g ¼ N½ � df g ð9Þ

where {d} is the displacement function, [N] is the shape
function matrix and r is the nodal displacement vector.

By substitutingHooke’s law, rf g ¼ De½ � ef g and strain-
displacement relations ef g ¼ B½ � df g into Eq. 9, we get:

rf g ¼ De½ � B½ � df g ð10Þ

Fig. 3 A two-dimensional
axisymmetric quasic-static
model for CMP
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where De½ � is the elastic stress-strain relation matrix and
[B] is the strain-displacement matrix.

By incorporating Eq. 10 into Eq. 6 and Eq. 9 into
Eq. 7, the strain energy and the work done by the
applied load become, respectively:

UP u; vð Þ ¼ 1

2

ZZZ

V

df gT B½ �T De½ � B½ � df gdV ð11Þ

VP u; vð Þ ¼
ZZZ

V

df gT N½ �T Fbf gdV þ
ZZ

S

df gT N½ �T Tdf gdS

ð12Þ

By substituting Eqs. 11 and 12 into Eq. 5, the total
potential energy of an elastic body becomes:

Pðu; vÞ ¼ 1

2

ZZZ

V

df gT B½ �T De½ � B½ � df gdV

�
ZZZ

V

df gT N½ �T Fbf gdV

�
ZZ

S

df gT N½ �T Tdf gdS ð13Þ

By incorporating Eq. 13 into Eq. 8 and by taking a
first variation with respect to the displacement, we get:

K½ �e df g ¼ Ff ge ð14Þ

where

k½ �e ¼
ZZZ

V

B½ �T De½ � B½ �dV

Ff ge ¼
ZZZ

V

N½ �T Fbf gdV þ
ZZ

S

N½ �T Tdf gdS

By expressing this step by step in terms of the whole
domain, a governing equation for a two-dimensional
finite element model is given by:

K½ � df g ¼ Ff g ð15Þ

where [K] is the elastic stiffness matrix, i.e., K½ � ¼
Pn
1

K½ �e
and {F} is the nodal force, i.e., Ff g ¼

Pn
1

Ff ge.

3 A finite element model

The CMP model in Fig. 3 is divided into a total of
6800 triangular elements and 3661 nodes. The basic
assumptions are: (1) The surfaces of the carrier, the
carrier film, the wafer and the pad are smooth. (2) The
materials, including the carrier, the carrier film, the
wafer and the pad are all isotropic. (3) All materials

are tightly stacked. In addition, the boundary condi-
tions are: (1) Only a uniformly distributed down
pressure is considered, and it is applied on the top
surface of the carrier (2) The bottom surface of the
pad sustains a fixed support, while the nodes at the
bottom are subject to a complete limitation in all
directions (3) The left side is a symmetric boundary
condition and enjoys a roller support, while the nodes
on this side have an r direction limitation and are able
to move freely in the z direction.

4 A verification of the model

Von Mises proposed in 1913 that yielding occurs when a
combination of stresses, i.e., the von Mises stress, ex-
ceeds the yield strength of the material. The von Mises
stress applied in a two-dimensional axisymmetric quasi-
static CMP model can be simplified as:

�rr ¼ 1ffiffiffi
2
p rrr � rzzð Þ2 þ rzz � rhhð Þ2 þ rrr � rhhð Þ2 þ 6s2rz

h i1
2

ð16Þ

where �rr is the von Mises stress, and rrr, rhh, rzz and srz
are the radial, hoop, axial and shear stresses, respec-
tively.

With the condition that the effect of the slurry was
ignored and the initial material properties and geom-
etries for the carrier, the carrier film, the wafer and the
pad listed in Table 1 [7] were used, a 0.0689655 MPa
down pressure was applied on the top surface of the
carrier and the von Mises stress distributions on the
wafer surface were simulated by using the developed
finite element model. Fig. 4a shows the correlation
between the calculated von Mises stress distributions
and the distance from the wafer centre. [8] To under-
stand much more about the variations of the lower and
flatter parts of the von Mises stress distributions in
Fig.4a, the scale in the y axis of this part is magnified
and plotted in Fig.4b. Figs. 4a, b show that near the
wafer centre, the von Mises stress distribution was
almost uniform, and then increased a small amount
gradually. However, near the wafer edge, it decreased
in a large range. Finally, it increased dramatically and
peaked significantly at the edge. This result was similar
to that of Srinivasa-Murthy et al. [7].

Figure 4 von Mises distribution on the wafer sur-
face is an experimental diagram for material removal
rate variations by using two different carrier films. [6]

Table 1 Initial material properties and geometries [7]

Elastic modulus Poisson’s
ratio

Radius Thickness
(MPa) (mm) (mm)

Wafer carrier 193054.4 0.3 100.33 7.62
Carrier film 0.26544 0.1 100.33 0.635
Wafer 193054.4 0.3 100.33 0.706
Pad 2.2891 0.1 558.8 1.397
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The curves in Fig. 5 are oxide-polishing results
obtained with two carrier films, R200T3 and DF200,
which have an elastic modulus of 0.69 MPa and
0.407 MPa, respectively. It shows that there is an
obvious variation in the material removal rate from the
average values at the edges, for the two films. In
comparing Figs. 4a,b and Fig. 5, although the simu-
lated conditions in this paper are different from that of
Fig. 5, the profile of the von Mises stress distributions
in Figs. 4a,b is similar to the removal rate profile, i.e.,
the characteristics of the curves in Figs. 4a,b and
Fig. 5 match qualitatively. It verifies that the proposed
CMP model is acceptable.

5 Results and discussion

5.1 The effect of compressibility for the pad and carrier
film on wafer surface stress and nonuniformity

The different elastic modulus for both the pad and car-
rier film were then used to simulate the von Mises stress
distribution and nonuniformity on the wafer surface.
Four types of elastic modulus for the pad and carrier
film are listed in Table 2. The ‘standard’ elastic modulus
of the pad and carrier film in Table 2 means the initial
elastic modulus in Table 1.

Figure 6 shows the von Mises stress distribution on
the wafer surface for a different compressibility of the
pad. From the simulated results, it can be seen that
the larger the elastic modulus of the pad, i.e., the smaller
the compressibility, the wafer which was in contact with
a harder pad would result in a larger von Mises stress.

Figure 7 shows the von Mises stress distribution on
the wafer surface for a different compressibility of the
carrier film. According to Fig. 7, when the elastic mod-
ulus of the carrier film was larger (which meant that the
compressibility was smaller) the von Mises stress would
also be larger. However, the changes of the elastic
modulus of the carrier film did not affect the von Mises
stress distribution much, because the carrier film only
came into contact with the wafer back, and its elastic
modulus was significantly smaller than that of the pad.

Figure 8 shows the relationship between the com-
pressibility of both pad and carrier films and nonuni-
formity. In this study, according to the definition of
nonuniformity of the wafer surface by Wang et al. [6],
the relationship can be defined as follows:

Fig. 4

Fig. 5 The experimental material removal rates on the wafer
surface [6]

Table 2 The elastic modulus of the pad and the carrier film

Elastic modulus (MPa) Pad Carrier film

Soft 0.34474 0.10345
Standard 2.2891 0.26544
Hard 6.89655 0.55172
Harder 20.6897 1.10345

Fig. 6 The von Mises stress distributions on the wafer surface for a
different pad compressibility
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R ¼ rmax

rc
ð17Þ

where R is the nonuniformity of the wafer surface, rmax

is the maximum von Mises stress on the wafer surface
and rc is the von Mises stress on the wafer centre.

In Fig. 8, when a down pressure is applied on the top
surface of the wafer carrier, the larger the elastic mod-
ulus of the pad, the harder the material of the pad, and
this would result in the smaller axial deformation on the
wafer surface to decrease the nonuniformity of the wafer
surface. Furthermore, since the carrier film only came
into contact with the wafer back and its elastic modulus
was significantly smaller than that of the pad, its elastic
modulus variations did not affect the deformation very
much, and the nonuniformity of wafer surface did not
change much as well.

5.2 The effect of thickness for the pad and carrier film
on wafer surface stress and nonuniformity

The different thicknesses of both the pad and the carrier
film were then used to simulate the von Mises stress
distribution and nonuniformity on the wafer surface. 4
kinds of thicknesses for the pad and the carrier films are
listed in Table 3. The ‘standard’ thickness of the pad and

carrier film in Table 3 means the initial thickness in
Table 1.

Figure 9 shows the von Mises stress distributions on
the wafer surface for different pad thicknesses. Since the
elastic modulus of the pad was far less than that of the
wafer, its elastic modulus effect on the wafer was more
obvious when its thickness was increasing. It made the
von Mises stress on the wafer surface reduce, but it made
the axial deformation increase to result in a gradual
increasing of the nonuniformity of the wafer surface, as
shown in Fig. 10.

Figure 11 shows the von Mises stress distributions on
the wafer surface for different carrier film thicknesses.
Although the elastic modulus of the carrier film was also
far less than that of the wafer, its thickness change did
not affect either the von Mises stress distribution or the
deformation on the wafer surface very much, because the
carrier film only came into contact with the wafer back,
and its thickness and the thickness change were smaller

Fig. 8 The relationship between the pad and the carrier film
compressibility and nonuniformity

Table 3 Thicknesses of the pad and the carrier film

Thickness (mm) Pad Carrier film

Thin 0.6985 0.254
Standard 1.397 0.635
Thick 2.0955 1.016
Thicker 2.794 1.397

Fig. 7 The von Mises stress distributions on the wafer surface for a
different carrier film compressibility

Fig. 9 The von Mises stress distributions on the wafer surface for a
different pad thickness

Fig. 10 The von Mises stress distributions on the wafer surface for
a different carrier film thickness
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than those of the pad. As a result, the nonuniformity of
the wafer surface seldom changed with different thick-
nesses for the wafer film as shown in Fig. 11.

5.3 The effect of carrier loads on the wafer
surface stress and nonuniformity

The different carrier loads were then used to simulate
the von Mises stress distribution and nonuniformity
on wafer surface. 5 kinds of carrier loads are listed in
Table 4. The ‘standard’ carrier load in Table 4 indicates
the initial pressure exerted on the top surface of the
wafer, discussed in the previous section.

Fig. 12 shows the von Mises stress distributions on
the wafer surface for different carrier loads. As seen in
Fig. 12, the von Mises stress on the wafer surface be-
came larger when the load of the carrier was increasing.
Meanwhile, the axial deformation of the wafer surface
became larger to result in a gradual increasing of non-
uniformity on the wafer surface as shown in Fig. 13. In
other words, the magnitude of the load is proportional
to the load of the von Mises stress and the nonunifor-
mity on wafer surface.

In order to investigate more about the effect of carrier
loads, the von Mises stress on the wafer centre, rc and
the maximum von Mises stress, rmax for each curve in
Fig. 12 and the nonuniformity, R, in Fig. 13 were
extracted and are listed in Table 5. However, since the
units of rc and rmax are different from that of R, there is
no way to compare them. Therefore, we defined four
dimensionless quantities, that is, the load ratio, the rc
ratio, the rmax ratio and the R ratio as the the ‘standard’

load condition exerted on the top surface of the carrier
as a basis. These four ratios mean that the values of the
load rc, rmax and R are divided by those under the the
condition of ‘standard’ load. All of them are listed in
Table 6 and plotted in Fig. 14. Three dimensionless
curves including the rc ratio, the rmax ratio and the R
ratio under the condition of different load ratios are
depicted in Fig. 14. Finally, we used the least square
method [13] to search for a regressive linear equation for
each curve which goes through one of the three
simulated ratios, namely, the rc ratio, the rmax ratio or R
ratio, and found that the square summation of distance
from each simulated ratio to its average value is mini-
mum. The slopes can be acquired from all of these
ratios, and they can be used to determine and compare
how much the load affects the von Mises stress and
nonuniformity.

Fig. 11 The relationship between the pad and the carrier film
thickness and nonuniformity

Table 4 The carrier loads

Load Psi MPa

Lightest 4 0.0275862
Lighter 6 0.0413793
Light 8 0.0551724
Standard 10 0.0689655
Heavy 12 0.0827586

Fig. 12 The von Mises stress distributions on the wafer surface for
different carrier loads

Fig. 13 The relationship between the carrier loads and nonunifor-
mity

Table 5 rc, rmax and R for different carrier loads

Load rc (MPa) rmax (MPa) R

Lightest 0.0206079 0.0381753 1.8524550
Lighter 0.0283532 0.0532827 1.8792443
Light 0.0349143 0.0664274 1.9025797
Standard 0.0405367 0.0779550 1.9230700
Heavy 0.0454262 0.0881850 1.9412792
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The mathematical form for a regressive linear equa-
tion can be expressed as:

y ¼ a � xþ b ð18Þ

where x denotes the load ratio, y is the rc ratio, rmax

ratio or R ratio and a and b are the parameters.
In Eq. 18, a and b can be derived as:

a ¼
P

x� �xxð Þ y � �yyð ÞP
x� �xxð Þ2

¼ n
P

xyð Þ �
P

xð Þ
P

yð Þ
n
P

x2 �
P

xð Þ2

b ¼ �yy � a�xx ð19Þ

where �xx is the average load ratio and �yy is the average rc

ratio, average rmax ratio or average R ratio.
By incorporating the data in Table 6 into Eq. 19, the

quantities of a and b can be acquired. Then, by incor-
porating these into Eq. 18, a specified linear regressive
equation for each curve and its slope can be obtained
and listed in Table 7. Fig. 14 and Table 7 showed that
the two curves of rc ratio and rmax ratio approach each
other and their slopes from the linear regressive equa-
tions are steeper and greater than that of the R ratio
curve. The result indicated that the effect of the carrier
load on the von Mises stress was more significant and
obvious than that of the effect of the carrier load on the
nonuniformity.

6 Conclusions

From the simulation and analysis of the CMP model
developed in this paper for the different elastic modulus

of the the pad and carrier film, the different thicknesses of
the pad and carrier film and the different carrier loads,
the following conclusions can be drawn:

(1) A two-dimensional axisymmetric quasi-static finite
element model for CMP can be developed.

(2) The calculated von Mises stress distributions near
the wafer centre are almost uniform, and then
increase gradually with a small amount. However,
the stress distributions decreased by a great deal near
the wafer edge. Finally, the stress distributions in-
creased dramatically and peaked significantly at the
edge.

(3) The larger the elastic modulus of the pad, i.e.,
the smaller the compressibility, the larger the
von Mises stress and the smaller the axial defor-
mation on the wafer surface to reduce the nonuni-
formity of the wafer surface. Because the carrier film
only came into contact with the wafer back and its
elastic modulus was significantly smaller than that
of the pad, its elastic modulus changes did not have
much of an affect on either the von Mises stress
distribution or the nonuniformity of the wafer
surface.

(4) When the thickness of the pad increased gradually,
the von Mises stress on wafer surface was reduced,
but the deformation increased to make the nonuni-
formity of the wafer surface larger. However, the
thickness changes of the wafer film did not affect the
von Mises stress distribution very much and seldom
changed the nonuniformity of the wafer surface
because it only came into contact with the wafer
back and its thickness and thickness change were
smaller than those of the pad.

(5) The magnitude of the carrier load is proportional to
the magnitude of the von Mises stress and the non-
uniformity on the wafer surface, but the effect of the
carrier load on the von Mises stress was more
significant and obvious than that on the nonunifor-
mity, when using the least square method with a
dimensionless form.
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Fig. 14 The relationships for the load ratio-stress ratio and the
load ratio-nonuniformity ratio

Table 6 Dimensionless quantities for the load ratio, the rc ratio,
the rmax ratio and the R ratio

Load ratio rc ratio rmax ratio R ratio

0.4 0.5083763 0.4897094 0.9632800
0.6 0.6994451 0.6835058 0.9772105
0.8 0.8613009 0.8521249 0.9893450
1.0 1.0 1.0 1.0
1.2 1.1206190 1.1312295 1.0094688

Table 7 Regressive equations for the rc ratio, the rmax ratio and
the R ratio and their slopes under the different load ratios by the
least square method

Curves Regressive equations Slopes

rc ratio y=0.76252015*x+0.22793214 0.76252015
rmax ratio y=0.7997672*x+0.19150016 0.7997672
R ratio y=0.05758355*x+0.94179402 0.05758355

Notes:
(1) rc ratio curve: y is rc ratio, x is load ratio
(2) rmax ratio curve: y is rmax ratio, x is load ratio
(3) R ratio curve: y is R ratio, x is load ratio
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