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Abstract A process capability index Cpm that fits nomi-
nal-the-best type quality characteristics is an effective
tool for assessing process capability since the index can
adequately reflect a centring process capability and
process yield. A valuable method using Cp estimators
was developed by Chou [7] for practitioners to use to
determine whether or not two processes have equal
capability. However index Cp failed to measure process
yield and process centring with bilateral specifications
and in addition, more than two suppliers can be selected
in an actual application. This study proposes a fuzzy
inference method to select the best among the competing
suppliers based on an estimated capability index of Cpm

calculated from sampled data. This method has the
advantages of fuzzy systems where a grade can be
obtained instead of a more specific exact evaluation
result. An illustrated example of colour STN displays
demonstrates that the proposed method is effective
and feasible for the evaluation of competing process
capability.

Keywords Process capability indices Æ Process
centring Æ Confidence interval Æ Fuzzy evaluation

1 Introduction

Process capability indices (PCIs), are used to provide a
numerical measure of whether a production process is
capable of producing items satisfying the quality
requirement preset in the factory that has received sub-
stantial research attention. Quantifying process poten-
tial and performance is important for any successful
quality improvement activity and quality program
implementation. The relationships between the actual
process performance and the specification limits may be
quantified using appropriate process capability indices.
The two capability indices which have been widely used
in manufacturing industry are Cp and Cpk. These two
indices provide numerical measures of whether a
manufacturing process meets the preset capability
requirement, and they are defined as [1]:

Cp ¼
USL� LSL

6r
¼ d

3r
; ð1Þ

Cpk ¼ min
USL� l

3r
;
l� LSL
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� �
¼ d � l� mj j

3r
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where USL and LSL are the upper and lower specifi-
cation limits preset by the process engineers or product
designers, l is the process mean, r is the process stan-
dard deviation. d=(USL)LSL)/2 is the half length of
the specification interval (LSL, USL), and m=
(USL+LSL)/2 is the mid-point of the specification
interval. As noted by Boyles [2], Cp and Cpk are both
yield-based indices and are independent of the target
value T. They may fail to account for process yield and
process centring with bilateral specifications. For this
reason, Chan et al. [3] developed the index Cpm which
takes the process centring into consideration. This index
is defined as

Cpm ¼
USL� LSL

6
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where T is the target value. By definition, Cpm, will
obviously model the manufacturing process under the
loss function approach. Cpm was not originally designed
to provide an exact measure of the number of
non-conforming items, but Cpm includes the process
departure (l)T)2 in the denominator of the definition to
reflect the degree of process targeting. For instance,
large process variance results in a lower Cpm value, and a
large gap between the process mean and the target value
results in a lower Cpm . The Cpm index attempts to take
attention away from conformance to specifications and
refocuses on optimal product quality, achieved only
when critical dimensions are made according to target.
Recently, many widely used statistical packages and
quality researchers addressed the process capability of
applying Cpm for cases in which the specification toler-
ances are asymmetrical [4, 5]. As noted by Kotz et al. [6],
when the process is capable (Cpm‡1), the relationship
between Cpm and process yield is % Yield ‡ 2F(3Cpm))1.
For example, if the capability of the product is 1.0, then
it guarantees that the total process yield is at least
greater than 99.73%. Further, given Cpm >c, the bounds
on |l)T| can be calculated as

l� Tj j\ d
3c

On the other hand, a smaller value of Cpm implies a
lower process yield, higher expected loss, and poor
process capability. Therefore, index Cpm is suitable for
nominal-the-best type processes (bilateral specifica-
tions).

Chou [7] developed an effective procedure that uses
estimators of Cp, Cpu and Cpl for practitioners to deter-
mine whether or not two processes have equal capability.
One of the purposes for which process capability indices
can be used is selecting between the more capable process
of two competing processes, as a result, the procedure
can be used to select the better of two suppliers. Index Cp

is failed to measure process yield and process centring
with bilateral specifications, and also, in an actual
application, more than two suppliers can be selected.
Thus, a capability index ĈCpm is used calculated from
sampled data to develop a similar procedure for practi-
tioners to use in determining whether or not h (h >2)
processes have equal capability. The h processes are tes-
ted two at a time, there are hC2=h(h)1)/2 possible paired
comparisons. Furthermore, a great degree of uncertainty
may be introduced into the capability assessment due to
sampling errors. Consequently, critical value, p-value
and confidence interval approaches are frequently used
to assess the process capability more reliably during a
hypothesis test. When using the confidence interval ap-
proach, the estimated indices of Cpmi and Cpmj calculated
from sampled data are employed to determine whether
or not two processes have equal capability. Nevertheless,
as mentioned in [8], the described boundary between
reaching a null hypothesis and rejecting a null hypoth-
esis was too fine in previous methods. Thus, a fuzzy

evaluation method that possesses the advantage of fuzzy
systems where a grade can be obtained instead of an
exact evaluation result is adopted to select the best
among the h suppliers in this study.

The concept of fuzzy sets was first proposed by Zadeh
[9] in 1965. A fuzzy/neuro-fuzzy approach has new been
applied in many fields such as automatic control, opti-
mal analysis, manufacturing systems and decision-
making [10, 11, 12, 13] in industry. In this paper, a fuzzy
evaluation method is proposed so that the capability of
competing process can be assessed. This fuzzy inference
evaluation will consider the normalizing indices d and c
(introduced in Section 3) as inputs and obtain a result
value as an output. Both input and output are described
by linguistic variables to account for the uncertain
information associated with them. Here, triangular and
trapezoid membership functions are used to represent
uncertain information about process variables. An
approximate rule-based reasoning approach is also
presented for quantitative analysis. By applying the
value of the fuzzy inference result, a grade instead of
exact evaluation is obtained in this paper. In addition,
the evaluation procedure and an illustrated example will
be presented for ease of applications.

2 Process capability confidence intervals

The process capability index Cpm for a whole population
is not normally available since the process mean and the
standard deviation are generally unknown. Only an
estimated capability index ĈCpm by using a sample can be
obtained in practice. Let Xi1, Xi2,..., Xin, i=1, 2, ..., k, be
k sets of random samples of size n from each supplier
(the sample size is selected to be the same for simplicity,
however it is not necessary). Each product from a
supplier has the same product specification and target
value. The above calculations of average and variance
are briefly summarized in Table 1.

Thus, the natural estimator of Cpmi can be written as
follows:

ĈCpmi ¼
d

3
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where Xi and S2
i are the sample mean and sample vari-

ance of process i with sample size ni. The probability
density function of ĈCpmi (see Vannman and Kotz [14]) is

fĈCpmi
xð Þ ¼ 21�ni=2Cni

i
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where x>0 and Ci ¼
ffiffiffiffi
ni
p

d=ri, ki ¼
ffiffiffiffi
ni
p

li � Tð Þ=ri. As
noted by Pearn et al. [15], under the normality assumption
Rni

j¼1 Xij � T
� �

=ri is distributed as a non-central chi-square
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distribution with ni degrees of freedom and a non-cen-
trality parameter ki. The r-th moment about zero of ĈCpmi
(see Pearn et al. [15] and Vannman [16]) is

E ĈCpmi
� �r ¼ Ci

3
ffiffiffi
2
p

� �r

�
X1
j¼0

e�ki=2 ki=2ð Þj

j !
C

ni � r
2
þ j

� 	
=C

ni

2
þ j

� 	( )
: ð6Þ

The quantity vi Cpmi=ĈCpmi
� �

is approximately distrib-
uted as a chi-square distribution with vi degrees of
freedom which is denoted by v2(vi). vi can be estimated
by calculating the value v̂vi from the sample as

v̂vi ¼
ni 1þ X i � T

� �
=Si


 �2� 	2
1þ 2 X i � T

� �
=Si


 �2 ð7Þ

It is well known that a great degree of uncertainty
may be introduced into capability assessment due to
sampling error. To achieve a more reliable capability
assessment, the confidence interval approach is used
below during the hypothesis test. Letting Cli and Cui

represent the lower and upper confidence limits of pro-
cess i, it follows that

P Cli�Cpmi�Cui
� 

¼ P v̂vi
Cli

ĈCpmi

� 	2
� v̂vi
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� 	2
� v̂vi

Cui
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� 	2
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� 	2� �
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where a stands for the producer risk. Therefore

v̂vi
Cli

ĈCpmi

 !2

¼ v2a=2 v̂við Þ and v̂vi
Cui

ĈCpmi

 !2

v21�a=2 v̂við Þ; ð9Þ

and v2a v̂við Þ denotes the 100a% lower-tail percentage
points of v2 v̂við Þ. Thus, the approximate 100(1)a)%
confidence interval can be written as

Cli; Cui½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2a=2 v̂við Þ=v̂vi

q
� ĈCpmi;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21�a=2 v̂við Þ=v̂vi

q
� ĈCpmi

h i
:

ð10Þ

3 Fuzzy evaluation of supplier capability

In this study, the estimated indices of Cpmi and Cpmj,
calculated from sampled data, are used to determine

whether or not two processes have equal capability. To
achieve a more reliable capability assessment, the confi-
dence interval approach is used during the hypothesis
test. From the previous section, one can see that the
confidence interval of indices Cpmi and Cpmj are [Cli, Cui]
and [Clj, Cuj], respectively. Using the statistical
method, the comparison of these two indices can be
represented as:

(1) If [Cli, Cui] \ [Clj, Cuj]
1 /, then it is concluded

that Cpmi=Cpmj.
(2) If Cli>Cuj, then it is concluded that Cpmi>Cpmj.
(3) If Cui<Clj, then it is concluded that Cpmi<Cpmj.

Nevertheless, it is rather ambiguous in rule one. In
this rule, the indices are concluded to be equal whether
the intersection is small or large. For instance:

Case A: When [Cli, Cui]=[0.5, 1.6] and [Clj, Cuj]=
[1.5,2.4] then [Cli, Cui] \ [Clj, Cuj]=[1.5, 1.6].

Case B: When [Cli, Cui]=[0.9, 1.8] and [Clj, Cuj]=
[0.8, 1.7] then [Cli, Cui] \ [Clj, Cuj]=[0.9, 1.7].

One can recognise that case B is superior to case A for
the possibility of ‘‘Cpmi=Cpmj’’ since the intersection in
case B is larger than that of case A. In order to distin-
guish an equal grade of index Cpm (for i and j) in different
intersections, a method of incorporating the fuzzy
inference with a process capability index is now pro-
posed. An approximating rule-based reasoning approach
is used for quantitative analysis. In this study, supplier i
is said to be superior to supplier j when the value of the
inference result is positive. The larger the value result, the
more capable supplier i is than supplier j. On the other
hand, a negative value result implies that supplier i is
inferior to supplier j. In other words, the supplier i is said
to be an overall better-quality supplier than supplier j
when the value of the inference result is equal to 1; sup-
plier i is said to be completely of the same quality as
supplier jwhen the value of the inference result is equal to
0 and supplier i is said to be completely of worse quality
than supplier j when the value of the inference result is
equal to )1. A result value of the inference within {0, 1}
or {)1, 0} is used to represent the different grade of
capability, as a result, a grade instead of an exact eval-
uation is obtained in this paper. Let the normalizing
indices d and c be defined as

d ¼ Cli � Cuj

max Cui;Cuj
� � ; ð11Þ

c ¼ Cui � Clj

max Cui;Cuj
� � : ð12Þ

Then the fuzzy inference systems are composed of
two inputs and one output as shown in Fig. 1.

Generally, the fuzzy analysis procedure consists
of four steps: definition of input/output fuzzy

Table 1 Sample data mean and variance

Sample Mean Variance

X11, X12,..., X1n
�XX1 ¼ Rn

j¼1X1j

� 	
=n S2

1 ¼ Rn
j¼1 X1j � X 1

� �2
= n� 1ð Þ

X21, X22,..., X2n
�XX2 ¼ Rn

j¼1X2j

� 	
=n S2

2 ¼ Rn
j¼1 X2j � X 2

� �2
= n� 1ð Þ

..

. ..
. ..

.

Xk1,Xk2,...,Xkn
�XXk ¼ Rn

j¼1Xkj

� 	
=n S2

k ¼ Rn
j¼1 Xkj � X k
� �2

= n� 1ð Þ
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variables, fuzzy rules, fuzzy inference and defuzzification
[17].

(1) Definition of input/output fuzzy variables. The
membership functions (MFs) of input/output variables
are defined by linguistic variables. There are four kinds
of membership functions for representing fuzzification:
in triangular, trapezoid, gaussian and sigmoid type. In
this study, triangular and trapezoid types are adopted as
MFs for the sake of simplicity and for describing the
asymmetric property. The triangular MF is specified by
three parameters {a,b,c} which determine the three cor-
ners of triangle. If this function is denoted as trimf
(x;a,b,c) then

trimf x; a; b; cð Þ ¼

0 x\a
x�a
b�a a � x � b
c�x
c�b b � x � c
0 x > c

8>><
>>:

: ð13Þ

Furthermore, the trapezoid MF is denoted trap-
mf(x;a,b,c,d) which is specified by four parameters
{a,b,c,d}, and then one has

trapmf x; a; b; cð Þ ¼

0 x\a
x�a
b�a a � x � b
1 b � x � c

d�x
d�c c � x � d
0 x > d

8>>>><
>>>>:

: ð14Þ

The universe of input variables is defined in {)1, 1} as
shown in Fig. 2. Membership functions of input d are
defined as trapmf(x;)1,)1,)0.4,)0.3), trimf(x;)0.4,)0.3,
)0.2), trimf(x;)0.3,)0.2,)0.1), trimf(x;)0.2,)0.1,0),
trimf(x;)0.1,0,0.1) and trapmf(x;0,0.1,1,1) for repre-
senting N4 (negative), N3, N2, N1, Zero and Positive,
respectively. Also, input c are defined as trapmf(x;)1,
)1,)0.1,0), trimf(x;)0.1,0,0.1), trimf(x;0,0.1,0.2), trimf
(x;0.1,0.2,0.3), trimf(x;0.2,0.3,0.4) and trapmf(x;0.3,
0.4,1,1) for representing Negative, Zero, P1 (positive),
P2, P3 and P4, respectively. In addition, the output
variables are composed of seven triangular MFs for
representing L3 (inferior), L2, L1, Equal, S1 (superior),
S2 and S3, as shown in Fig. 3.

(2) Fuzzy rules. Fuzzy rules are important for a
successful inference result [10]. A rule base represents the
experience and knowledge of experts. The fuzzy rules are
similar to the intuitional thinking of a human. A fuzzy
inference system, composed of two inputs and one out-
put, could employ this kind of fuzzy rule as

If x1 is Ai1 and x2 is Ai2 then y is Bi (for i=1 to
n),where x1, x2 and y are fuzzy system input and output
variables; Ai1, Ai2 and Bi are fuzzy subsets of their lin-
guistic variables. In this study, the fuzzy inference sys-
tem is applied to select the best supplier between
competing processes using the confidence interval values
of Cli, Cui , Clj and Cuj. Thirty-three if-then rules are
employed in this study. They are:

Rule 1 : if d is Positiveð Þ and c is P4ð Þ then result is S3ð Þ:
Rule 2 : if d is Positiveð Þ and c is P3ð Þ then result is S3ð Þ:

..

.

Rule 33 : if dis N4ð Þ and c is Negativeð Þ
then result is L3ð Þ:

The fuzzy rules are listed in Table 2. Note that the
fuzzy rules indicated in this table, if (d is Positive) and (c
is Zero) or (c is Negative) in addition to if (d is Zero) and

Fig. 1 Structure of fuzzy inference system

Fig. 2 Membership functions of input variables Fig. 3 Membership functions of output variables
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(c is Negative), never apply since the definition of two
input variables always exists c‡d.

(3) Fuzzy inference. Fuzzy inference is an inference
procedure for deriving a conclusion based on a set of
if-then rules. In this paper, the Mamdani inference
method [18] that employs the maximum-minimum
product composition to operate fuzzy if-then rules is
adopted. Let the rule be: if x1=A1 and x2=A2 then
y=B, then the result of inference can obtain a fuzzy set
with MF of B’i as

lB0i
yð Þ ¼ max

X
min lA0i1

x1ð Þ; lA0i2
x2ð Þ; lRi

x1; x2; yð Þ
h in o

:

ð15Þ

where

lRi
x1; x2; yð Þ ¼ min lAi1

; lAi2
; lBi

yð Þ

 �

: ð16Þ

(4) Defuzzification. The fuzzy sets of B’i are obtained
by step (3), then defuzzification is used to find a crisp
value y*˛Y which represents the fuzzy sets. The fre-
quently used defuzzification methods are the: weight,
area and height method in [17]. The weight defuzzifica-
tion method is used in this study, and then there is

y� ¼

R
Y

y � B yð Þdy
R
Y

B yð Þdy
: ð17Þ

The result of fuzzy inference, performed by a Matlab
Logic Fuzzy Toolbox [19], is shown in Fig. 4.

4 Procedure of fuzzy evaluation and illustrated
example

An example is given to show the proposed procedure in
detail. To illustrate how the testing procedure may be
applied to the practical data collected from the factories,
the following case on a colour STN display product was
taken from a manufacturing industry located on central
Taiwan. Colour STN displays are created by adding a
colour filter to traditional monochrome STN displays.
The structure of colour STN displays is depicted in
Fig. 5 (cited from: www.winteck.com.tw). In colour
STN displays; each pixel is divided into red, green, and
blue sub-pixels. To control the light through the colour
filter, different colours are made by a combination of
these primary colours. The thickness of the membrane,
which represents an important quality characteristic in
this study, is measured for each pixel after finishing the
post-baking process. The specification limits are set to
12,000±500 Å (1 Å=10)7 mm), that is, the upper/lower
specification limits are set to USL=12,500, LSL=
11,500, and the target value is set to T=12,000. If the
thickness of the membrane for the colour STN does not
fall within the tolerance (LSL, USL), the problem of
chromatic aberration for colour STN displays will
occur. Table 3 presents concise information about the
four suppliers. The main purpose is to select the best

Table 2 Selecting supplier fuzzy rules

d c

P4 P3 P2 P1 Zero Negative

Positive S3 S3 S3 S3 – –
Zero S2 S2 S2 S1 Equal –
N1 S2 S2 S1 Equal L1 L3
N2 S1 S1 Equal L1 L2 L3
N3 S1 Equal L1 L2 L2 L3
N4 Equal L1 L1 L2 L3 L3

Fig. 4 Fuzzy inference surface

Fig. 5 Structure of colour STN displays

Table 3 Process capability value for four suppliers

Supplier Xi Si ĈCpmi v̂vi Cli Cui

SUP1 12,020 101 1.6187 61 1.3320 1.9049
SUP2 12,030 168 0.9766 61 0.8036 1.1493
SUP3 11,940 100 1.4292 65 1.1839 1.6740
SUP4 12,090 97 1.2596 77 1.0609 1.4579
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supplier among these four. The fuzzy evaluation proce-
dure is stated as follows:

Step 1: Determine the sample size n=60 for all
suppliers, then the value of mean and standard
deviation are calculated as indicated in
Table 3. In addition, the significant level
(normally used 0.01, 0.025 and 0.05) is set to
0.05.

Step 2: Compute the value of ĈCpmi and v̂vi.
Step 3: Compute the confidence interval values Ci and

Cu for each supplier.
Step 4: Compute the normalising indices d and c

for two-supplier pairs, and thus to obtain the
fuzzy evaluation results using the proposed
fuzzy inference system. The above calculations
are performed using a specially developed
program (see Appendix for detail). As indi-
cated in Table 4, one can recognise that SUP1
is the best among these four suppliers since all
values of inference results are positive for
competing pairs (SUP1 to SUPj, for j=2, 3
and 4).

5 Conclusion

A capability index Cpm has been shown that can ade-
quately reflect centring process capability and process
yield and which is used to give a numerical measure
about whether a production method is capable of pro-
ducing items within the specification limits. Index Cp

used in Chou [7] fails to measure process yield and
process centring with bilateral specifications, and there
are more than two suppliers which can be selected in
actual application. In this paper, a fuzzy inference
method has been adopted to evaluate the capability of
competing processes based on an estimated index of Cpm

calculated from sampled data. This fuzzy evaluation
method considers the normalising indices d and c as
inputs and obtains a result value as an output. Both
input and output variables are defined in {)1, 1}. The
presented method has the advantage of fuzzy systems,
where a grade can be obtained instead of an exact
evaluation. An illustrated example using colour STN
displays is employed to demonstrate that the presented
method is effective and thus supports its feasibility for
assessment the capability of competing suppliers.

Appendix: A Matlab program

%Program of selecting supplier by fuzzy evaluation
n=input (‘given sample No. ’);
usl=input (‘given upper specification limit ’);
lsl=input (‘given lower specification limit ’);
T=input (‘given target value ’);
alpha=input (‘given alpha-risk value ’);
ns=input (‘given No. of h suppliers ’);
for j=1:ns
xbar=input (‘given supplier sample mean ’);
s=input (‘given sample standard deviation ’);
d=(usl)lsl)/2;
cpmhei=d/(3*sqrt(s^2+(xbar)T)^2));
V=cpmhei;
zz=((xbar)T)/s)^2;
vhei=n*(1+zz)^2/(1+2*zz);
vhei=ceil (vhei);
vl=chi2inv (alpha/2,vhei);
vu=chi2inv (1)alpha/2,vhei);
cl(j)=sqrt (vl/vhei)*cpmhei;
cu(j)=sqrt (vu/vhei)*cpmhei;
end%%%%%%
a=newfis (‘mmfis’);
a=addvar (a,‘input’,’delta’,[)1 1]);
a=addmf (a,‘input’,1,‘N4’,’trapmf’,[)1.1 )1 )0.4

)0.3]);
a=addmf (a,‘input’,1,‘N3’,‘trimf’,[)0.4 )0.3 )0.2]);
a=addmf (a,‘input’,1,‘N2’,‘trimf’,[)0.3 )0.2 )0.1]);
a=addmf (a,‘input’,1,‘N1’,‘trimf’,[)0.2 )0.1 0]);
a=addmf (a,‘input’,1,‘Zero’,‘trimf’,[)0.1 0 0.1]);
a=addmf (a,‘input’,1,‘Positive’,‘trapmf’,[0 0.1 1 1.1]);
a=addvar (a,‘input’,‘gamma’,[)1 1]);
a=addmf (a,‘input’,2,‘Negative’,’trapmf’,[)1.1 )1

)0.1 0]);
a=addmf (a,‘input’,2,‘Zero’,‘trimf’,[)0.1 0 0.1]);
a=addmf (a,‘input’,2,‘P1’,‘trimf’,[0 0.1 0.2]);
a=addmf (a,‘input’,2,‘P2’,‘trimf’,[0.1 0.2 0.3]);
a=addmf (a,‘input’,2,‘P3’,‘trimf’,[0.2 0.3 0.4]);
a=addmf (a,‘input’,2,‘P4’,‘trapmf’,[0.3 0.4 1 1.1])
a=addvar (a,‘output’,‘Result’,[)1.2 1.2]);
a=addmf (a,‘output’,1,‘I3’,‘trimf’,[)1.2 )1 )0.8]);
a=addmf (a,‘output’,1,‘I2’,‘trimf’,[)0.8 )0.65 )0.5]);
a=addmf (a,‘output’,1,‘I1’,‘trimf’,[)0.5 )0.35 )0.2]);
a=addmf (a,‘output’,1,‘Equal’,‘trimf’,[)0.2 0 0.2]);
a=addmf (a,‘output’,1,‘S1’,‘trimf’,[0.2 0.35 0.5]);
a=addmf (a,‘output’,1,‘S2’,‘trimf’,[0.5 0.65 0.8]);
a=addmf (a,‘output’,1,‘S3’,‘trimf’,[0.8 1 1.2]);

Table 4 Fuzzy inference results
Pairs (i to j) [Cli,Cui] [Clj,Cuj] d c Result

SUP1 to 2 [1.3320, 1.9049] [0.8036, 1.1493] 0.0941 0.5860 +1.00
SUP1 to 3 [1.3320, 1.9049] [1.1839, 1.6740] )0.1795 0.3785 +0.43
SUP1 to 4 [1.3320, 1.9049] [1.0609, 1.4579] )0.0661 0.4431 +0.81
SUP2 to 3 [0.8036, 1.1493] [1.1839, 1.6740] )0.5200 )0.0207 )1.00
SUP2 to 4 [0.8036, 1.1493] [1.0609, 1.4579] )0.4488 0.0606 )0.82
SUP3 to 4 [1.1839, 1.6740] [1.0609, 1.4579] )0.1637 0.3662 +0.47
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a=addrule(a,rule);writefis(a,‘cmmcpm’);%comparing-
pairsfor ii=1:ns

– for j=ii+1:ns
– cli=cl(ii);
– cui=cu(ii);
– clj=cl(j);
– cuj=cu(j);
– pv1=(cli)cuj)/max(cui,cuj);
– pv2=(cui)clj)/max(cui,cuj);
– score(1,1)=0;
– score(ii,j)=evalfis([pv1,pv2],a);

– end
endclcuscoredisp(‘stop simulation’)
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rule=[ ...

6 6 7 1 1
6 5 7 1 1
6 4 7 1 1
6 3 7 1 1
5 6 6 1 1
5 5 6 1 1
5 4 6 1 1
5 3 5 1 1
5 2 4 1 1
4 6 6 1 1
4 5 6 1 1
4 4 5 1 1
4 3 4 1 1
4 2 3 1 1
4 1 1 1 1
3 6 5 1 1
3 5 5 1 1
3 4 4 1 1
3 3 3 1 1
3 2 2 1 1
3 1 1 1 1
2 6 5 1 1
2 5 4 1 1
2 4 3 1 1
2 3 2 1 1
2 2 2 1 1
2 1 1 1 1
1 6 4 1 1
1 5 3 1 1
1 4 3 1 1
1 3 2 1 1
1 2 1 1 1
1 1 1 1 1];
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