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Abstract Developments in automation and the resulting
complexity of the systems involved have made the reli-
ability of machines an important issue. This is especially
true in the process industry, which is characterised by
expensive specialised equipment and stringent environ-
mental considerations. Nowadays, with profit margins
decreasing, the need for good maintenance planning and
control is obvious. Determining the best cost-effective
maintenance, though, is computationally difficult, when
the parameters, viz., the mean time between failures
(MTBF) and the mean time to repair (MTTR) of the
critical components in the system can be perturbed. In
this paper, the use of metaheuristic, genetic algorithms
to create cost effective maintenance in a process plant is
presented.

Keywords Cost-effective maintenance Æ Optimization Æ
Genetic algorithm Æ Orthogonal experiments

1 Introduction

In recent years, with the drive for greater profitability,
the process industries have been placing greater
emphasis on improving process performance, operating
closer to constraints and reducing downtime. Several
technologies, such as process modelling, statistical
process control, optimisation techniques and advisory
systems have helped to make these goals a reality [1].
Difficulties are encountered when process industries be-
gin to deal with optimisation tasks such as minimising
total cost and maximising availability [2]. In order to
determine optimal maintenance, the effect on plant

performance of alternative maintenance policies and the
costs of the resources they would require must be com-
pared with alternative uses of these same resources. This
requires a full scale detailed analysis if the best policy is
to be selected. Dekker [3] presented an overview of the
application of maintenance optimisation models, anal-
ysed the role of these models in maintenance and dis-
cussed the factors that may have hampered applications.
Al-Bahi [4] proposed a spare provisioning policy based
on the maximisation of availability per cost ratio.
Harunuzzaman and Aldemir [5] proposed a methodol-
ogy based on dynamic programming to find the mini-
mum cost maintenance schedule for nuclear power plant
standby safety systems. Bandyopadhyay et al. [6] pro-
vided a cost-effective maintenance program for a cross-
country petroleum pipeline through risk analysis.

Genetic algorithms (GAs), which are global optimal
algorithms based on Darwin’s evolutionary theory, have
created an immense interest among researchers looking
to solve these types of complex optimisation problems.
Although there have already been a number of papers
on the application of genetic algorithms for solving
optimisation problems in the area of scheduling and
sequencing [7], group technology, facility layout and
location, transportation, cellular manufacturing [8] and
kanban systems [9], there is a lack of genetic algorithm
applications for performance optimisation in complex
industrial systems. Coit and Smith [10] have demon-
strated the applications of genetic algorithms for
reliability optimisation of series-parallel systems. The
problem centres on selecting components and redun-
dancy-levels that optimise design configuration, given
system-level constraints on reliability, cost, and/or
weight. Coit and Smith [11] also solved the redundancy
allocation problem using a combined neural network
and GA approach. The genetic algorithm searches for
the minimum cost solution by selecting the appropriate
components for a series-parallel system, given a mini-
mum-system reliability constraint. A neural network is
used to estimate system reliability during the search.
Ramachandran et al. [12] have developed models for
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replacement strategies using genetic algorithms. Two
models have been developed: one for implementing the
strategy using a discrete function to replace the items
whose efficiency deteriorates with time, and the other for
implementing the strategy using a continuous function.

A literature review reveals that there is a lack of ge-
netic algorithm applications for solving maintenance
optimisation problems. In this study, an attempt has
been made to evaluate multiple corrective maintenance
policies and to suggest the best policy to the mainte-
nance manager using genetic algorithms. An efficient
algorithm for the optimisation problem of determining
the cost-effective maintenance of the Reactor-Regener-
ator system of a fluid catalytic cracking unit (FCCU) is
presented in this paper.

2 The maintenance optimisation problem

The Reactor-Regenerator (Rx)Rg) section of the FCCU
was considered for the maintenance study. A fluid cat-
alytic process was utilised to convert heavy gas oils into
higher value lighter products by cracking in the presence

of a catalyst under appropriate time, temperature and
pressure conditions. The use of the catalyst promotes the
cracking reaction at a lower temperature and pressure
and yields products with more valuable properties than
is possible with a thermal cracking process.

A simplified schematic diagram for a reactor-regen-
erator system for a the FCCU, showing the subsystems
and components, was constructed up to a level for which
reliability data are available or can be estimated (shown
in Fig. 1). Accurate failure and repair data are required
for a realistic system performance study. The failure
rates per year and the mean time to repair of each of the
components in the system, along with the fault trees of
the reactor-regenerator system were taken from pub-
lished data [13,14] and from the in-house plant records
maintained for the company’s own use. The downtime
cost of the Rx)Rg system in the FCCU system is
Rs. 1 lakh/hour. The critical components that cause
major system shutdowns were identified by simulating a
Petri net model of the FCCU [15] and also with the use
of a Monte Carlo simulation model [16].

Various corrective maintenance actions on the critical
components of the FCCU are proposed in the study to
maximize FCCU system availability at minimum cost.
In practice, these two corrective maintenance policies,
viz. increasing MTBF and/or decreasing MTTR, need
not be exclusive. There may be extreme policies for all

Fig. 1 The schematic diagram for the Reactor-regenerator System
of the FCCU
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possible levels of improvements to both the MTBF and
the MTTR or some combination of the two with each
policy, all of which can be implemented to a different
extent. For example, the MTBF level varies with the
frequency of preventive maintenance actions, and simi-
larly, various degrees of reduction in the MTTR can be
achieved with more extensive employee training, and/or
employing additional maintenance workers/facilities.
Maintenance managers can decide on a certain interval
between preventive maintenance actions combined with
a limited amount of employee training/maintenance-
facilities to reduce the adverse effects of component
failures. Therefore, the combination of these two distinct
maintenance policies creates many possible maintenance
alternatives, each associated with different levels of
MTBF and MTTR.

Feasible improvements to theMTBFand/orMTTRat
the 5%, 10% and 15% levels in one or more critical
components are considered in this maintenance study in
order to maximise FCCU system availability. In view of
the number of feasible alternatives, the corrective main-
tenance optimisation study is restricted to consideration
of+/) 5% improvements in theMTBF andMTTR. The
implementation of both MTBF and MTTR policies re-
quires a certain investment. Management can select a
corrective maintenance policy based on the economic
consequences of investment proposals. The objective of
the study is to determine the most cost-effective corrective
maintenance policy which maximises system availability.

3 The objective function

The measure of performance considered in the mainte-
nance optimisation study in order to evaluate the vari-
ous multiple corrective maintenance policies is the ratio
of total maintenance cost to system availability per
period. The total maintenance cost is a function of
downtime cost and operating cost.

The objective function Z to determine the best cor-
rective maintenance level is expressed as

Z ¼ min

Pn

k¼1
dk

� �

Csd þ
Pm

i¼1
Bi þ Rið Þ

� �

Tso

Tso �
Pn

k¼1
dk

� � ð1Þ

where

n= number of system shutdowns per two-year
period

m= number of critical components under study
dk= downtime during kth shutdown in hours
Csd= downtime cost of the system per hour
Tso= total system operating time in hours
Bi= cost of increasing MTBF of a component i
Ri= cost of decreasing MTTR of a component i

Scheduled maintenance is carried out on the FCCU
system once every two years. Therefore, the system is

simulated for a period of two years for a sufficient
number of replications and the objective function value
Z is computed using Eq. 1. For convenient presentation
and comparison of the results, the best objective func-
tion value Z* is divided by 103.

Z� ¼ Z
�
103 ð2Þ

The critical components of the Rx)Rg system of the
FCCU and the standby cost details of these components
are given in Table 1. The standby cost of each critical
component is used to compute the cost of making
improvements at different levels within the MTBF and
MTTR.

The cost of increasing the MTBF of a component i is
computed as,

Bi ¼
Xs

j¼1
k 1þ Pj
� 	j ð3Þ

where factor

k= (0.01)Sc,
s= number of stages of improvement in MTBF
Sc= standby unit cost
Pj= proportion by which MTBF is increased in jth

stage of improvement

The cost of decreasing the MTTR of component i
follows the expression:

Ri ¼ k Scð Þ ð4Þ

for the first stage of improvement in MTTR (i.e. for
5% reduction in MTTR) where factor k=0.004

Ri ¼ Cj�1 þ Cj�1 1þ Qj

 �

ð5Þ

for the remaining stages of improvement to the
MTTR. where

Cj)1= cost of reducing MTTR in (j)1)th stage of
improvement

Qj= proportion by which MTTR is decreased in
the jth stage of improvement

3.1 The need for a search heuristic

The maintenance optimisation problem of the FCCU
system that was studied involves various corrective
maintenance actions on the critical components in the
FCCU in order to maximise the system availability at

Table 1 Cost data of critical components

Critical
component

Nozzle RCS
valve

Solenoid
valve

MAB
set

DDS
valve

Blast
valve

SCS
valve

Standby
cost (lakh Rs.)

20 65 35 400 50 23 60
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minimum cost/effort. The various corrective mainte-
nance alternatives considered in the study are: increase
in MTBF and/or decrease in MTTR at the 0%, 5%,
10% and 15% levels, respectively, for one or more of the
seven critical components in the Rx)Rg system.

A two-digit binary number is used to represent the
operating status of each critical component. For exam-
ple, a two-digit binary number ‘00’ indicates that there
was no increase/reduction in MTBF/MTTR, respec-
tively; ‘01’ indicates that there is 5% increase/reduction
in MTBF/MTTR, respectively; ‘10’ represents a 10%
increase/reduction in MTBF/MTTR, respectively; ‘11’
represents a 15% increase/reduction in MTBF/MTTR,
respectively. Hence the operating status of the compo-
nents in the Rx)Rg system is represented by a twenty-
eight digit binary code. The first fourteen digits of the
code are used to represent the level of maintenance
employed to increase the MTBF out of the seven critical
components considered. The fifteenth to twenty eighth
digits of the code are used to represent the degree to
which the MTTR of the respective critical component
has decreased.

Therefore the number of possible combinations of
corrective maintenance alternatives (solutions) for the
seven critical components in the FCCU system is
228=268,435,456 solutions. This makes the search for a
globally optimal solution within such a large solution
range quite difficult. A large computational timewould be
needed when searching for quality solutions using tradi-
tional, local methods. Therefore, the use of search
heuristics such as genetic algorithms—the tool most
widely used to solve combinatorial optimisation prob-
lems—becomes necessary.

4 Classical search and optimisation methods

Traditional optimisation methods can be classified into
two distinct groups: direct methods and gradient-based
methods [17]. In direct search methods, only objective
function (f(x)) and constraint values (gj(x), hk(x)) are used
to guide the search strategy, while gradient-based meth-
ods use the first and/or second-order derivatives of the
objective function and/or constraints to guide the search
process. Since derivative information is not used, the di-
rect search methods are usually slow, requiring many
function evaluations for convergence. For the same rea-
son, they can also be applied to many problems without a
major change to the algorithm. On the other hand, gra-
dient-based methods quickly converge into an optimal
solution but are not efficient in non-differentiable or dis-
continuous problems. In addition, there are some com-
mon difficulties with most of the traditional direct and
gradient-based techniques such as:

– Convergence to an optimal solution depends on the
chosen initial solution.

– Most algorithms tend to end with a sub-optimal
solution.

– An algorithm efficient in solving one optimisation
problem may not be efficient in solving a different
optimisation problem.

– Algorithms are not efficient in handling problems
that have discrete variables.

The above discussion suggests that traditional meth-
ods are not as good candidates for engineering design as
efficient optimisation algorithms are. In the following
section, a genetic algorithm technique that can alleviate
some of the above difficulties is described that may
constitute an efficient optimisation tool.

5 Genetic algorithms

Over the last decade, genetic algorithms (GA) have been
used extensively as search and optimisation tools in var-
ious problem domains, including science, commerce, and
engineering. The primary reasons for their success are
their broad applicability, ease of use, and global per-
spective [18]. A more comprehensive description of GAs,
alongwith other evolutionary algorithms, can be found in
a handbook compiled by Baack et al. [19].

5.1 Principles

Genetic algorithms are stochastic search techniques based
on the mechanism of natural selection and natural
genetics. Genetic algorithms, in contrast to conventional
search techniques, start with an initial set of random
solutions called a population. Each individual in the
population is called a chromosome, representing a solu-
tion to the problem at hand. A chromosome is a string of
symbols that is usually—but not always—a binary bit
string. The chromosomes evolve through successive iter-
ations called generations. During each generation, the
chromosomes are evaluated using some measures of fit-
ness. To create the next generation, new chromosomes,
called offspring, are formed by either (a) merging two
chromosomes from current generation using a crossover
operator or (b) modifying a chromosome using a muta-
tion operator.A new generation is formed by (a) selecting,
according to the fitness values, some of the parents and
offspring and (b) rejecting others so as to keep the popu-
lation size constant. Fitter chromosomes have higher
probabilities of being selected. After several generations,
the algorithms converge into the best chromosome, which
hopefully represents an optimal or sub-optimal solution
to the problem. Using P(t) and C(t) to represent parents
and offspring in the current generation t, the general
structure of genetic algorithms is described as follows:

5.1.1 Procedure: Genetic Algorithms

Begin

– t ‹ 0;
– initialise P(t);
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– evaluate P(t);
– while (not termination condition) do
– recombine P(t) to yield C(t);
– evaluate C(t);
– select P(t+1) from P(t) and C(t);
– t ‹ t+1;

– end
end

5.2 Fitness function

GA mimics the survival-of-the-fittest principle of nature
to create the search process. Therefore, a GA is naturally
suited to solving maximisation problems. Minimisation
problems are usually converted into maximisation
problems using an appropriate conversion. In general, a
fitness function F(x) is first derived from the objective
function and then used in successive genetic operations.
For maximisation problems, the fitness function can be
considered to be the same as the objective function or
F(x)=Z. For minimisation problems, the fitness func-
tion is an equivalent maximisation problem chosen so
that the optimum point remains unchanged. A number
of transformations are possible. The following fitness
function is often used:

F xð Þ ¼ 1= 1þ Zð Þ ð6Þ

where Z=objective function value.
This conversion does not alter the location of the

minimum, but converts a minimisation problem to an
equivalent maximisation problem. The fitness function
value of a chromosome is known as its fitness.

5.3 Genetic operators

The three genetic operators are described as follows:
The reproduction operator is applied to emphasise

good solutions and eliminate bad solutions in a popu-
lation, while keeping the population size constant. This
is achieved by identifying good (usually above-average)
solutions in a population, making multiple copies of
good solutions, and eliminating bad solutions from the
population so that multiple copies of good solutions can
be placed in the population.

Reproduction selects good chromosomes in a pop-
ulation and forms a mating pool. The commonly used
reproduction operator is the proportionate reproduc-
tion operator where a chromosome is selected for the
mating pool with a probability that is proportional to
its fitness. One way to implement this selection scheme
is to imagine a roulette-wheel with its circumference
marked for each chromosome proportionate to the
chromosome’s fitness. The roulette-wheel is spun p_siz
times, and one instance of the chromosome is selected
by the roulette-wheel pointer for each spin. Since the
circumference of the wheel is marked according to a

chromosome’s fitness, this roulette-wheel mechanism is
expected to make Fi/�F copies of the ith chromosome in
the mating pool. The average fitness of the population
is calculated as

�F ¼
Xn

i¼1
Fi=n ð7Þ

Crossover is the main genetic operator. It operates on
two chromosomes at a time and generates offspring by
combining both chromosomes’ features. Standard
crossover (usually known as one-point crossover) of two
parents involves selecting a point on the chromosome
and then copying that part of the chromosome before
the crossover point from the first parent, and then the
part of the chromosome after the crossover from the
second parent. If two children are to be produced, the
roles of the parents are reversed for the second child.
For example, given two parents:

Parent1 10110j110
Parent2 00111j001

And a crossover point after bit 5, we get children:

Child1 10110j001
Child2 00111j110

This method works well with a bit string repre-
sentation. The performance of genetic algorithms
depends to a great extent on the performance of the
crossover operator used. The crossover rate (denoted
by pc) is defined as the ratio of the number of off-
spring produced in each generation to the population
size (p_siz). This ratio controls the expected number
pc·p_siz of chromosomes that undergoes the crossover
operation. A higher crossover rate allows exploration
of more of the solution space and reduces the chances
of settling on a false optimum; but if this rate is too
high, it results in the wastage of a lot of computation
time in exploring unpromising regions of the solution
space.

Mutation is a background operator that produces
spontaneous random changes in various chromosomes.
A simple way to achieve mutation would be to alter one
or more genes. Mutation usually involves flipping a
single bit. For example mutating bit 4 in child2 will result
in:

Child2 mutatedð Þ 00101j110

In genetic algorithms, mutation serves the crucial role
of either (a) replacing the genes lost from the population
during the selection process so that they can be tried in a
new context or (b) providing the genes that were not
present in the initial population. The mutation rate
(denoted by pm) is defined as the percentage of the total
number of genes subjected to mutation in the popula-
tion. The mutation rate controls the rate at which new
genes are introduced into the population for trial. If it is
too low, many genes that would have been useful are
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never tried out; but if it is too high, there will be a large
amount of random perturbation, the offspring will start
losing their resemblance to the parents, and the algo-
rithm will lose the ability to learn from the history of the
search.

5.4 Differences between GA and conventional
optimisation techniques

Genetic algorithms differ from conventional optimisa-
tion and search procedures in several fundamental ways.
The differences are described in the following para-
graphs.

GA works with the coding of a solution set, not with
the solutions themselves. Binary GA works with a dis-
crete search space, even though the function may be
continuous. On the other hand, since function values at
various discrete solutions are required, a discrete or
discontinuous function may be tackled using a GA [19].
This allows a GA to be applied to a wide variety of
problem domains. The other advantage is that GA
operators exploit the similarities in string-structures to
create an effective search.

The striking difference between a GA and most of the
traditional optimisation methods is that a GA works
with a population of solutions instead of a single solu-
tion. Most classic optimisation methods generate a
deterministic sequence of computation based on the
gradient or higher-order derivatives of an objective
function. The methods are applied to a single point
within the search space. The point is then gradually
improved along the deepest descending/ascending
direction through iterations. This point-to-point ap-
proach has the danger of decreasing in local optima. A
GA performs a multiple directional search by main-
taining a population of potential solutions. The popu-
lation-to-population approach attempts to make the
search avoid local optima.

The other difference is that a GA uses probabilistic
transition rules, as opposed to deterministic rules, to
guide the search. The basic problem with most tradi-
tional methods is that there are fixed transition rules to
move from one solution to another. A GA, on the other
hand, uses probabilistic rules and an initial random
population. Thus, early on, the search may proceed in
any direction and no major decision is made in the
beginning. Later on, when the population has converged
on some locations, the search direction narrows and a
near-optimal solution is found. This characteristic of
GAs also allows them to be applied to a wide class of
problems. giving them a robustness that is very useful in
solving a variety of optimisation problems.

Every good optimisation method needs to balance the
extent of the exploration of the information obtained up
to the current time with the extent of exploitation of the
search space required to obtain new and better solu-
tion(s). Most traditional methods have fixed rules and
hence have fixed amounts of exploration and exploita-

tion. In contrast, the exploitation and exploration as-
pects of GA can be controlled almost independently.
This provides a lot of flexibility in GA design.

6 Optimal maintenance policy—use of GA

The development of a genetic algorithm to solve a par-
ticular problem involves two types of decisions. The first
concerns the way in which the problem is to be modelled
to fit into the genetic algorithm framework and includes
the definition of the range of feasible solutions, the form
of the fitness function and the way in which individuals
are to be represented as chromosomes. The second
concerns the parameters of the genetic algorithm itself
and includes the proportions of the population to be
produced as a result of reproduction, crossover and
mutation, selection procedure, population size, number
of generations, and a number of other decisions con-
cerning variants of the basic algorithm.

6.1 Design of chromosomes

In a genetic algorithm it is necessary to code the
parameters so as to perform the genetic operation. The
length of the chromosome depends upon the number of
critical components considered in the study and the
number of various levels of maintenance required on
these components to achieve maximum system avail-
ability. The chromosome design with respect to the
reactor-regenerator system of the FCCU with seven
critical components and three stages of improvement,
both on MTTR and MTBF, is shown in Table 2.

In view of the number of feasible alternatives, the
search is restricted to the consideration of +/)5%
improvements in the MTBF/MTTR. A twenty eight-
digit binary code was developed to represent the
operating status of the critical components in the
reactor-regenerator system. The first fourteen-digits of
the code are used to represent the level of maintenance
action employed to increase the MTBF of the
component. A set of two-digit binary numbers is used
to represent the degree to which the MTBF of the
respective component is increased. For example, the
two-digit binary number ‘00’ indicates that there is no
increase in the MTBF; ‘01’ indicates that there is 5%
increase in the MTBF; ‘10’ indicates that there is 10%

Table 2 GA chromosome design for Reactor-Regenerator system

String production 01–14 15–28

Content Mbi MrI

Mbi—percent increase, with respect to the current operational
level, in MTBF of component i
Mri—percent decrease, with respect to the current operational
level, in MTTR of component i
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increase and ‘11’ indicates that there is 15% increase in
the MTBF of the critical component.

In the same manner, another set of two-digit binary
numbers, each from the fifteenth to twenty eighth digit
of the code, is used to represent the degree to which
the MTTR of the respective component has decreased.
For example, the two-digit binary number ‘00’ indi-
cates that there is no reduction in the MTTR; ‘01’
indicates that there is 5% decrease in the MTTR; ‘10’
indicates that there is 10% decrease and ‘11’ indicates
that there is a 15% reduction in the MTTR.

6.2 GA parameter setting using orthogonal
experiments

Genetic algorithm parameters, namely population size
p_siz, number of generations n_gen, crossover rate cp and
mutation rate mp, play a vital role in finding the solution
to the given problem. Orthogonal experiments are used
to determine suitable values for these GA parameters.
Initially the parameters, viz. p_siz, n_gen, cp and mp are
assigned the values 90, 20, 0.6 and 0.3, respectively. These
values are assumed to be the mid-values to be considered
in the 3-level orthogonal experiments. A set of values for
each parameter with a certain percentage deviation from
the mid-values is then considered. Based on the obser-
vations made on the quality of solutions obtained with
this set of values during the pilot runs conducted on the
GA, a lower limit and an upper limit value for each
parameter are selected. The GA parameters and the
levels considered in the study are given in Table 3.

An L9 orthogonal array (OA) is used in the design of
experiments [20]. The objective function values, Z, ob-
tained during the experiments for a given maintenance
effort, are presented in Table 4.

H0: No significant difference in the objective function
value Z due to changes in GA parameter values.

H1: Significant difference in the objective function
value Z due to changes in GA parameter values.

The ANOVA of L9 OA for GA parameters is given in
Table 5.

Based on ANOVA, the following values are set for
the GA parameters:

– Population size, p_siz=60
– Number of generations, n_gen=15
– Mutation rate, mp=0.1
– Crossover rate, cp=0.9

6.3 The search for the best corrective
maintenance policy

The genetic algorithm uses the ‘FCCU simulation
model’. Initially, for each population with randomly
generated chromosomes, the FCCU simulation model is
executed to determine the initial population objective
function values. Then the simulation is performed and
the value of objective function is determined for every
generation with the current value of the chromosome.

In this study, the roulette-wheel selection procedure is
used for reproduction. A simple crossover that swaps the
pair of chromosome bits at the crossover point is used.
Mutation is done by inverting the bit at the mutation
point.

6.4 Notations and terminology

p_siz population size
n_gen total number of generations
cp crossover rate
mp mutation rate
Lc length of chromosome
Rno uniform random number between 0 and 1
binjk binary code (either 0 or 1) of bit k in population

j (j 2 p_siz)
chij chromosome vector of generation i and popu-

lation j (i 2n_gen) (j 2 p_siz)
Zij objective function value for generation i and

population j (i 2 n_gen) (j2p_siz)

Table 3 Genetic algorithm parameters and level settings

GA parameter Level

1 2 3

Population size, p_siz (A) 60 90 120
No. of generations, n_gen (B) 15 20 25
Mutation rate, mp (C) 0.1 0.3 0.5
Crossover rate, cp (D) 0.3 0.6 0.9

Table 4 GA–Orthogonal experiment settings and objective func-
tion values

Sl No. Parameter settings Objective function value, Z

A B C D Replication 1 Replication 2

1 1 1 1 1 31115.86 31417.40
2 1 2 2 2 32043.81 34871.16
3 1 3 3 3 32607.17 33580.24
4 2 1 2 3 30017.34 31836.37
5 2 2 3 1 31195.38 30717.85
6 2 3 1 2 33046.04 35793.62
7 3 1 3 2 33103.90 32108.17
8 3 2 1 3 30673.25 31263.98
9 3 3 2 1 32704.92 33041.39

Table 5 ANOVA of L9 OA for GA parameters

Source Sum of
square
(SS)

m V=SS/m Fcal Ftable at
a=0.10,
m1=2 &
m2=9

A 9.31493·105 2 4.657465·105 0.3886 3.01
B 125.76995·105 2 62.884975·105 5.2474
C 1.60979·105 2 0.804895·105 0.0672
D 131.59292·105 2 65.79646·105 5.490
Error 107.85642·105 9 11.98405·105
Total 376.14401·105 17
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ch* best maintenance effort obtained so far
Z* best objective function value obtained so far.

6.5 Proposed genetic algorithm

Input p_siz, n_gen, cp, mp, and Lc/Generate initial pop-
ulation.generation i=0/create chromosome chij. For
population j=1 to p_siz

– For bit k=1 to Lc

– generate Rno 2 U[0,1]
– if (Rno>0.5)
– then

– binjk=1
– else

– binjk=0
– Next k
Next j For population j=1 to p_siz

– invoke FCCU simulation model.
– compute Zij.
Next j Determine Z* and store the corresponding chij in

ch*. For generation i=1 to n_gen

– reproduce chromosomes using Roulette wheel
procedure.

– /To perform crossover operation
– For population j=1 to p_siz)1 step 2

– consider the chromosome pair chij and chij+1

– generate Rno 2 U[0,1]
– if (Rno £ cp)
– then
– {
– determine crossover site at random within chij
– perform crossover
– }

– Next j
– /To perform mutation operation
– For population j=1 to p_siz

– For bit k=1 to Lc

– generate Rno 2 U[0,1]
– if (Rno £ mp)
– then
– {
– if (binjk=1)
– then
– binjk=0
– else
– binjk=1
– }
– Next k
– Next j

– For population j=1 to p_siz
– {
– decode the chromosome chij.
– call FCCU simulation model.
– perform simulation with the value decoded from

chij.

– compute Zij.
– update Z* and the corresponding ch*.
– }
– Next j

Next i Report Z* and ch*.

7 FCCU simulation model

The objective function value Z is calculated using a
simulation of the reactor-regenerator system of the
FCCU for a period of two years, since planned shutdown
of the system is done every two years. The following
assumptions are made in the FCCU simulation model.

– Time between failures follows exponential distribu-
tion.

– One repair crew is available.
– Repair times follow exponential distribution.
– Once a repair action begins on a component, it is

completed.
– If a failed component causes the system failure, then

that component is taken for repair immediately, pre-
empting repair on other components.

– Repair can also be by replacement.

7.1 The simulation logic

Initially, the values of the system parameters viz. MTBF
and MTTR of the non-critical components and the im-
proved MTBF and MTTR of the critical components
considered in the study are determined. When a compo-
nent fails that does not cause system shutdown, then the
failed component joins the queue if the repair crew is busy
and undergoes on-line repair if the crew is free. If a failed
component causes the system to shut down, then that
component is taken for repair immediately, pre-empting
repair on other components. The system is restarted after
that component is repaired. Since planned shutdown is
performed for the FCCU every two years, simulation is
terminated after the simulation time reaches two years.
After a planned shutdown, the system becomes as good as
new.

7.2 Setting the run length of the FCCU
simulation experiment

The run length of the FCCU simulation experiment used
to compute Z, was varied for a given combination of
maintenance actions on the critical components and the
results are given in Table 6.

H0: No significant difference in objective function
value Z due to changes in run length

H1: Significant difference in objective function value
Z due to changes in run length.

ANOVA was conducted with the Z values and the
ANOVA for run length is given in Table 7.
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Since the value obtained for F does not exceed
3.06, the value of F0.05, with 4 and 15 degrees of
freedom and a null hypothesis H0 is accepted at the
0.05 level of significance. Therefore the run length of
the FCCU simulation experiment is fixed at 40. An
initial ANOVA conducted with the Z values for less
than 40 runs showed that there was a significant
difference in the objective function value due to
changes in run length.

8 Results and discussion

In this paper, a genetic algorithm was used to solve an
FCCU’s corrective maintenance optimisation problem.
An orthogonal experiment was conducted to determine

GA parameter values. The genetic algorithm was
implemented for the maintenance problem with: popu-
lation size=60, number of generations=15, crossover
rate=0.90 and mutation rate=0.10. The genetic algo-
rithm has been coded in C and executed on a 166 MHz
personal computer.

The ratio of the total maintenance cost to system
availability per period was been considered as the
measure of performance. The results of the genetic
algorithms implemented for the maintenance problem,
with the objective of obtaining the best corrective
maintenance policy to optimise the system perfor-
mance, are shown in Fig. 2 and Fig. 3. The search
pattern of the objective function values for the number
of generations is shown in Fig. 2. The convergence
graph is shown in Fig. 3. From Fig. 2 and Fig. 3, it is
clear that the minimum measure of performance is
obtained at the 7th generation (i.e. 7·60 iterations),
after which there is no improvement in the quality of
the solution. The genetic algorithm results are given in
Table 8.

Table 8 shows that the best solution is obtained in 47
CPU time units. The system availability can be maxi-
mised to 0.982708 with a minimum total maintenance
cost of Rs. 31009.3654·103 per period, if the corrective
maintenance actions suggested in Table 9 are carried
out.

9 Conclusion

Genetic algorithms work with populations of solutions
and attempt to guide the search toward improvement,
using a survival-of-the-fittest principle. In this paper, the
use of genetic algorithms to solve the combinatorial
maintenance optimisation problem of an FCCU reactor-
regenerator system was described. The application of a
GA to obtain the best corrective maintenance strategy to

Table 6 Objective function value for various run lengths

Run
length

Objective function value, Z

Replication 1 Replication 2 Replication 3 Replication 4

40 42609.91 43207.13 42821.66 42117.86
50 42354.54 43219.78 45182.82 42174.36
60 42871.57 42266.41 42719.74 43955.26
70 44354.72 42544.64 42203.15 43628.62
80 43694.34 42613.51 43862.75 43135.67

Table 7 ANOVA for run length

Source of
variation

Sum of squares Degrees of
freedom

Mean square F

Run length 10.542657·105 4 2.635664·105 0.3363
Error 117.56623·105 15 7.837749·105
Total 128.10889·105 19

Fig. 2 Global search—Genetic
Algorithm
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optimise the system performance of the FCCU was
demonstrated. The best corrective maintenance policy to
be recommended to the maintenance manager to achieve
maximum system performance was then determined.
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