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Abstract This paper describes the implementation of a
process monitoring system using a low-cost autonomous
infrared imager combined with a novelty detection
algorithm. The infrared imager is used to monitor the
health of several manufacturing processes namely: dril-
ling, grinding, welding and soldering. The main aim is to
evaluate the use of low-cost infrared sensor technology
combined with novelty detection to distinguish between
normal and faulty conditions of manufacturing pro-
cesses. The ultimate aim is to improve the reliability of
the manufacturing operations so as to ensure high part
quality and reduce inspection costs. The paper describes
several case studies, which have shown that the new low-
cost technology could provide an inexpensive and
autonomous methodology for monitoring manufactur-
ing processes. Novelty detection is used to compare
normal and faulty conditions in order to provide an
automated system for fault detection.

Keywords Infrared Æ condition monitoring Æ
manufacturing processes Æ welding Æ grinding Æ
drilling Æ soldering Æ novelty detection

1 Introduction

The international competition and increasing require-
ments for high quality and low cost has increased the
unpredictability of surroundings creating an urgent need
for implementing new technologies and utilising existing
commercial technologies as a vital approach for indus-
trial survival. Condition monitoring of manufacturing
operations is an important strategy to be implemented.
It offers a flexible, effective and economical tool to im-

prove the entire performance of manufacturing systems
through: better design; enhanced health and safety
standards; the minimisation of unproductive time of
staff; improved quality and reliability; minimum envi-
ronmental pollution; the improved availability of ma-
chine tools; better customer satisfaction; maximum
profits and the optimised quality of the manufactured
products [1]. Productivity can also be improved by
including the necessary inspection and quality control
processes within the production stage. What is needed is
an automated process condition monitoring system that
predicts failures before they cause damage or breakdown
[2]. Condition-monitoring systems should be able to
track process faults, which can offer the highest potential
for avoiding unproductive down-time and maintain the
highest quality of the manufactured products.

Many different types of sensors and signal processing
methods are now commercially available for monitoring
manufacturing processes [3]. Many ideas have been
presented and numerous approaches have been pro-
posed for condition monitoring. Manufacturing pro-
cesses, in general, and machining processes, in
particular, are difficult to monitor due to the high
combinations of operating conditions and faults. To
fully understand and attempt to control the behaviour of
machine tools and the manufacturing processes, effective
condition monitoring systems should be developed
which guarantee the reliability of the system operations
and the quality of products [4]. Multiple sensors have
been beneficially implemented in complex manufactur-
ing condition monitoring systems to obtain compre-
hensive information about the process [5]. The
utilisation of different sensors involves integration and
fusion of the sensory signals to extract the key features
from the data by removing any existing redundancy.

Many different types of sensors are now commercially
available coupled with signal processing methods. Sen-
sors are key elements of a successful monitoring system
[3]. Sensors far as force, acoustic emission (AE), vibra-
tions and the conventional visible spectrum camera [5,6]
and infrared cameras for monitoring the heat patterns or
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temperature of machine or process have also been used in
Laboratory environments [7]. However, high sensitivity
infrared cameras are exceptionally expensive for use in a
real production environment. This paper investigates the
use of a new autonomous low-cost, low-resolution
infrared imager for monitoring manufacturing processes
[8]. Grinding, drilling, welding and soldering processes
are monitored to distinguish between ‘‘normal’’ and
‘‘faulty’’ states using the acquired infrared images com-
bined with a novelty detection algorithm.

2 Infrared thermography

Objects transfer heat by three means: conduction, con-
vection and radiation. Conduction is the transfer of heat
through solid objects. Convection is the transfer of heat
through the movement of a fluid such as air and radia-
tion is the transfer of heat energy via electromagnetic
radiation emitted by the object. The radiation emitted by
the object includes infra-red radiation which can be
detected by infra-red imagers. Infrared radiation is
emitted by every object at a temperature above absolute
zero ()273�C). The amount of infra-red energy emitted
by the object is partly a function of the temperature of
the object. The infra-red energy emitted increases as
temperature increases. Infra-red radiation consists of
electromagnetic waves of a length between 0.7 lm and
1000 lm. However, the available infra-red imagers in
the market normally work between 0.7 lm and 20 lm.
For the calibration of thermal imagers a black body is
used. A blackbody is defined as being a perfect absorber
as well as a perfect emitter. Also, a blackbody does not
reflect infrared radiation from other objects in the sur-
rounding and its temperature is proportional to the
infrared radiation emitted for it. However, actual objects
in real life do not always behave as a black body. In
order to describe the capability of a surface to emit en-
ergy compared with a blackbody, the emissivity value (�)
is defined as the ratio of the thermal radiation emitted by
a surface at a given temperature and that of the black-
body and for the same spectral and directional condi-
tions [9]. Therefore, Emissivity of a blackbody equals 1
and Emissivity of any other type of surface is less than 1
and greater than or equal to 0.

An Infra-red thermal imager senses infra-red radia-
tion which is proportional to the temperature of an
object. Based on the Stefan-Boltzmann Law [10]:, the
radiation emitted by a surface is proportional to the
fourth power of the absolute temperature of the surface,
see Eq. 1, (i.e. the hotter the object the more infra-red
energy is produced).

W ¼ ekT 4 ð1Þ

where
W= Radiated Energy
�= Emissivity
k= Boltzman’s constant (5.67·10)8 W/m2.K4)
T= Temperature (K)

The imager converts the radiated energy into an
electric voltage which can be calibrated. A computer
system then can be used to read the data and display
the images or it can be utilised for image processing
and interpretation. The imager used in this research is a
pyroelectric imager. In the pyroelectric detectors, the
radiation received by the element causes a change in
the charge present on the device electrode. They have
the advantage of not requiring cooling. However, they
require a constantly changing image signal and so
require a chopper.

The imager used in this paper are of a newly devel-
oped generation of imagers type IRISYS IXS9009 [11],
see Fig. 1a. It is housed in a die-cast box that contains
the imaging optics, detector, electronics, optical modu-
lator (chopper) and rechargeable battery. It operates
through an RS232 serial connection to a PC. A software
was developed using Matlab to communicate directly
with the imager and display the images with different
resolutions and colour-maps and enables the user to save
the required images into the PC for on-line or off-line
analysis. When compared with a high resolution imager,
as shown in Fig. 1b, it has been found that the low
resolution imager gives similar thermal information to
the high resolution one. However, the low-resolution
images costs about 7% of the total cost of a typical high-
resolution infrared imager and is about 20% of its size.
Moreover, the low-resolution imager is specially de-
signed for embedded system where the data can be di-
rectly streamed through an RS232 connection to a
computer for on-line monitoring and decision-making.
The IRISYS thermal imager is a low-resolution imager
(16·16 pixels). In order to improve the human inter-
pretation of the images, a 2D image interpolation pro-
cess is used. Figure 2 presents the original (16·16)
thermal image of a grinding process and the same image
after bicubic interpolation to achieve a 128·128 resolu-
tion. For bicubic interpolation, the output pixel value is
the weighted average of pixels in the nearest 4-by-4
neighbourhood. The bicubic interpolation is only used
to ease human interpretation of the acquired images.
However, it is not needed for automated recognition
because it does not add any more information to the
data.

Let P(y)=a0+a1y+a2y
2+a3y

3 be a third degree
polynomial. The Lagrange polynomial interpolation is
given by:

P yð Þ ¼
X3

i¼0
fiLi yð Þ ð2Þ

where,
y is the point at which interpolation takes place.
P(y) represents the interpolated value.
fi are the known values on the grid at points yi.
Li(y) are the Lagrange polynomials such as

Li yð Þ ¼
Y3

k 6¼i;k¼0 y � ykð Þ= yi � ykð Þ ð3Þ
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The clear advantage of using low-resolution images
over a single pixel sensor is because that a 2D image has
much more information in terms of the general shape of
the objects, the thermal distribution, the size (i.e. of the
number of pixels) of the thermal effect and calibration of
the specific area against the changing temperature of the
environment.

3 Novelty detection

Novelty detection is used in this work as a self-learning
approach to characterise the ‘‘normal’’ state of the
process. Novelty detection [12] is a classification tech-
nique that recognises presented data to be novel (i.e.
new) or non-novel (i.e. normal). The advantage of

novelty detection comes from its ability to differentiate
between its normal training data and new data which it
has not be seen before. Different types of novelty
detection algorithms and applications have been re-
ported. Reference [13] discussed the extreme value the-
ory and its application far a novelty detection in
biomedical data processing. In [14], generalised radial
basis functions neural networks are used to form a
Bayesian classifier which is capable of detecting novel
data. Reference [15] uses the novelty detection approach
to diagnose failure in structures. The results of applying
novelty detection show that it has the potential to be
applied successfully in many applications.

The training data for the novelty detection algorithm
consists of only one class (i.e. the normal one) which is
often much easier to obtain. Since a degree of overlap is
normally expected between different classes, classifica-
tion problems have a probabilistic nature [16]. Novelty
detection involves estimating the probability-density-
function (PDF) of a normal class from the training data
and then estimating the probability that a new set of
data belongs to the same class. The classification deci-
sion in novelty detection is based on Bayes’ theorem as
shown in Eq. 4).

P Cijxð Þ ¼ p xjCið Þ:P Cið Þ
p xð Þ ð4Þ

where

P Cijxð Þ : The Posterior Probability, the probability that
a given vector, x, belongs to class Ci.

Fig. 1 The low-cost, low-
resolution infrared imager set-
up (a) and a comparison
between a low resolution and
high resolution infrared imager
(b)

Fig. 2 The interpolation of the low-resolution thermal images of a
grinding process
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P(Ci): The Prior Probability, the probability that a fu-
ture input, x,belongs to a class, Ci, based on the ratio of
training examples that belong to the same class.
p xjCið Þ : The Class-Conditional Probability Density, the
probability of obtaining an input vector from a given
class based on estimating the PDF of a class.
p(x): Unconditional Probability Density, probability
density of x regardless of the which class it belongs to.

The Unconditional Probability Density should also
satisfy the following equation:

p xð Þ ¼
Xk

i¼1
p xjCið Þ:P Cið Þ ð5Þ

where

0 � PðCiÞ � 1 and

The accuracy of a novelty detection classification is
dependent on the accuracy of the modelled density
functions [12]. Three main methods are normally used to
model the PDF: Parametric methods [17], Non-Para-
metric methods [18] and Semi-Parametric method [19].
The parametric methods assume sufficient statistical
information about the training data set which is not
normally available. In non-parametric methods no
assumptions are made regarding the underlying density
functions and they depend on the training data to find
the probability density function for a new input. Ref-
erence [16] classifies such methods as being Kernel based
techniques and K-Nearest Neighbour techniques. The
K-nearest neighbour method depends on the probability
that a number K data points of a vector fall within a
specific volume. The Kernel-based technique calculates
the volume by defining width parameters for a number
of known probability distribution functions (Kernels) to
provide a general model for the training set. However,
non-parametric methods require long computations for
every input vector. Semi-Parametric density estimation
is used in this paper for novelty detection because it

combines the advantage of both Parametric and Non-
Parametric techniques and does not require extensive
computational effort. Semi parametric methods use
fewer Kernels. A Gaussian Mixture Model (GMM) is
used in this paper to estimate the PDF. Unlike non-
parametric methods the training data are used only
during the process of construction of the density model
and are not needed for the calculation of the PDF for
new vectors.

The probability density estimation of GMM is
obtained by Bayes’ theorem, similar to Eq. 5, as follows
[16]:

p xð Þ ¼
XM

j¼1
p xjjð Þ:p jð Þ ð6Þ

where

0 � p jð Þ � 1

M is the number of components in the mixture model
p(j) is the Prior probability of selecting the jth kernel
function
p xjjð Þ is the conditional density of x on the jth kernel.

For a Gaussian Mixture Model, the following equa-
tion is derived from Eq. 6 [16]:

p xð Þ ¼
XM

j¼1
/j xð Þ:aj ð7Þ

where

uj is the response of the jth Gaussian component
aj is the mixing coefficient (priors) of uj

When the probability distribution function is calcu-
lated. A threshold value can be implemented to define
the borders between a novel vector and a normal data
set [12]. Figure 3 explains the methodology for the
novelty detection which is used in this work to detect
faulty conditions.

Fig. 3 The GMM and the way
it is used to detect novelty in
infrared images
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Novelty detection software NETLAB [20] is incor-
porated with Matlab programs to investigate the 16·16
pixels infrared images obtained during the experimental
work. More details regarding the novelty detection can
be found in [16, 17, 18, 19, 20].

4 Grinding process

In a grinding processes, temperature rise is an important
concern because it can affect the surface properties and
reduce surface quality. Excessive heat could also cause
distortions by differential thermal expansion and con-
traction. Excessive heat could also cause burning to the
surface which could also damage surface quality [21].
The efficiency of the cooling process in grinding is
therefore important in order to increase the reliability of
the process and improve the surface quality of the ma-
chined parts. The application of a video camera for
monitoring the grinding process based on the sparks
generated by the process it has been reported in previous
research [6]. Some researchers, see [22], used thermal
modelling to estimate the heat generated by a grinding
process and to prevent thermal damage. Other re-
searcher utilised on-line monitoring of an infrared tem-
perature measurement device [23] that measures the
temperature of only one point. This could reduce the
flexibility and the reliability of the monitoring process by
monitoring a signal rather than a complete image. Other
methods such as force [6], acoustic emission [24], laser
triangulation [25] and mircomegnitic techniques [26]
have also been used. This paper investigates the appli-
cability of a low-cost infrared imager for monitoring
grinding processes. The advantage of using an infrared
imager is the capability of monitoring the heat of the
wheel as well as the spark intensity, see Fig. 2. The im-
ager is used to distinguish between normal grinding
conditions using an efficient cooling process and for an
insufficient cooling process that reduced the quality of
the machined surface.

5 Drilling process

In drilling, machining occurs inside the work piece.
Chips exit for the same drilled hole resulting in high
friction and producing heat. The use of cooling fluid in
the drilling process is important in order to improve
drill life. High friction decreases drill life and reduces
the surface quality of holes. Efficient monitoring of
drilling temperature is a key element in monitoring tool
life and the drilling conditions particularly tool wear,
chip jamming and coolant efficiency. Several types of
sensors have been used in monitoring drilling opera-
tions such as thrust force, torque, spindle power [27],
vibration [28] and acoustic emission [29]. In this paper
an infrared imager is used to monitor a drilling process
to attempt to differentiate between a healthy process

(fresh drill) and a process which produces excessive heat
due to tool wear.

6 Welding process

The infrared imager is used to monitor a gas metal-arc
welding (GMAW) process, formerly known as MIG
welding (Metal Inert Gas). The weld area is shielded by
an effectively inert atmosphere of an inert gas to reduce
and prevent oxidation. It is a common process in the
metal-fabrication industry particularly in robotic appli-
cations. This paper investigates the application of an
infrared imager to monitor the health of the welding
process. The paper investigates a ‘‘normal’’ welding
process and compares it with a faulty process using a
low flow of the inert gas. Some techniques such as
sensing arc length in welding have been suggested [30].
Infrared and laser sensing [7] have been also used for
monitoring arc welding operations. A laser system has
been used for geometry profile measurement and an
infrared image has been used for monitoring thermal
fields. However, the infrared camera used is a high res-
olution type which includes a nitrogen cooled detector
and which costs 20 times the cost of the imager used in
this research work. As previously mentioned, infrared
cameras are expensive and difficult to embed into man-
ufacturing processes.

7 Soldering process of electronic components

Soldering is an important process in the electronic
industry. Electronic devices should be reliably soldered
to their printed circuit boards in order for the electronic
devices to operate for a long period of time and with-
stand vibration and temperature deviation. This be-
comes more important for portable devices such as
mobile phones and laptop computers as well as most of
the military equipment. However, some electronic
components could be sensitive to soldering temperature.
In other cases it is important to monitor the heat pattern
produced by soldering of the electronic devices in order
to ensure a uniform and strong soldering and avoid
weak or dry soldering which could cause faults in the
electric devices. It is also important when disassembling
electronic circuits for repair to ensure that other parts of
the circuit are not affected. Thermocouples have been
suggested for monitoring soldering processes [31], how-
ever, a thermocouple is capable only of measuring
temperature of a single point and they also need to be
physically attached to the components. High-resolution
infrared thermography has been used [32] to model
electronic soldering. In this paper, a low-cost infrared
imager is used to study the heat generated from a sol-
dering process in order to evaluate the imager capability
for automated monitoring of soldering electronic com-
ponents.
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8 Experimental work

Figure 4 presents the experimental work for the four
manufacturing processes. The manufacturing processes
selected in this test were optimised to produce the nor-
mal quality. A typical industrial fault was then intro-
duced, based on suggestions by industrial technicians, in
order to evaluate the ability of the imager to detect the
faulty state. The grinding process, shown in Fig. 4a, was
performed on mild steel using a surface grinder with a
A60-K5-V10 wheel of 300 mm diameter and 25 mm
width. Feed rate was 10 m/min, cutting speed 30 m/sec,
and depth of cut 10 lm. The test was performed with a
sufficient flow of coolant (soluble 1:25 dilution with
water) and with an ineffective flow of coolant (70% of
the initial flow rate). The drilling process, see Fig. 4b,
was performed on mild steel work-pieces using a 10 mm
twist drill. The drill surface speed was 20 m/min and
feed rate was 0.3 m/rev. Two drills were used to test the
applicability of the infra-red imager: a fresh drill and a
worn one which had flank wear of 0.3 lm. The gas
metal-arc welding (GMAW) was performed using the
set-up shown in Fig. 4c. The imager was located in a
position to monitor a manual welding process with
‘‘normal’’ and ‘‘faulty’’ welding based on the heat dis-
tribution of the arc. A DC current of 50 A and a nom-
inal voltage of 25 volt were used. Steel sheets of 1 mm
thickness were welded with a gas shield of (Ar-2%O2). A
consumable steel electrode is used for spray transfer
welding. The flow rate of the shielding gas was optimised
for the process (15 L/min) and then it was reduce to

(9 L/min) to produce a less effective welding joint and to
test the thermal imager. For the soldering process, see
Fig. 4d, a 50 watts (max) soldering iron was used to
solder electronic components into a printed circuit
board. The soldering temperature is controlled to pro-
duce optimum soldered joints. The soldering process
was performed manually in this test and faulty joints
were introduced using excessive heat, to study the
capability of the infrared imager to detect change in heat
patterns.

9 Qualitative results

In this section bicubic interpolation of some infrared
imagers are presented with visual images as examples to
evaluate the capability of the infrared imager. Two-
dimensional surfaces of the infrared data are also used
to evaluate the capabilities of the imager. The qualitative
results depend on human interpretation of data to
compare normal and faulty states. In the following
section, the automated results found using novelty
detection is discussed.

9.1 Grinding process

Figure 5 shows a comparison between a normal grinding
processes using sufficient coolant and a faulty process
one which caused the grinding wheel to get hotter and
caused the formation of grinding sparks during the
operation.

Fig. 4 The experimental work
for the four tested
manufacturing processes:
grinding (a), drilling (b),
welding (c) and soldering (d)
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By analysing the thermal images, see Figs. 5 and 6, it
has been found that the faulty process produces much
heat on the contact surface between the wheel and the
work-piece. The generated sparks contribute to a wider
hot area when compared with normal process. By
averaging the 256 temperature pixels of the wheel as
shown in Fig. 6, it has been found that the faulty process
generated 40% extra average heat when compared with
the normal grinding process. Figure 6 presents the two
infrared images data combined together as once surface
to ease the comparison and interpretation.

9.2 Drilling process

Figure 7 presents the visual image and the associated
infrared images of a drilling process using a normal drill
and a worn one. As shown in Fig. 7, the worn drill
produces more heat than a fresh one.

Figure 8 presents a comparison between the norma-
lised temperature of the normal and faulty drilling
process. It has been found that the normal drill produces
much less heat (about 35%) than the worn one.

9.3 Arc welding process

It has been found that changing the shielding gas can
have a considerable effect on the nature of metal transfer

Fig. 6 A 3D surface comparing the heat patterns of a normal and
faulty grinding process

Fig. 7 Infrared images of a fresh and a worn twist drill

Fig. 5 Results of a faulty and normal grinding process

Fig. 8 A 3D surface comparing the heat patterns of the fresh and
worn drills
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from the electrode to the work-piece and therefore affect
the quality of the welded joint, see Fig. 9.

It has been found that changing the shielding gases
can have substantial effect on heat transfer which is
detected by the infrared imager as shown in Fig. 10. The
normal weld produces more concentrated heat patterns
while the faulty one, which lacks the shielding gas has a
wider and higher heat patterns which could be due to the
increase in oxidation of the metal during the welding
process. The hot spots area of the infrared image of the
faulty welding process, see Fig. 10, is found to be 500%
hotter than the hot area of the normal process (i.e.
number of hot pixels).

9.4 The soldering process

Figure 11 presents the visual and infrared images of
thesoldering process of a transistor using an optimum
normal heat level and another one with twice the heat
power.

By studying the thermal images it can be concluded
that the infrared imager was capable of detecting the

difference in temperature for small objects and for
study of the thermal distribution. The overheated sol-
dering processes has caused damage to the joints of the
other soldered components on the same printed circuit
board in addition to the possibility of damaging the
soldered transistor.

10 Quantitative results using novelty detection

The advantage of using low-cost infrared imager is in the
application of embedded and automated systems for on-
line detection of faults in manufacturing processes. The
novelty detection NETLAB software is used with mod-
ification to analyse the acquired signals. The response of
the Gaussian kernels uj is defined by a covariance matrix
and a centre. A single variance parameter for each
Gaussian component is calculated using a different
number of centres (i.e kernels) in the mixture model in
order to select the most suitable structure based on the
speed and the accuracy of results. Two normal infrared
images are used to define the "normal" conditions.
Twelve samples of every process (six healthy and six
faulty) are used to test the novelty detection algorithm.
Since the probability values obtained from NETLAB
algorithms are found to be too small, logarithmic values
are used to simplify the presentation of data. The results
of the tested infrared images for 10 kernels of the four
manufacturing processes are shown in Fig. 12. The x-
axis presents the test number and y axis is the logarith-
mic probability that a specific infrared image belongs to
‘‘normal’’ or ‘‘novel’’ group. The threshold value can
be selected to achieve the required Type-I and Type-II
error.

Fig. 9 The welded joints of a normal and a faulty arc welding
process

Fig. 10 An Infrared images and the associated 3D surfaces of a
normal and faulty welding process

Fig. 11 Visual and infrared images of normal and faulty soldering
processes of a transistor
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11 Discussion

It has been found that the approach is most successful
with the grinding process that has the maximum differ-
ence between the normal and novel data. The drilling
and soldering processes show similar success while the
welding process was the least successful in categorising
normal and novel images. This is could be due to the
characteristic of the welding process, see Fig. 10, where
the difference might not be clear enough or more com-
plex image processing is needed to analyse the infrared
images. However, by using a suitable threshold level, the
novel conditions can be detected with specific Type-I
and Type-II errors.

Although the application of IR technology has been
found successful in the presented work, there are some
limitations on the technology which should be consid-
ered:

1. The monitored faults need to be the result of a change
in heat pattern or infrared radiation. For example,
the detection of catastrophic breakage of a drilling
cutter would not be possible using the change in heat
patterns.

2. The speed of the currant infrared imager is limited to
about 8 infrared images/second. Since the pyroelec-
tric technology uses a chopper, some fast events could
occur when the chopper is over the infrared sensor.
This makes it difficult for the infrared imager to de-
tect events that takes less than 0.12 of a second.

3. The change of the Emissivity value of the work-piece/
cutter of the process could change the temperature
readings of the infrared imager. The Emissivity could
change as a result of change in colour, material or
surface texture.

4. The blockage of the view during the monitoring
process could cause faulty results as in any visual
systems.

5. The location of the infrared imager is important. The
reflection of infrared radiation from other hot objects
in the area could cause significant noise on the
infrared imager.

The success of the novelty detection is dependent on
the infrared data. Any significant noise in the infrared
images can increase the overlap between the probability
distribution of the novel and normal data (see Fig. 3).
This means that the selection of a threshold value would
be critical. Depending on the threshold value, the system
would either give unnecessary fault alarms or would
categorise more novel data as being normal (i.e. increase
Type-I or Type II errors).

12 Conclusions and further work

In this paper, a new low-cost infrared imager is evalu-
ated for monitoring faults in manufacturing processes
combined with novelty detection algorithm to automate
the monitoring process. Grinding, drilling, welding and

Fig. 12 Novelty detection
results: grinding process (a),
drilling (b), welding (c) and
soldering (d)
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soldering processes were tested. The low-cost infra-red
imager, which has a low resolution of 16·16 pixels is
found useful in detecting the difference between a
normal and novel conditions. The approach has been
found most successful for grinding, drilling and
soldering processes. The welding process could have
high Type I or type II error based on the selected
threshold value. The reduced cost of the evaluated
system, in comparison to the more expensive infrared
imagers available in the market, allows the monitoring
system to be embedded into machines and manufac-
turing processes for an on-line monitoring system for
manufacturing processes. Future work will include the
implementation of the low-cost infrared imager for
monitoring manufacturing processes in real production
environments. The newly developed sensor combined
with the novelty detection will be embedded into pro-
duction machinery for on-line monitoring of a manu-
facturing process.

References

1. Hutton R (1996) The impact of information technology
on condition monitoring. In: Proceedings of the 5th Interna-
tional Conference on Profitable Condition Monitoring Fluids
and Machinery Performance Monitoring, Mechanical Engi-
neering Publications Limited, UK, 3–4 December 1996, pp
23–35

2. Martin KF (1994) A review by discussion of condition moni-
toring and fault diagnosis in machine tools. Int J Mach Tool
Manuf 4:527–551

3. Jemielniak K (1999) Commercial tool condition monitoring
systems. Int J Adv Manufact Technol 15(10):711–721

4. Young JW, Yang M, Young Park H (1994) Detection of cut-
ting tool fracture by dual signal measurements. Int J Mach
Tools Manufact 34(4):507–525

5. Al-Habaibeh A, Gindy N (2001) Self-learning algorithm for
automated design of condition monitoring systems for milling
operations. Int J Adv Manufact Technol 18(6):448–459

6. Rajmohan B, Radhakrishnan V (1994) On the possibility of
process monitoring in grinding by spark intensity measure-
ments. J Engin Indust, Trans ASME 116(1):124–129

7. Kwak YM, Doumanidis C (1999) Geometry modeling and
regulation in restorative welding of surface cavities. American
Society of Mechanical Engineers, Pressure Vessels and Piping
Division (Publication) PVP 396:241–248

8. Parkin RM, Coy J, Mansi M, Jackson MR, Ward N (2001) The
use of infra-red sensor systems in monitoring for condition
based maintenance. In: Proceedings of the International Con-
ference on Condition Monitoring, St. Catherine’s College,
Oxford, UK, 25–27 June, 2001

9. Bayazitoglu Y, Ozisik MN (1988) Elements of heat transfer.
McGraw-Hill, New York

10. Non-contact temperature measurement. Transactions in Mea-
surement and Control, Vol.1, 3rd Edition, OMEGA, www.
omega.com

11. IEE Review, The Institution of Electrical Engineers, UK, May
2001, pp 42

12. Zorriassatine F (2000) Application of neural networks for
detection of special causes in multivariate statistical process
control. Dissertation, University of Nottingham

13. Roberts SJ (2000) Extreme value statistics for novelty detection
in biomedical data processing. In: IEE Proceedings: Science,
Measurement and Technology 147(6):363–367

14. Albrecht S, Bush J, Kloppenburg M, Metze F, Tavan P (2000)
Generalised radial basis function networks for classification
and novelty detection: self-organisation of optimal bayesian
decision. Neur Netw 13(10):1075–1093

15. Manson G et al. (2000) Long-term stability of normal con-
dition data for novelty detection. In: Proceedings of SPIE:
The International Society for Optical Engineering 3985:
323–334

16. Bishop CM (1995) Neural networks for pattern recognition.
Claredon, Oxford

17. Fukunaga K (1990) Introduction to statistical pattern recog-
nition, 2nd ed. Academic, Boston London

18. Parzen E (1962) Stochastic processes. Holden-Day, San Fran-
cisco

19. Specht DF (1990) Probabilistic neural networks. Neur Netw
3(1):109–118

20. Nabney I, Bishop CM (2000) Netlab neural network software.
Neural Computing Research Group, Information Engineering,
Aston University, Birmingham

21. Kalpakjian S, Schmid SR (2001) Manufacturing engineering
and technology, 4th edition. Prentice-Hall, Upper Saddle Riv-
er, NJ

22. Guo C, Malkin S (1996) Inverse heat transfer analysis of
grinding, Part 1: Methods. J Engin Indust, Trans ASME
118(1):137–142

23. Ren H, Xiurong S, Ruilian D, Binglin Z, Yuliang M, Brandon
J (1992) A study of on-line identification for grinding burn. Int
J Mach Tools Manufact 32(6):767–779

24. Chen M, Xue BY (1999) Study on acoustic emission in the
grinding process automation. American Society of Mechanical
Engineers, Manufacturing Engineering Division, MED 10:499–
503

25. Zitt U, Braun O (1999) Laser triangulation sensor for the
measurement and evaluation of the grinding wheel topography
within the machine system. Grind Abrasives http://www.abra-
sivesmagazine.com, Cited June/July 1999

26. Toenshoff HK, Karpuschewski B, Regent C (1999) Process
monitoring in grinding using micromagnetic techniques. Int J
Adv Manufact Technol 15(10):694–698

27. Ertunc HM, Loparo KA (2001) A decision fusion algorithm for
tool wear condition monitoring in drilling. Int J Mach Tools
Manufact 41(9):1347–1362

28. El-Wardany TI, Gao D, Elbestawi MA (1996) Tool condition
monitoring in drilling using vibration signature analysis. Int J
Mach Tools Manufact 36(6):687–711

29. Ravishankar SR, Murthy CRL (2000) Characteristics of AE
signals obtained during drilling composite laminates. NDT E
Int 33(5):341–348

30. Li PJ, Zhang YM (1999) Precision sensing of arc length in
GTAW based on arc light spectrum. American Society of
Mechanical Engineers, Manufacturing Engineering Division,
MED 10:649–658

31. Saunders R (1998) Thermocouple attachment for reflow solder
profiling and process development. Electron Packag Product
38(11):51–2, 54–5

32. Conway P, Whalley D, Wilkinson M, Hyslop SM (1998)
Application of IR thermography to process monitoring and
control of reflow soldering. Sold Surf Mt Technol 28:13–18

258


