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Abstract The scope of the paper is to construct an auto-
nomous, intelligent CAD/CAMprogramming system for
the cutting device controller (for instance a CNC laser
cutting machine tool) based on evolutionary methods.
The CNC cutting device should be able to optimise paths
autonomously between cutting trajectories, determined
by the product’s CAD model. An evolutionary GA was
used for this purpose.
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Related work on automatic programming
of CNC machines

Conventionally CAM systems for programming of CNC
machine tools are well known and commercially avail-
able. In recent years automatic CNC programming
systems have been applied more and more in tool shops.
There are several systems reported in the literature.

The literature [1] describes a numerical controller
which contains a programming device to construct a
learning-processing program which is combined with the
entered program in order to produce the resulting CNC
program of the workpiece. This system uses a new
method for learning a processing program and enabling
the machine operator to select the learning mode and
change the CNC program.

The literature [2] describes a tool path data genera-
tion apparatus which can speedily and securely generate
the tool path data on the basis of CAD data. The tool
path data generation includes a feature data extractor to

extract features in relation to a CAD model of a work-
piece, the tool-cutting data for selecting a cutting mode,
the cutting method to set an optimal cutting method and
a tool path data generator. An operator does not have to
input any data for generating tool path data. Tool path
data can therefore be generated automatically and
speedily.

The dialog-oriented programming system described
in [3] is used for program generation of a CNC machine.
All the actions are initiated by the dialog between op-
erator and CNC unit, which has the ability to process
program input and download it to the CNC unit.

The concept of the distributed network manufactur-
ing mode is outlined in [4]. This research is concentrated
on enhancing the intelligence of conventional NC ma-
chine tools and their ability to communicate with the
outside world and coordinate the work. The experi-
mental results of the distributed network manufacturing
prototype system shows that the system is intelligent and
it enhances the ability of a conventional NC milling
machine to improve its efficiency and quality and protect
the cutting tool.

A system and method for creating varying charac-
teristic products from an automated production line is
presented in [5]. The present system includes an auto-
mated laser-cutting device. The method comprises pro-
gramming the laser cutter with a parametric computer
program to receive the data file. The method may also
involve an automatic power source for the laser cutter
upon receipt of the data file.

In [6] an NC feature unit is proposed in order to
generate tool path data in real time and is implemented
in 2.5 D profile/pocket and 3D surface milling opera-
tions.

Aspects all systems have in common are that they are
not intelligent and it is not possible to generate a CNC
program for unknown parts workpieces. The learning
ability of the systems is not presented.

A concept of biological manufacturing systems
(BMS) that is based on biologically inspired ideas of self-
organization, evolution and learning is discussed in [7].
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Autonomous mobility is one of the essential require-
ments for such elements of a BMS as they are the
transporters carrying products to the manufacturing
cells.

CNC programming system

Conventional CNC programming

Introducing CNC machine tools into a production
workshop requires a series of special methods for the
preparation of work and the utilisation of the machine
tools. The extent of preparation work increases strongly
with modem CNC machine tools that meet the specific
requirements of the users. Thanks to machining opera-
tions on highly capable CNC machine tools it is possible
today to manufacture even the most advanced and exact
products. Mechanical parts are becoming more and
more complicated. This involves increased preparation
work and set-up time on the CNC machine tools. The
cost of programming CNC machine tools accounts
nowadays for 30% of the production costs of a product;
therefore, rational programming of CNC machine tools
is very important. Automation of the programming
process plays an important role [8]. In general, pro-
gramming includes the following activities (Fig. 1):

– basic operation layout
– detailed working plan layout
– programming
– output information.

Essential for NC programming are:

– geometrical data
– tools data
– machine tools data.

Conventional versus evolutionary system

An evolutionary-controlled CNC machine tool is a
machine tool controlled by an evolutionary-developed
program. An evolutionary-controlled CNC machine is
capable of autonomous basic operations and working
layout planning for the programming and manufactur-
ing of technologically and geometrically complex prod-
ucts, which result in a decrease of the above-mentioned
30% production costs and the product price propor-
tionally (Fig. 2).

Programming and manufacturing are the main
product manufacturing phases. Programming consists of
planning and optimisation. Manufacturing planning
determines product manufacturing, so planning has to
be carefully reconsidered. Simple calculation can prove
that statement. The evolutionary-supported program-
ming phase is fully automated so it reduces program-
ming costs by nearly 30%, which means that we can
reduce production costs by 10%. If in the next step the
manufacturing costs are reduced by only 10% we gain
an enviable 20% of production costs.

An evolutionary GA was used in this work. It has
been proved to be an effective optimisation tool for
multicriterial and multiparametrical problems in a
constantly changeable environment with many different,
unexpected and sometimes even contradictive condi-
tions, which are difficult to foresee and even more diffi-
cult to control by conventional methods.

Short introduction to evolutionary programming

The evolutionary optimisation processes differs from
conventional optimisation methods that use probabilis-
tic principles (stochastic operations); therefore, none of
the above limitations applies to them. Figure 3 shows
the general process of evolutionary optimisation meth-
ods. Solving the optimisation problem (usually) starts
with a random creation of solutions (points) [9].

Sincewe stick to the biologicalmetaphor in solving, the
solutions are called organisms or chromosomes. Each
organism generated randomly represents a more or
less accurate solution of the optimisation problem. The
organisms are then evaluated. A greater probability of
cooperating in the selection and variation operations is
assigned to those organisms that solve the problem better,

Fig. 1 CNC machine tool programming Fig. 2 From workpiece to product
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i.e. they are better adapted to the environment. A selective
operation assures the survival of the fitter individuals in
the population and they advance unchanged into the next
iteration, also called the next generation. The variable
operation affects one or more parental organisms, which
create their offspring. After completion of selection and
variation a new generation is obtained and evaluated. The
process is repeated until the termination criterion of the
process is fulfilled. This can be a prescribed number of
generations or a sufficient quality of solutions.

Genetic algorithms

Since their introduction by J. Holland [10] the use of
genetic algorithms has spread to almost all areas of
research [11, 13].

A population consists of organisms. Organisms are
points in the space of the solutions. An organism has co-
ordinates that are called genes (Fig. 4). It is a character-
istic of a conventionalGA that organisms represent coded
values of variables (parameters) of the mathematical
model (cost function). The most widespread method is to
code variables into fixed-length binary strings. The length
of organisms is determined with the respect to the size of
the interval with which the solution is searched for and

with respect to the desired resolution of the variables. The
binary representation of the organism is called genotype
and the actual value of the organism is called a phenotype
(Fig. 4). The evaluation of organisms is the driving force
in the evolutionary process. The quality of the individual
organism is determined on the basis of its ability to solve
the problem. A higher probability of cooperating in basic
operations of the conventional GA (e.g. reproduction,
crossover, and mutation) is prescribed to organisms
(solutions) of higher quality. Thus, the fitter organisms
transfer their genetic material more frequently into the
next generation, whereas less fit organisms slowly die
away from the population.

Let us look at the basic genetic operations. The
reproduction operation (Fig. 5) gives a higher probability
of selection to organisms of higher quality. They are
copied unchanged into the next generation.

The crossover operation (Fig. 6) ensures the exchange
of genetic material between organisms. From two
parental organisms, two offspring organisms result at the
level of a genotype.

Mutation (Fig. 7) at the level of the genotype ran-
domly introduces new genetic material into organisms.

The evolutionary development of organisms usually
leads to better and better solutions. In the literature it is
possible to find many variants of the conventional GA
that are adapted to the specific characteristics of the
optimisation problem dealt with. The variants differ
particularly in the representation of the organisms and the
use of additional ormodified genetic operations [9, 12, 13].
Evolution is terminated when a termination criterion is
fulfilled. This can be a prescribed number of generations
or a sufficient quality of the solution. Since evolution is a
nondeterministic process, it does not endwith a successful
solution in each run. In order to obtain a successful
solution, the problem must be processed in several
independent runs. The number of runs required for the
satisfactory solution depends on the difficulty of the
problem.

Evolutionary-programmed laser cutting

Problem statement

The evolutionary-supported laser cutting programming
problem is to obtain an optimal cutting path between
determined cutting trajectories.

Fig. 3 Evolutionary algorithm in pseudo code

Fig. 4 Genetic algorithm
population
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The proposed evolutionary-programmed model
imitates two-dimensional laser cutting.

Figure 8 shows three-dimensional laser cutting using
TopLas 3D software (Erlanger Lasertechnik, Erlangen,
Germany, http://www.erlas.de). A laser cutting pro-
gramming task is collision-free material cutting using the
determined cutting trajectories.

Evolutionary laser cutting parameters

A sheet metal workpiece has a constant thickness. The
product is cut using the determined cutting trajectories.
The evolutionary laser cutting programming task is to
produce comprehensible optimal manufacturing work-
piece instructions.

Figure 9 shows tool start, end point and tool path,
which consist of four cutting and five non-cutting tra-
jectories. The tool cutting trajectories are marked bold.

For one open cutting trajectory a machine tool has
two manufacturing strategies. The tool can cut from the
end of the first cutting trajectory or the end of the second
trajectory. For 2 open cutting trajectories the cutting
machine can choose between 8 cutting strategies, for 3
open cutting trajectories there are 48 cutting strategies
and for 10 open cutting trajectories there are an immense
3.71 billion different cutting strategies.

The aim of the evolutionary-supported controller is
to find an optimal or even the best solution to the
problem of an optimal collision-free cutting strategy.

Figure 10 shows the cutting trajectories transformed
to elements. An element gene consists of a trajectory
start and end point and a trajectory length. A
chromosome is a cutting strategy consisting of genes and
is made up of cutting trajectory sequences. Chromo-
somes are organisms that represent the population
(Fig. 11).

Crossover, reproduction, mutation and permutation
are simple genetic operations which were used at plan-
ning and optimisation of the evolutionary-programmed
laser cutting.

Fig. 5 Genetic algorithm
reproduction

Fig. 6 Genetic algorithm
crossover

Fig. 7 Genetic algorithm
mutation

Fig. 8 3D laser cutting Fig. 9 Tool path from start to end point

121



The reproduction operation gives a higher probabil-
ity of selection to organisms of higher quality. They are
copied unchanged into the next generation.

The crossover operation (Fig. 12) ensures the
exchange of the genetic material between organisms.

Mutation randomly changes genetic material into
organisms. Figure 13 shows the swap of trajectory 3, i.e.
of element 3 start and end point.

Permutation (Fig. 14) changes the order of cutting.
After permutation trajectory 1 (element 1) is cut before
trajectory 3 (element 3).

The evolutionary development of organisms usually
leads to better and better solutions. Evolution is termi-
nated when a termination criterion is fulfilled. This can
be a prescribed number of generations or a sufficient
quality of the solution. In order to obtain a successful
solution, the problem must be processed in several
independent runs called civilizations.

Case study

Definition of sample workpiece

The actions of the evolutionary-supported laser cutting
programming are illustrated by the following practical
example. The product has to be manufactured in a
constant thickness sheet metal workpiece (Figs. 15, 16).

Figure 17 shows the cutting trajectories as results of
geometrical data input of the sheet metal workpiece and
product.

Fig. 11 Genes, organisms, population

Fig. 12 The crossover operation

Fig. 13 Mutation

Fig. 10 Cutting trajectories transformation to elements
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A population of 500 individuals was used. The
reproduction probability was 0.1 and crossover,mutation
and permutation probability were 0.3. The number of
generations to be run was 100. The average computation
time per run was 8 s on an AMD K7, 1 GHz, 384 MB
RAM.

Comparison of results

The comparison of the random cutting strategy
(Fig. 18) and optimal cutting strategy (Fig. 19) gives a

difference of 31.81%. It is important that the difference
between the two strategies in Figs. 18 and 19 is not
obvious. The evolutionary-programmed machine tool
has to establish autonomously a hidden optimal solu-
tion.

Fig. 14 Permutation

Fig. 15 Sheet metal workpiece

Fig. 16 Product

Fig. 17 Metal sheet workpiece, product and cutting trajectories

Fig. 18 Random organism treatment

Fig. 19 Optimal cutting strategy the best organism in civilization
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Figure 19 shows an optimal solution, i.e. an optimal
cutting strategy. The arrows show a cutting direction;
the numbers from 0 to 21 represent the cutting sequence.
A random cutting strategy length is 1515 units. The
optimal cutting strategy length is only 1033, making the
difference 31.81%.

Conclusion

The evolutionary method GA, which has been proved to
be an effective optimisation tool for multicriterial and
multiparametrical problems, was successfully imple-
mented for autonomous laser cutting programming.
CNC programming represents 30% of the production
costs. The programming phase, i.e. the manufacturing
planning and optimising phase, was successfully fully
automated.

The proposed concept is a contribution to the intelli-
gent manufacturing systems of the future. The objectives
are autonomy, distribution, hierarchical organization,
decentralised control, self-organization, intelligent deci-
sion making in case of unexpected events and a consid-
eration of exact ecological criteria. Intelligent systems
of the future will be a fusion of non-deterministic and
deterministic approaches.

The conventional production concepts for flexible
manufacturing systems (FMS) are not sufficient and
flexible enough to meet manufacturing criteria of the
future. FMSs are insufficient from the technical and
ecological points of view.

The proposed concept of the production system uses
biological evolution principles of genetic combinations
and natural selection of the fittest. The FMS is therefore
capable of autonomous and universal problem solving
and adaptation to unexpected events. Future research

is developing with reference to the practical application
of the proposed concept. Preliminary results are
optimistic.
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