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Application of Neural Networks in Injection Moulding Process
Control

S.-J. Huang and T.-H. Lee
Department of Mechanical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Road, Sec. 4, Taipei,
Taiwan, 106

In order to produce precise injection moulding products, a
closed-loop controller is employed instead of the open-loop
control of a traditional injection moulding machine for monitor-
ing the filling and post-filling phases of the injection processes.
Since the injection moulding system has complicated and vari-
able dynamics, the classical control theory is difficult to
implement for the precise injection moulding processes. Here,
two intelligent neural network control strategies are employed
to adjust the injection speed of the filling phase and control
the nozzle pressure of the post-filling phase. Since the neural
controller has learning ability to track the variation of the
injection processes, this control strategy has the advantages of
adaptivity and robustness for general purpose application to
an injection moulding machine. The experimental results show
that this controller has good performance in the actual injec-
tion moulding processes.

Keywords: Injection moulding and adaptive neuron; Neural
network

1. Introduction

Since plastic material has the advantage of good mechanical
properties, low cost, and light weight, it has been adopted as
a substitute for some metal material recently. Because of the
development of mass production technology in the plastics
industry, brought about by economic conditions and the large
range of consumer goods, plastic has become an important
material both for consumer and industrial products. According
to the quality, geometric shape, and purpose of a finished
product, various manufacturing methods for plastic products
have been developed and are being improved continuously.
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Injection moulding, extrusion, thermoforming, blowing mould-
ing, compression moulding and transfer moulding are the major
plastic forming methods employed currently. Over 60% of
thermo-setting plastics are manufactured by the injection
moulding method. It has the characteristics of high productivity
and precise accuracy and can mass produce complicated
finished products at a very low cost. Much work is focused
on the study of the injection moulding process control and the
optimal design of moulds, in order to improve the product
quality.

A complete injection moulding production cycle includes the
four steps of plastics melting, injection, cooling and product
ejection. Since the plastics properties depend on the tempera-
ture, pressure, and the shear stress acting on the raw plastic
material, the monitoring conditions during these manufacturing
processes are complicated and variable. For example, the
material creep and stress relaxation may be 1000 times different
owing to injection condition variations [1]. The injection step
can be divided further into a filling phase, a compression
phase, and a holding phase. The flowrate of the melted plastic
in the filling phase will influence the molecular orientation and
skin formation [2]. In addition, the flowrate is the most
important parameter which influences the material residual
stresses of acrylonitrile-butadiene-styrene (ABS) [3]. Since the
flowrate is difficult to measure, the speed of the extrusion
screw is measured and controlled. The pressure in the com-
pression and holding phases are other important factors in
determining the product quality. If the pressure is too large,
the mould cavity will expand. The plastic material overflow
will then spread out into the clearance between the up and
down cavities. The finished product will then have a burr
between the cavities, making the product difficult to eject.
Conversely, if the pressure is too small, the finished product
will have geometric defects and poor mechanical properties
[3–5]. The pressure in the compression and holding phases are
therefore considered as control variables. Since the pressure
inside a mould cavity is difficult to measure and its measure-
ment has certain limitations, the pressure at the injection nozzle
is used instead. In this work, a traditional open-loop controlled
commercial machine is retrofitted as a closed-loop control
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injection moulding machine to monitor the injection speed and
holding pressure.

When designing a controller for an injection moulding
machine, a dynamic model of the injection moulding should
be developed first. Kamal et al. [6,7] derived the transfer
functions for the injection pressure, nozzle pressure, and cavity
pressure during the filling phase. Controllers [8,9] were then
designed based upon a linearised dynamic model. Paul and
Shankar [10,11] proposed a dynamic model for the filling
phase by using the state space approach. Wei [12] developed
a relationship between the cavity pressure and the flowrate to
complete the mathematical model of the filling phase. Pandel-
idis and Agrawal [13,14] employed self-tuning and optimal
control methods to control the filling speed. The compression
and holding phases are called the post-filling stage. Kamal and
Kenig [15] proposed a model to calculate the plastic flowrate
into the cavity, based on the internal pressure difference
between cavity and nozzle. The holding pressure influences
the molecular orientation and residual stresses in the product
[16–18].

Since the hydraulic actuated injection processes have a com-
plicated and nonlinear behaviour, they are difficult to describe
with an accurate mathematical model and to control using a
traditional controller. In the literature, most studies focus on
one part of the injection processes, e.g. the filling phase or
post-filling phase. There has been little work on the full
injection moulding process. In this paper, model free intelligent
controllers are employed to overcome the implementation prob-
lems of a complicated mathematical model and the computation
burden involved. Two neural network controllers are employed
to control the speed of the extrusion screw in the filling stage,
and the pressure of the injection nozzle in the post-filling
stage. The system structure and dynamic model are briefly
described in Section 2. The neural network control strategies
are given in Section 3. The experimental results and the signal
processing are given and analysed in Section 4.

2. System Structure and Dynamics

The injection moulding machine used in this work was pro-
duced by the Fu-Chun- Shin company. In order to improve
the response speed during the injection process, the actuating
proportional pressure valve and the proportional flow valve
were alternated and installed at the hydraulic injection unit. A
coupling temperature and pressure sensor set was installed at
the end of the plastic pipe near the injection nozzle. This
injection moulding machine is controlled by a PC 486 with
Turbo C control software. The system structure is shown in
Fig. 1.

Injection process monitoring is the most important step for
the production of precise injection moulded products. The
material, machine operation, and post fabrication variations
influence the product quality. Among them, the machine vari-
ation is the most important factor [11]. The dynamic model is
therefore important for precise injection moulding control, and
for the machine designers. The dynamic model can be used to
design an appropriate controller. The main dynamic equations
employed here were developed by Paul and Shankar [11] and

Fig. 1. System control structure of the closed-loop injection-moulding
machine.

Wei [12] and are described in [19]. Some of the important
equation are given in the following sections.

1. The dynamic equation of the proportional valve :

x· = (�x + KvEi)/� (1)

Qh = Kgx �(Ps � P1) (2)

where x is the spool displacement, Ei is the input voltage
and Kv and Kg are the constants. Ps is the oil supply
pressure and P1 is the pressure of the injection cylinder. Qh

is the oil flowrate into the injection cylinder. � is the
hydraulic valve time constant.

2. The dynamics of the filling phase can be described by using
mass and momentum conservation equation based upon
some assumptions and approximations.

P· m = Kp(A2x· � Q � Q1p)/V2 (3)

where Q is the plastic flowrate and Q1p is the leakage rate
at the injection screw. V2 is the total volume of the plastic
and Pm is the mean pressure of the plastic. Kp is the bulk
modulus of the plastic.

Q· =
P2 � Pp � �(Fsi/Ai)

��(Hsi/Ai)
(4)

Pp = P2 exp(�t/�2)

P· cs = KmQ2 (5)

where Ai is the cross-section at the ith flow channel and
Hsi is the equivalent length of the ith plastic section. Pp is
the dissipation pressure of the plastic and �2 is the constant
of pressure dissipation. Fsi is the shearing force between
the ith plastic and the tube wall. P2 is the plastic pressure
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near the end of injection screw. Pcs is the steady state
plastic pressure in the cavity and Km is a dimension factor.

3. During the compression phase, the plastic flowrate is
reduced, the flow resistance is increased and the pressure
is increased steeply. The dynamic equation of the cavity
pressure is

P· c =
Kp(P2 � Pb)

RVc

(6)

where Vc is the volume of the cavity, R is the flow resistance
between the nozzle and the cavity, and Pb is the back
pressure of the cylinder after filling. During the holding
stage, a relationship exists between the pressure, the specific
volume of plastic and the mould temperature which is a
function of the cooling effect of product. Generally, the P-
V-T equation is employed to describe its dynamic behaviour.

(Pc + �)(�p � �) = RTm (7)

where Tm is the mean temperature of the plastic inside the
mould cavity and �p is the plastic density. �, �, and R are
the constants.

From the above equation, it can be seen that the dynamics
of an injection moulding cycle are very complicated. Even
with appropriate assumptions, the dynamic model still has high-
order nonlinear behaviour. This makes it difficult to implement
a model-based controller design for injection moulding machine
process control. In addition, the plastic flowrate and the cavity
pressure are difficult to measure and control. However, the
speed of the injection screw has some relationship to the
flowrate and the pressure at the injection nozzle can be taken
as a function of the cavity pressure. For practical consider-
ations, the injection screw speed and the injection nozzle
pressure are chosen as the control variables of the filling and
post-filling stages, respectively. Since the dynamic model of
the injection cycle is too complicated for control design
implementation, model-free neural network control methods are
employed to design the controller. They can overcome the
computation problem of high-order nonlinear equation and
eliminate the problem of accurate system modelling. In
addition, the learning ability of the neural controllers can
overcome the system parameter variations owing to the change
of mould shape and material. Neural network control is also
tolerance variations in switching point, i.e. the time at which
the filling phase ends and the post-filling phase begins.

3. Neural Network Control

The control performance of a traditional controller depends
entirely on the accuracy of the system dynamic model. The
dynamics of injection moulding are nonlinear and have uncer-
tainty, so it is impossible to obtain an accurate mathematical
model of a complicated injection moulding system for design-
ing a model base controller to achieve the desired control
performance and accuracy. A model-free intelligent controller
is therefore introduced to solve this kind of problem by using
a neural network. A neural network has the abilities of learning,
high-speed parallel processing, and good fault tolerance and

environmental adaptivity. It can be used to solve complex
nonlinear problems. Neural networks have been successfully
employed in image processing, robotic control, and other
industrial applications.

The mathematical model of an MP neuron was proposed by
McCulloch and Pitts in 1943. However, the field of neural
networks had not attracted the attention of researchers until
the presentation of the HNN model proposed by Hopfield [20]
in 1982. He introduced the energy function concept into neural
networks. This approach provided a criterion for the stability
analysis of neural networks. Rumelhart and McClelland [21]
proposed a multilayer feedforward neural network with a back-
propagation learning scheme. The learning results are fed back
to the neurons of the hidden and output layers to adjust the
weighting matrix for the objective of predictive learning. Here,
a feedforward neural network combined with a back-propa-
gation algorithm is employed to control the pressure of the
injection nozzle in the post-filling stage. A single adaptive
neuron neural network strategy is adapted to control the speed
of the injection screw and the pressure of the injection nozzle
in the filling and post-filling stages, respectively.

3.1 The Feedforward Neural Network with
Back-Propagation-Scheme

The multilayer feedforward neural network combined with a
back-propagation learning algorithm to modify the weighting
of the neural network is the most popular neural network for
the current application. It has the learning abilities which reflect
the basic characteristic of a human brain neural network. A
multilayer feedforward neural network consists of many pro-
cessing elements which are interconnected with data weighting.
If the weighting between processing elements is large, the
influence of that connection is strong. The summation of the
input signal multiplied by their corresponding weighting is
used to determine the activation value.

netkj � �Wk
jiOk�1

i � �k
j (8)

Ok
j � f(netk

j ) (9)

where netk
j is the net input function of the jth processing

element on the kth layer. Wk
ji is the weighting between the

interconnection of the ith and jth processing elements. Ok�1
i is

the output of the ith processing element on the (k�1)th layer.
�k

j is a biased term employed as an internal threshold value
for any activation to occur. f(·) is the activation function
which must be differentiable and not reducing. Each processing
element can be interconnected arbitrarily. In general, it is
interconnected by a sequential method as shown in Fig. 2. The
neurons of each layer are connected with the neurons of the
other layer. Each layer has one or more neurons without
interconnection. The complete connection consists of an input
layer, a hidden layer and an output layer.

The back-propagation learning method uses the error between
the real output of a neural network and the desired value to
adjust the weighting values in network. the object function is
defined as
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Fig. 2. Block diagram of the feedforward back-propagation neural net-
work.

E �
1
2 �

j

(Ydj � Oj)2 (10)

By using the steepest-descent method to modify the weight-
ing values in order to minimise the objective function, the
correction value of the weighting can be obtained:

Wk
ji � 	
k

j Ok�1
i (11)

�k
j � �	
k

j (12)

where 	 is the learning rate parameter and 
k
j is defined as


k
j � �

�E
�netk

j

(13)

If the processing element j is on the output layer, then


k
j � (ydj � Oj)f�(netkj ) (14)

Otherwise,


k
j � f� (netk

j ) �
l


k+1
l Wk+1

lj (15)

The activation function used in this work is a linear func-
tion, f(netk

j ) = m  netkj , for the output layer and a sigmoid
function for the hidden layer.

f(netk
j ) =

1 � exp(��netk
j

1 + exp(��netk
j )

(16)

During the learning procedure, an inertial term is introduced
into the learning equation of the weighting correction [22] in
order to improve the oscillation phenomenon of the learning
interval. This term is a certain portion of the correction value
of the last step.

Wk
ji(t) =�Wk

ji(t � 1) + 	
k
j Ok�1

i (17)

�k
j (t) = ��k

j (t � 1) � 	
k
j (18)

3.2 Intelligent Control of Adaptive Neuron

An adaptive neuron was proposed by Ning et al. [23,24]. Its
learning structure and environmental adaptivity can be
explained as in Fig. 3. The neuron has n inputs Xi(t) with a
corresponding weighting value Wi(t). Pi(t) is a progressive
signal or a performance index and E represents the environ-
ment. k is a positive constant called a neuron proportional
coefficient. Generally, it is assumed that the weighting value
Wi(t) of the neuron is proportional to Pi(t) and gradually decays

Fig. 3. Activation flow diagram of adaptive neuron.

during the learning interval. Then, the learning rule of the
neuron can be represented as

Wi(t + 1) = (1 � c)Wi(t) + diPi(t) (19)

where di is a learning speed parameter and c is a constant.
For the requirement of adaptive control, the learning strategy
should combine the concepts of Hebbian self-learning and
supervised learning. This learning structure is self-organisation
learning and the control is based on environmental signals
under the supervision of a teaching signal. It also evaluates
implicitly the activation signal of neurons. If the constant c is
small enough, it can be proved that the weighting value Wi(t)
can converge to a stable value W*i. If the performance index
is defined as the error squared,

J = .[r(t) � y(t)]2 (20)

where r is the reference input and the system output y can be
described as a function of

y(t) = f(X(t),W(t),U(t)) (21)

where X, W and U are the input, weighting value and control
output vectors. In order to make sure of the convergence of
this progressive learning scheme, the constant c is chosen as
zero and the control output are normalised as

U(t) = k[�n

i=1

Wi(t)Xi(t)]/�n

i=1

Wi(t) (22)

Let

Pi(t) = �d
�J

�Wi(t)
Xi(t) (23)

then the weighting value of the next step can be obtained as

Wi(t + 1) = Wi(t) + d[r(t) � y(t)]
�f(·)

�Wi(t)
Xi(t) (24)

Since the function f is unknown for general implementation,
the term �f(·)/�Wi(t) can be substituted by the increment of
�f(·)/�Wi(t). The correction of the weighting value of this
learning scheme, eq. (24), is along the negative direction of
the gradient. When the weighting value reaches the converged
value, W*i, the performance index J is also a minimum. For
this injection moulding control, the input variables are X1(t) =
r(t),X2(t) = r(t) � y(t) and X3(t) = X2(t)/(1 � Z�1). The
normalised weighting factor is

Wi(t) = Wi(t)/�3

i=1

Wi(t)
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Fig. 4. Adaptive neuron control structure.

The adaptive neuron control block diagram is shown in Fig.
4. The control signal includes feedforward proportional control
u1(t), feedback proportional control u2(t) and feedback differen-
tial control u3(t) The feedforward loop can improve the system
response due to a known variation. The feedback proportional
control can reduce the system tracking error quickly. The
differential control loop can improve the dynamic character-
istics of the system response.

Fig. 5. Velocity curve of the infection screw (a) before filtering and
(b) after filtering.

4. Experimental Results

Since an injection moulding machine has obvious nonlinear
behaviour and the switching point between the filling phase
and the post-filling phase has varying characteristics for general
application, the application of a traditional PID controller
requires intricate gains adjustment for each product mould.
Hence, the neural network control is employed to improve the
system robustness and reduce the implementation effort. The
speed control of the injection screw in the filling phase and
the pressure control in the post-filling phase are selected as
the control targets for the closed-loop injection moulding
machine. In order to handle the numerous machine parameters
and the complicated moulding processes, a simple man–
machine interface Turbo C program was designed. This
includes the injection processes control, data transformation,
plotting, and advice functions. The sampling frequency for
controlling this injection process is chosen as 200 Hz.

The voltage signal of the potentiometer in the speed control
loop is liable to be influenced by environmental noise. The
speed information is extracted from the position data by using
a central difference scheme, so disturbance involved in the
measurement data will be magnified. Hence, a digital filter
[25] is employed to filter out the noise.

ŷ(k) = �ŷ(k � 1) + (1 � �)y(k) (25)

where y(k) and ŷ(k) are the velocity signal of the injection
screw derived from the potentiometer data, and the estimated
velocity signal after filtering, respectively. � is a design para-
meter between 0 and 1. A smaller � has a smaller filtering
effect, whereas a larger � has a better filtering effect but
involves a slower following tendency. Since the speed signal
is derived from a central difference scheme which induces
high-frequency noise, a second-order digital filter is employed
instead of a first-order filter to obtain a suitable control signal.
During the experiments, the design parameter � is chosen as
0.8. The speed signals of the injection screw before and
after the filter are shown in Fig. 5(a) and 5(b), respectively,
for comparison.

The switching point in the injection cycle is the point at
which the process switches from the filling phase to the post-
filling phase and the control is changed from a speed control
to a pressure control. The switching point can be defined as a
time, or a position of the injection screw, or a pressure of the
hydraulic cylinder or a cavity pressure. Since the filling amount
of plastic material and the volume of the cavity for each mould
is fixed, the position of the injection screw is used as the
switching signal. This choice eliminates the problem of re-
calculation when the injection speed is changed. For a new
mould, the switching point can be estimated from the displace-
ment curve of the injection screw in an open-loop injection
test. During the filling phase, the voltage of the proportional
pressure valve is fixed (5.0 V) and a proportional flow valve
is used to control the injection speed. Conversely, the voltage
of the proportional flow valve can be fixed (3.0 V) and the
proportional pressure valve can be used to control the clamping
pressure during the post-filling phase. This approach can sim-
plify the two-input and two-output control problem by replacing
it with two single-input and single-output problems.
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4.1 Feedforward Neural Network with
Back-Propagation Scheme

The neural network is first trained off-line with the input and
output data of a PID control loop. During the learning interval,
the inertial proportional constant is chosen as � = 0.025. The
initial values of the network weighting and the biased term
are selected as random values between �1 and 1. The para-
meters of the activation function are m = 0.9 and � = 0.025.
The neural network has one input neuron, 40 hidden neurons
and one output neuron. The first and 30th learning pressure
responses and the error function of a four-step holding pressure
in the post-filling stage are shown in Fig. 6. The first and
second learning pressure responses of a two-step post-filling
stage control are shown in Fig. 7. The overshoot occurs because
of the back-propagation learning scheme which forces the error
function to approach the minimum value.

Fig. 6. Pressure responses of (a) 1st learning and (b) 30th learning,
and (c) error function.

Fig. 7. Pressure responses of (a) 1st learning and (b) 2nd learning.

4.2 Intelligent Control of Adaptive Neuron

The parameters employed in these experiments are given on
Table 1. During the speed control of the injection screw, a
1.5 V control voltage offset is introduced to overcome the
system starting friction. This can avoid serious oscillation
behaviour due to the system response delay. When the reference
speed of the injection screw is 10 mm s�1 and the holding
pressure has step values of 950 and 750 kg cm�2, the speed
and pressure responses and the control voltage are shown in
Fig. 8. After the switching point, at 3.75 s, the system is
switched into the pressure control stage with a 950 kg cm�2

compression pressure and 750 kg cm�2 holding pressure. The
transient response quickly reaches the specified value within
0.2 s because of the feedforward control loop. The pressure
control has effectively suppressed the overshoot during the
compression stage, which is important for precise injection

Table 1. Learning parameters of the adaptive neuron.

Learning Wi d1 d2 d3 k
parameters

Speed control 5.0 0.3 0.146 0.405 1.0
Pressure control 5.0 0.025 0.0065 0.065 1.0
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Fig. 8. (a) Speed control response, (b) pressure control response, and
(c) control voltage (reference speed of injection screw, 10 mm s�1).

moulding. When the pressure reaches a steady state, the press-
ure error is within 2.5 kg cm�2. When the reference speed of
the injection screw is 15 mm s�1 and the compression and
holding pressures have step values of 1000, 800 and 600 kg
cm�2, the speed and pressure responses and the control voltage
are shown in Fig. 9. From the control voltage on Fig. 8(c), it
can be observed that the control voltage of the proportional
pressure valve drops suddenly then slowly creeps up when the
control is switched from speed to pressure. This is because
the initial control voltage is different to the value obtained
from the control law calculation based on the initial weighting
value. When the reference speed of the injection screw is 20
mm s�1 and the compression and holding pressures have step
values of 1000, 850, 700 and 550 kg cm�2, the speed and

Fig. 9. (a) Speed control response, (b) pressure control response, and
(c) control voltage (reference speed of injection screw, 15 mm s�1).

pressure responses and the control voltages are shown in Fig.
10. The above experimental results show that this adaptive
neural network control has a good control performance for this
injection moulding machine. From a comparison of Figs 7(b)
and 8(b), it can be observed that the overshoot of the
compression pressure has improved markedly by using this
closed-loop adaptive neuron controller. In addition, the adaptive
neuron has a weighting learning ability instead of the fixed
gains of a traditional PID controller, which takes care of the
mould and injection speed changes for different products. The
selection range of the adaptive neural parameters is larger than
that for the feedforward back-propagation scheme and it is
much easier to implement.
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Fig. 10. (a) Speed control response, (b) pressure control response, and
(c) control voltage (reference speed of injection screw, 20 mm s�1).

5. Conclusion

The open-loop controller of a commercial injection moulding
machine was replaced by a closed-loop neural network control-
ler. The speed of the injection screw and the nozzle pressure
were selected as the controlled variables of the filling and
post-filling phases, respectively. A feed forward neural network
with back propagation learning is used to control the nozzle
pressure of the post-filling stage with a certain overshoot. The
adaptive neuron control significantly improved the overshoot
behaviour of the compression pressure. In addition, this control
strategy has a self learning ability which takes care of the
variation of injection speed, mould change and system time-
varying change. For overshoot prohibition, the adaptive neuron

strategy is better than the feedforward back propagation scheme
and both neural controllers are better than an open-loop
controller. The experimental results have verified this approach
and have improved the performance of an industrial injection
moulding machine.
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