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The paper presents a hybrid strategy in a soft computing
paradigm for the optimisation of the plastic injection moulding
process. Various plastic injection molding process parameters,
such as mold temperature, melt temperature, injection time
and injection pressure are considered. The hybrid strategy
combines numerical simulation software, a genetic algorithm
and a multilayer neural network to optimise the process para-
meters. An approximate analysis model is developed using a
Back-propagation neural network in order to avoid the expens-
ive computation resulting from the numerical simulation
software. According to the characteristic of the optimisation
problem, a nonbinary genetic algorithm is applied to solve the
optimisation model. The effectiveness of the improved strategy
is shown by an example.
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1. Introduction

The manufacturing industry for plastic products has been grow-
ing rapidly in recent years, and more and more plastics are
used widely to substitute for metals. Injection moulding has
many advantages, such as short product cycles, excellent sur-
faces of the product and easily moulded complicated shapes,
so it is the most popular moulding process for making thermo-
plastic parts. Generally, it comprises three phases, filling, pack-
ing and cooling. The filling stage is the critical stage in the
production of a good quality moulding. In the filling stage,
the injection moulding process parameters include melt flow
rate, injection pressure, mould temperature and melt tempera-
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ture, some of which have a direct influence on the quality of
the injection products.

In the past, the design of the injection moulding process
has been considered to be a “black art”, which relies heavily
on the experience and knowledge of experts and involves a
trial-and-error process. Recently, with the development of the
numerical simulation and intelligent technology, some progress
towards the design of injection moulding process has been
made. Lee and Kim used a modified complex method to reduce
warpage by adjusting the thickness of different surfaces [1].
Seow proposed an approach to balancing the mould cavity
based on numerical simulation. By balancing the flow, over-
packing and residual stress are decreased [2]. Sadeghi combined
a neural network and numerical simulation to provide a back-
propagation neural network (BPNN) predictor model for the
plastic injection moulding process [3]. Shellesh and Siores
developed an intelligent system for the prediction of the plastic
injection moulding process parameters by combining both a
rule-based and a case-based approach [4]. Zhou et al. estab-
lished a rule set for determining the location of the gate based
on an analysis of the plastic parts. The location of the gate
was determined through reasoning with the rules [5]. Pandelidis
et al. developed a system which can optimise gate location
based on the initial gating plans. The system uses Moldflow
software for flow analysis, and controls the temperature differ-
ential and the number of elements overpacked [6].

As stated above, numerical simulation and artificial intelli-
gent technologies can improve the design of the plastic injection
moulding process. However, the process design schemes pro-
vided by these methods though generally feasible are not
optimal. Soft computing is a consortium of methodologies
that works synergetically and provides a flexible information
processing capability for handling real-life ambiguous situations
[8,9]. The intention of soft computing is to exploit the tolerance
to achieve tractability, robustness and low-cost solutions. There
are ongoing efforts to integrate artificial neural networks, gen-
etic algorithms and other methodologies in a soft computing
paradigm [10]. This paper presents a hybrid optimal model in
combination with a neural network and a genetic algorithm
for the plastic injection moulding process. Computer-aided
engineering (CAE) software, Moldflow, is used to simulate the
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flow of the plastic. Genetic algorithms (GAs), which have high
capability to obtain a global optimal solution, are applied to
solve the optimal model. In order to reduce the expensive
computation arising from the numerical simulation, a BPNN
is used to establish the approximate analysis model.

In this paper, a soft computing approach to the optimisation
of the plastic injection moulding process, which combines GAs
and NN, is proposed. Section 2 presents the optimal mathematic
model, including the selection of the objective function and
the design variables. In Section 3, an optimal method integrat-
ing GAs and NN in a soft computing paradigm is discussed
in detail. Section 4 provides a case study that illustrates the
application of the proposed approach. Section 5 concludes the
paper and outlines some work for future research.

2. Optimal Model for Injection Moulding
Process

During the injection moulding, there are many process con-
ditions which affect the quality of the plastic parts, such as
melt flow rate, injection pressure, injection time, mould tem-
perature and melt temperature. The different process conditions
can produce different defect phenomena. In developing the
optimal model, only the major process parameters are con-
sidered from the viewpoint of feasibility and tractability. In
order to describe the optimisation method, a butter container
lid with a minimal thickness of 1.5 mm, is discussed. The
butter container lid is made of SAN. The thickness of the rim
is 2.5 mm. The material grade code of the part is TSAN01,
and the material supplier is Moldflow. The part shape and
injection location are shown in Fig. 1.

2.1 Design Variables and Objective Function

It is known that there are many factors that have an influence
on the quality of parts, such as mould temperature, melt
temperature, injection time, injection pressure, gating scheme
design (style, size, location of the gate) and the geometry of
the parts. For considering feasibility and tractability, the study
is focused on the key process operating parameters, including

Fig. 1. A butter container lid.

mould temperature (Tmould), melt temperature (Tmelt), injection
time (Tinj) and injection pressure (Pinj), given the gating scheme
design and geometry of the parts. Mould temperature (Tmould)
ranges from 50 to 75º C, melt temperature (Tmelt) ranges from
230 to 280º C, injection time (Tinj) ranges from 1.5 to 3.5
seconds and injection pressure (Pinj) is from 25 to 60 MPa.
The above injection process conditions are based on numerical
simulation software and the manufacturer’s specifications.

The quality of the plastic parts is tested in terms of lack or
existence of short shot, air traps, weld lines and warpage. It
is known that short shot, air traps and weld lines are dependent
largely on the gating scheme design and geometry of the parts.
As stated above, the study is focused on process operating
parameters on the assumption that the gating scheme design
and geometry of the parts are given. Shear stress in the product
should be within the recommended limit for the material, and
parts that will be subjected to intense and local mechanical
forces, such as regions of snap fits and screw holes, are
particularly sensitive to high stress levels. It is shown that
there is a correlation between shear stress during filling and
residual stress in the part, i.e. the quality of the part. Moreover,
residual stress may cause warpage of the part [11]. The
maximum stress permitted in such parts should be significantly
less than the maximum recommended. To eliminate the inner
stress of the plastic parts, the objective function chosen for
this study is the maximum shear stress (Sshear).

2.2 Optimal Design Model

The mathematical model of the optimisation problem can gener-
ally be described as follows:

Find X = [x1 x2 x3 ...., xn]T

Min f (X)s. t
x(l)

j �xj�x(u)
j (j = 1, 2, ..., n)

Gi(X)�0 (i = 1, 2, ..., m)
(1)

where f (X) is the objective function. Gi (X) represents the
constraint. The variables of x(l)

j andx(u)
j are the lower and upper

limits of the design variable xj, respectively.
For optimizing the plastic injection moulding process, the

optimal design model can be represented as follows:
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Find X = Tmould Tmelt Tinj PinjT

Min Sshear (2)
s. t. x(l)

j �xj�x(u)
j (j = 1, 2, ..., 4)

To solve the optimisation problem described by Eq. (2), a
hybrid strategy, which combines CAE software, GAs and a
BPNN, is used. In next section, the strategy is discussed
in detail.

3. Soft Computing Approach to the
Optimal Model

In soft computing methodology, the individual tools, such as
GAs, ANN and other tools, act synergetically, rather than
competitively, to enhance each other’s application domain [8].
MNNs are powerful tools for prediction of nonlinearities and
have many advantages, such as massive parallelism, robustness
and learning in data-rich environments [11]. GAs, which are
based on the mechanics of natural selection and evolution,
have been applied to optimisation problems. GAs have many
advantages [13,14]. For one thing, GAs can solve diverse
optimisation problems because the derivatives of the objective
and the constraint function for the design variables are not
required. For another thing, GAs have a higher capability to
obtain a global optimal solution than conventional optimisation
algorithms, due to the population based search mechanics. In
the optimal model for the plastic injection process, it is imposs-
ible to obtain the derivatives. Therefore, it is appropriate for
GAs to be applied to solve the optimal model. The value of
the maximum shear stress is obtained by the commercial
software, Moldflow. However, the computation of the numerical
simulation is very expensive. To avoid the numerous detailed
analyses performed by Moldflow, a soft computing strategy,
which integrates the generic advantages of GAs and MNN, is
proposed as follows.

3.1 Approximate Analysis Model with BPNN

An artificial neural network (ANN) is one of the effective
tools for solving nonlinear problems. Typically, a mutilayer
neural network (MNN) has a powerful mapping capability for
nonlinear problems [16]. In solving the optimal model, a
mutilayer neural network is applied to establish the mapping
model between the maximum shear stress (Sshear) and the
injection process parameters or variables, such as mould tem-
perature (Tmould), melt temperature (Tmelt), injection time (Tinj)
and injection pressure (Pinj). A schematic presentation of a
mutilayer neural network for predicting the maximum shear
stress is shown in Fig. 2. That is, the following nonlinear
mapping relation is established:

D = f (X) (3)

where D is the maximum shear stress, X denotes the vector
of the design variables, viz. X = [Tmould Tmelt Tinj Pinj] and f
denotes the nonlinear functional relationship between D and
X. During the optimisation procedure, the approximate model
above is used to substitute for Moldflow, in order to avoid the

Fig. 2. An MNN for predicting the maximum shear stress.

expensive computation. The implementation of the approximate
analysis model with a BPNN is shown in Fig. 3. The pro-
cedures involved are discussed in the following section.

3.1.1 Selection and Normalisation of the Patterns

Using the various combinations of the four major process
variables, enough simulations are carried out to supply samples

Fig. 3. Approximate model with BPNN.
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for a multilayer neural network. The values of the process
conditions are altered within the aforementioned ranges.

Generally speaking, the activation function used for the
multilayer neural network is the sigmoid function. As the
output of the sigmoid function is in the interval [0,1], the
learning samples should be normalised as follows:

x’
j =

xj�x(l)
j

x(u)
j �x(l)

j

(4)

3.1.2 Initialising Structure of MNN

The structural design of the MNN includes the determination
of the number of the hidden layers and the number of neuron
in the different layers. R. Hecht-Nielsen proposed the following
mapping theorem [16].

Theorem 1. Given any ε � 0 and any L2 function f: [0,1]n �
Rn → Rm, there exists a three-layer back-propagation neural
network that can approximate f to within ε mean squared
error accuracy.

Based on the above theorem, the number of hidden layers can
be one. The number of neurons in the input layer must equal
four, which is the number of the design variables, and the
number in the output layer is one. The size of the hidden
layer is one of the most important considerations when solving
actual problems using multilayer neural networks. If there are
too few hidden units the network will not learn the task. On
the other hand, having too many hidden units can degrade the
learning rate and decrease the speed with which a learned
mapping is performed [17]. The numbers of the hidden neurons
can be determined approximately by the following formula
[18].

H = �n+m+a (5)

where H is the size of the hidden layer; n and m are the sizes
of the input and output layers, respectively; and a � [1,10],
which is a constant.

3.1.3 Training the MNN

A back-propagation (BP) algorithm is applied to train the
MNN. The weights of MNN are firstly initialised randomly.
Iterative procedures are adopted to adjust the weights according
to the derivatives of the error between the actual and expected
outputs. The procedures are continued until the expected pre-
cision of the error is obtained. The weights distributed between
the neurons in the different layers can represent the mapping
relation embodied in the samples.

3.2 Solving Optimal Model with GAs

GAs are applied to solve the optimal model described by Eq.
(2) because of their potential as optimisation techniques. Figure
4 is the flowchart of the optimisation strategy with the GAs.
The key procedures involved can be stated as follows.

Fig. 4. Optimisation strategy with GAs.

3.2.1 Selecting the Encoding Mode

In GAs, artificial chromosomes are represented by strings of
finite lengths. Generally, there are two encoding modes, viz.
binary coding and decimal coding. For the binary coding mode,
the length of the bit string is determined by the precision [15].
Therefore, the decimal coding mode is applied in terms of the
characteristics of the optimisation problem. Let Xdenote one of
the results of the optimisation problem, and the corresponding
chromosome can be represented as V = �x1, x2, ....., xn�. The
length of the chromosome is equal to the vector of the solution.

3.2.2 Constructing the Fitness Function

To evaluate the performance of the individual string
(chromosome), the proper fitness function should be con-
structed. Normally, the fitness function is transformed from the
objective function. In this optimisation problem, the objective
function is the maximum shear stress, so the fitness function
can be defined as follows:

f (X) = Smax� D (6)

where Smax is the maximum shear stress recommended for the
material, SAN and Smax = 0.5 MPa. D is calculated in terms
of Eq. (3).

4. Results and Discussion

In order to prove the effectiveness of the proposed optimal
model, the example as shown in Fig. 1 is discussed in this
section.
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Table 1. Configuration of BPNN.

Number of training data 54
Number of testing data 10
Max. epoch 3000
Number of hidden layers 1
Number of inputs 4
Size of hidden layer 12
Number of outputs 1
Sum-squared error 0.005
Learn rate 0.6

Fig. 5. Comparison between numerical and predicted values.

4.1 Constructing Approximate Analysis Model

As stated above, the approximate analysis model serves as a
function approximator that maps the input variables of mould
temperature (Tmould), melt temperature (Tmelt), injection time
(Tinj) and injection pressure (Pinj), to produce the output which
is the maximum shear stress (Sshear). In order to prepare the
learning samples for the MNN, simulation studies are carried
out using the Moldflow software system. Within the value
intervals of the different process conditions, 54 sets of data
are formulated as the input training data for the network. The
remaining 10 sets are used to test the developed approximate
model. A three-layer neural network with a 4–12–1 neuron
configuration is used to develop the model based on Theorem
1 and Eq. (5), and a back-propagation algorithm is used to
train the network. The parameters of the network configuration
are shown in Table 1.

After the training step, the performance of the approximate
model is tested on 10 sets of data taken from the simulation
works. The verified results, as shown in Fig. 5, reveal that the
predicted values and numerical results are in good accordance.
The maximum prediction error rate is not more than 4.8%
except for one value of 8.5%, which shows the model is a
satisfactory one from the engineering viewpoint.

Table 2. Design variables and optimal results.

Tmould (ºC) Tmelt (ºC) Tinj (sec) Pinj (Mpa) Sshear (Mpa)

Lower limit 50 230 1.5 25
Upper limit 70 280 3.5 60
Initial scheme 55 240 1.5 60 0.414
Optimal scheme 60 260 2 55 0.296

4.2 Optimisation Results and Analysis

The optimisation problem is solved based on the flowchart
shown in Fig. 4. The parameters for the optimisation algorithm
are given as follows: population of individuals is 25, probability
of crossover equals 0.65, and probability of mutation is 0.12.
The optimal solution is obtained after 20 generations, and the
optimisation results are shown in Table 2. Figure 6 shows the
comparison between the initial scheme and optimal scheme.

It is shown from Table 2 and Fig. 6 that the maximum
shear stress calculated by the optimal model is very close to
the one obtained by the numerical simulation software. On the
other hand, the maximum shear stress has a significant
reduction of 24.9% after the optimisation. From the optimal
design, we also discover that melt temperature usually has far
more effect than mould temperature in reducing the maximum
shear stress.

5. Conclusions

The design of the injection moulding process relies heavily on
the experience and knowledge of experts and involves a trial-
and-error process. An improved strategy for the optimisation
of the plastic injection moulding process is presented in this
paper. The strategy combines a neural network and a genetic
algorithm in a soft computing paradigm. An approximate analy-
sis model is developed with a BPNN so as to reduce the
expensive computation required by numerical simulation, so, a
nonbinary genetic algorithm is applied to solve the optimisation
model. It is shown from an example that the optimisation
strategy is effective.

In this paper, the study is focused on process operating
parameters, such as mould temperature, melt temperature, injec-
tion time and injection pressure. There are other physical
factors such as gating scheme design (style, size, location of
the gate) and geometry of the parts that are not taken into
consideration. In order to improve the capabilities of the sys-
tem, a rule-based knowledge system can be incorporated into
the optimisation system for plastic injection moulding. For
future work the main concern is towards integration of more
factors.
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Fig. 6. Comparison between initial scheme and optimal scheme.
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