
Ann Reg Sci (2003) 37:303–322

Spatial knowledge spillovers and university research:
Evidence from Austria

Manfred M. Fischer, Attila Varga

Department of Economic Geography & Geoinformatics, Vienna University of Economics and
Business Administration, Rossauer Lände 23/1, 1090 Vienna, Austria
(e-mail: manfred.fischer@wu-wien.ac.at)

Received: June 2001/Accepted: August 2002

Abstract. This paper provides some evidence on the importance of geo-
graphically mediated knowledge spillovers from university research activities
to regional knowledge production in high-technology industries in Austria.
Spillovers occur because knowledge created by universities has some of the
characteristics of public goods, and creates value for firms and other organ-
isations. The paper lies in the research tradition that finds thinking in terms
of a production function of knowledge useful and looks for patents as a proxy
of the ‘output’ of this process, while university research and corporate R&D
investment represent the ‘input’ side. We refine the classical regional knowl-
edge production function by introducing a more explicit measure to capture
the pool of relevant spatial academic knowledge spillovers. A spatial econo-
metric approach is used to test for the presence of spatial e¤ects and – when
needed – to implement models that include them explicitly. The empirical
results confirm the presence of geographically mediated university spillovers
that transcend the spatial scale of political districts. They, moreover, demon-
strate that such spillovers follow a clear distance decay pattern.

JEL classification: O31, H41, O40

1. Introduction

Innovation activities involve the use, application and transformation of sci-
entific and technical knowledge in the solution of practical problems. Much of
the essential knowledge in this process is specialised and resides in tacit form
within experienced researchers and engineers. Tacitness refers – as Dosi (1988,
p. 1126) suggested on the basis of earlier insights by Polanyi (1967) – to ‘‘those
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elements of knowledge, that persons have, which are ill-defined, uncodified,
and which they themselves cannot articulate, and which di¤er from person
to person, but which to some degree be shared by collaborators who have
a common experience’’. This kind of knowledge has to be carefully distin-
guished from information in the usual sense that is factual, while knowledge is
characteristically complex and aims to discover the why (procedural knowl-
edge) and how (skills and competences).

Knowledge has some of the characteristics of public goods. It is widely
considered to be a partially excludable and non-rivalrous good (see Romer
1990). Non-rivalry implies that a novel piece of knowledge can be utilised
many times and in many di¤erent circumstances without reducing its value.
Knowledge is only imperfectly excludable and, thus, subject to spillovers.
One might view knowledge spillovers as leaks, but in reality they are the sine
qua-non condition for the development of knowledge and economic growth
(OECD 1992; Romer 1990). Following Cohen and Levinthal (1989, p. 571)
we define knowledge spillovers to include ‘‘any original, valuable knowledge
generated in the research process which becomes publicly accessible, whether
it be knowledge fully characterising an innovation, or knowledge of a more
intermediate nature’’.

In this paper we will concentrate on knowledge spillovers1 that origi-
nate from university research. There are numerous channels through which
knowledge might spread to firms. It may seep into the public domain in pub-
lications or public presentations of various types (university seminars, aca-
demic conferences etc.). It may travel with graduates who take a job at a firm
or start their own. It may also be uncovered through reverse engineering and
other purposive search processes. The extent to which knowledge flows
through these di¤erent channels depends upon the capability of the recipient
(especially, his/her absorptive capacity), the nature of the knowledge itself
(for example, whether it is tacit or codified), and other factors that bring aca-
demic and industry sector researchers together (Geroski 1995). If knowledge is
essentially tacit, then it can not be transferred by ways other than personal
interaction, and geographical distance matters. Thus, the creation of knowl-
edge is a process that is essentially localised.

Since knowledge spillovers are not directly observable, systematic evi-
dence on the extent and importance of such spillovers is di‰cult to come by.
In recent years various attempts have started to document the e¤ect of aca-
demic knowledge spillovers on corporate R&D in manufacturing industry,
almost exclusively in a US American context. Research by Nelson (1986);
Mansfield (1991, 1995); Ja¤e (1989); Adams (1990, 1993); Acs et al. (1992,
1994), and others has found that university research has substantial e¤ects on
technological change in important segments of the economy2. Using state-
level patent and innovation data, respectively, Ja¤e (1989), Acs et al. (1992)
and others have added an important spatial dimension to the discussion by
illustrating that the e¤ects not only di¤er by industries, but also increase with
geographic proximity.

1 More precisely on ‘pure’ knowledge spillovers in contrast to rent spillovers that are closely
linked to knowledge embodied in traded capital or intermediated goods.
2 Most have used the production function approach inspired by Griliches (1979) and Ja¤e (1989),
some (see, for example, Bernstein and Nadiri 1988) the cost function approach to estimate the
e¤ects of spillovers. The disadvantage of the latter approach is the required use of prices.
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These and many other studies that followed3 did find a strong and
positive relationship between patenting or innovative activity, and university
research and corporate R&D at the state level in the US. The situation,
however, is di¤erent in terms of the significance of local geographic spillover
e¤ects. Overall considered the evidence is non-existent, weak or mixed, and
only pertaining to a few individual sectors (see, for example, Anselin et al.
2000). This lack of evidence contradicts the strong findings in micro-level
studies (see, for example, Mansfield 1995; Ja¤e et al. 1993).

The objective of this paper is to shed some further light on the issue in an
Austrian context. The study lies in the research tradition inspired by Griliches
(1979) and Ja¤e (1989), but departs from previous research in two major
respects. First, it is based on a much finer, and thus, more appropriate spatial
scale than most previous studies to capture interactions between universities
and high-technology based firms. Second, we specify the relevant potential of
spillovers in form of spatially discounted pools of knowledge. The specifica-
tion makes use of accessibility measures derived from established principles in
spatial interactions theory4. A spatial econometric approach is implemented
both by testing for the presence of spatial e¤ects and – when necessary – by
implementing models that incorporate them explicitly. In the remainder of the
paper we first introduce the conceptual framework in Sect. 2. Next we briefly
describe the variables and the data sets (Sect. 3), then outline subsequently
some methodological issues in specifying and estimating the model (Sect. 4)
and finally present the results obtained (Sect. 5). The paper concludes with a
brief evaluation of the results associated with some hints for future research
activities.

2. The knowledge production function

We adopt the view that finds thinking in terms of a production function of
knowledge congenial and useful, and looks for patents or innovations to serve
as a proxy of the ‘output’ of this process, while university research and com-
mercial R&D represent the ‘input’ side. Less ‘neoclassical’ oriented econo-
mists might deny the usefulness of this view or the simplifications on which
this view is based. But we believe that the importance and extent of academic
knowledge spillovers can be best discussed in the context of an empirically
useful regional variant of the knowledge production function.

The basic model relates the output of the process, the increment
of economically valuable technological knowledge (say, K ), in region i
ði ¼ 1; . . . ;NÞ to research and development inputs. Regional knowledge pro-
duction may be seen to depend on two major sources5: University research,

3 For a survey of the literature see Karlsson and Manduchi (2001).
4 See Frost and Spence (1995) for a recent review of spatial accessibility measures.
5 The main institutions created by Western Society to meet the purpose to generate funda-
mental, general and public knowledge have been its universities and learned societies. Funda-
mental research of the quality and on the scale comparable to these institutions calls for high
thresholds of R&D investment and a corporate research environment conducive to developing
and discussing ideas freely with other research workers. Knowledge development within firms also
raises proprietary issues. Thus, some sort of division of labour has been developed between uni-
versity research on the one side and industry R&D on the other (see OECD 1992).
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say U, and commercial research and development, say R, located in region
i. Inventive inputs have generally been treated as measured by the resources
invested in them, most often research and development expenditures. The
underlying assumption in general (see, for example, Anselin et al. 1997 and
many others) is to assume that research and development expenditures will
lead to immediate inventive results. Because the production of useful knowl-
edge takes time, we depart from this common practice and assume a time
lag between the investment and the yield of results. Thus, our basic regional
knowledge production function is given in general form as

Ki; t ¼ f ðUi; t�q;Ri; t�qÞ for i ¼ 1; . . . ;N ð1Þ

where the subscripts i and t refer to region i and time t, respectively. q denotes
the time shape of the lag between research investment and invention results.
Ui; t�q and Ri; t�q, represent university research and industry R&D invest-
ments, respectively. We may call this equation – more precisely f – the clas-
sical regional knowledge production function.

Of course, this formulation is rather simplistic and is based on several
simplifying assumptions, either explicit or implicit. For example, implicit is the
assumption that the production of knowledge of a particular firm or industry
not only depends on its own research e¤orts, but also on outside e¤orts or –
more generally – on the knowledge pool available within the region. It is
assumed that knowledge generated in universities spills over to the generation
of economically valuable technological knowledge by firms. Moreover, gen-
erally the assumption is made that the variable U represents the local pool of
potential university spillovers. Knowledge tacitness is the reason for the local
dimension of spillovers.

The model is comparative-static in nature and abstracts from some
important dynamic issues. In particular, there are long, variable, and uncer-
tain lags in the interval between the start of a research activity and generating
useful knowledge. The implicit assumption of a stable relationship between
the input of the production process (U and R) and its output (in terms of K )
may be defended on the perception that science progresses in general by a
sequence of marginal improvements rather than through a series of discrete,
essentially sporadic breakthroughs (see, for example, Kamien and Schwartz
1982; Rosenberg 1976). Assumptions about the properties of f – such as
diminishing returns to research expenditures or economies of scale and econo-
mies of scope – imply restrictions on the relationship between ðU ;RÞ and K.

The increment to useful knowledge arising from R&D and university
research is likely to depend upon a number of further factors including a host
of variables related to the institutional and management environment within
which the resources are deployed. We may broaden model (1) by including
these additional influences represented by a vector of variables, Zi, that reflects
these additional influences. Thus

Ki; t ¼ f ðUi; t�q;Ri; t�q;Zi; t�qÞ for i ¼ 1; . . . ;N: ð2Þ

The problem of modelling regional knowledge production is much more
complicated when we realise that di¤erent amounts of knowledge from dif-
ferent regions may spill-in. There are di¤erent approaches to the construction
of spillover stocks or pools. We utilise the approach where every possible pair
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of regions is treated separately, and the relevant stock of non-local spillovers
for the receiving region is constructed specifically for it, using its distance
from the N � 1 spilling regions as a weight. There is a wide choice of possible
weights. We use a spatial accessibility measure to induce a distance metric6.

To simplify notation, let us denote

U 0
t�q ¼ ðU1; t�q; . . . ;UN; t�qÞ ð3Þ

R 0t�q ¼ ðR1; t�q; . . . ;RN; t�qÞ ð4Þ

and

Di. ¼ ðd�g
i;1 ; . . . ; d�g

i; i�1; 0; d
�g
i; iþ1; . . . ; d�g

i;NÞ for i ¼ 1; . . . ;N ð5Þ

where dij represents the average geographic distance from the spilling region
j ð j 0 iÞ to the receiving region i. g > 0 is a distance decay parameter. Then
we can define the spatially discounted pool of non-local university spillovers
as

SU
i; t�q ¼ Di.Ut�q for i ¼ 1; . . . ;N ð6Þ

and the spatially discounted pool of non-local industry R&D spillovers as

S R
i; t�q ¼ Di.Rt�q for i ¼ 1; . . . ;N: ð7Þ

This yields the following regional knowledge production function in general
form:

Ki; t ¼ f ðUi; t�q;S
U
i; t�q;Ri; t�q;S

R
i; t�q;Zi; tÞ for i ¼ 1; . . . ;N ð8Þ

that will enable us to capture intra- and interregional knowledge spillovers of
two types, those originating from university research and those from industrial
R&D.

In order to implement model (8) we need to specify the functional form of
f . For the purpose of this study we have taken the Cobb-Douglas version
which can be written in logarithmic form as

log Ki; t ¼ a0 þ a1 log Ui; t�q þ a2 log SU
i; t�q þ a3 log Ri; t�q þ a4 log S R

i; t�q

þ a5 log Zi; t þ ei ð9Þ

where Ki; t;Ui; t�q;S
U
i; t�q;Ri; t�q;S

R
i; t�q, and Zi; t are defined as above; a1; . . . ; a5

are the parameters of interest; a0 is a constant term and ei a stochastic error
term. Model (9) has some attractive features. Aside from being easy to esti-
mate, the a are estimates of the elasticities of the increment of economically
valuable technological knowledge, Ki; t, with respect to changes in the respec-
tive variables, and these elasticities are constant. But this tractability comes at
some cost. The knowledge production function imposes a constant, unitary

6 See, for example, Frost and Spence (1995).
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elasticity of substitution between all input pairs in addition to the constant
output elasticities noted above.

We interpret an influence of Ui; t�q on Ki; t as evidence of intraregional
spillovers of local universities in ðt� q; tÞ and an influence of SU

i; t�q as evidence
of interregional spillovers of universities located outside the region. A lack of
significance of a1 and a2 would suggest that all production of new knowledge
is generated internally to the corporate sector, either with interregional
knowledge spillovers originating from firms outside the region if a4 is signifi-
cant or without such spillovers if a4 is not significant.

3. Data, variable definition and the spatial scale of the analysis

This paper follows in a tradition that uses patents to measure the outcome of
the inventive process, that is knowledge increments. Patents are preferred to
innovation counts because it is conceptually more closely related to inven-
tion activities7. Data on corporate patents of high-technology firms are from
the Austrian Patent O‰ce. The patent data file contains information on the
application date that can be considered as being relatively close to the date of
invention, the name of the assignee(s), the address of the assignee(s), the name
of inventor(s), the location of the inventor(s), one or more International
Patent Classification (IPC) codes and some information on the technology
field of the patent classification.

There is no simple, consistent practice with respect to the names to which
corporate patents are assigned. Some patents go only to the assignee. As a
consequence, we used the address of the assignee(s) to trace patent activity
back to the region of knowledge generation. This approach may be biased
in the case of large companies since patents are filed by the headquarter of
a company. An extensive e¤ort was made to identify patent-receiving sub-
sidiaries and to redistribute the patents correctly. In the case of multiple
assignees located in di¤erent regions, we followed the standard procedure of
proportionate assignment8. We made use of the MERIT concordance table
between IPC classes and the industrial ISIC sectors (Verspagen et al. 1994).
This table assigns the technical knowledge in the patent classes to the indus-
trial sector best corresponding to the origin of this knowledge. In some cases
where the IPC code corresponds to more than one industrial sector, a frac-
tional count was made. Appendix A gives detailed information on the assign-
ment of the patent classes to the industry sectors as used in the paper.

At the sectoral scale, the patent data were aggregated to the two-digit
ISIC code level. This is essentially due to data limitations for the explanatory
variables in the model, more specifically for the variable on industry R&D
investment. Our interest focused on patents in the high-technology sector as
an aggregate. The determination of this sector is not unambiguous. We define

7 See Griliches (1990) for a discussion of the use of patent statistics as economic indicators. It is
noteworthy that patents provide only a partial picture of the contributions of university research.
But innovation counts are less useful because they measure more aspects of the economic impact
of inventive activities rather than the output of the invention process. Innovation counts (generally
in terms of improved products on the market) that have been used in most of the US American
studies are too far away from the idea of outputs of the inventive process.
8 Note that our dependent variable is, thus, metric.
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the high-technology sector to consist broadly of the following six two-digit
industries: Computers and O‰ce Machines (ISIC 30); Electronics and Elec-
trical Engineering (ISIC 31–32); Scientific Instruments (ISIC 33); Machinery
& Transportation Vehicles (ISIC 29, 34–35); Oil Refining, Rubber & Plastics
(ISIC 23, 25); and Chemistry & Pharmaceuticals (ISIC 24). These industries
are not equally technology intensive. Some produce more inventions than
others, and the propensity to patent these inventions di¤ers between them (see
Fischer et al. 1994 for some evidence).

The industries contain most of the three- and four-digit-ISIC categories
that are typically classified as high-technology. But at the two-digit ISIC level,
it is virtually impossible to designate industries as pure high-technology. To
the extent that the sectoral mix in these industries shows some systematic
variation over space in its ‘pure’ high-technology content, our results on the
relationship between the increment of economically valuable knowledge and
research investment could be a¤ected. But we are confident that we will be
able to detect such systematic variation by means of careful specification tests
for spatial e¤ects.

We measure industry R&D investment in the high-technology sector using
data on R&D expenditures, even though expenditure data might not be a
particularly accurate measure of the real resources actually used to do R&D
(see Alston et al. 1998). The data stem from a R&D survey carried out by the
Austrian Chamber of Commerce in 1991. The questionnaire was sent to 5,670
manufacturing firms in Austria. The response rate was 34%. The sample can
be seen to cover nearly all firms performing R&D activities in Austria. The
ZIP code has been used to trace R&D activities back to the origin of knowl-
edge production. The data are broken down by a very specific Industrial
Classification System of the Chamber of Commerce that can be converted to
the International Standard Classification System only at the fairly broad two-
digit ISIC-level.

A major e¤ort was pursued to estimate university research expendi-
ture data for the variable U. There are no consolidated research budgets
or expense reports available that present data in su‰cient detail. We utilised
the 1991 survey of the Austrian Federal Ministry for Science and Research to
get access to global university research expenditure data. These data include
research-related basic and on-going operational costs, but not all relevant
funding sources. Thus, the data may understate the resources actually used in
support of research. But there is no way to overcome this data problem. We
proceeded as follows to link university research expenditures to the high-
technology industries. First, the global data were broken down by university
department on the basis of some simplifying assumptions and a simple dis-
aggregation procedure (see Fischer et al. 2001). Then – using results from
Levin et al.’s (1987) survey9 and Varga’s (1998) study in the spirit of Feldman
(1994), Audretsch and Feldman (1994), Feldman and Audretsch (1999) – we
assigned academic departments and the associated expenditure figures to the
six two-digit high-technology industries to which knowledge spillovers from
university research may flow. Appendix B shows the match to the two-digit

9 In Levin et al.’s (1987) survey, R&D managers were asked to indicate on a 7-point Likert scale
the relevance of eleven basic and applied fields of science and the importance of external sources
of knowledge to technological change in a broad range of manufacturing industries.
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industries. Note that only a smaller set of academic departments produce
knowledge relevant to the high-technology sector.

Skilled workers endowed with a high level of human capital are a
mechanism through which knowledge externalities materialise. The concen-
tration of skilled labour in one place facilitates flows of information and
knowledge because timeliness and face-to-face communication are important
for generating new knowledge. To capture such agglomeration externalities
(see also Feldman and Florida 1994), we included a location quotient for
high-technology employment as a proxy for Z.

The lack of evidence for local geographical spillovers in most US studies
is partly – and probably primarily – due to a too high level of spatial data
aggregation. In order to overcome this deficiency of previous studies, we have
chosen a rather fine level of spatial detail, the scale level of a political district
rather than that of a province (Bundesland)10. But the price we have to pay
for this choice is that this rather fine spatial scale – Austria is divided into 99
political districts – does not support to estimate Equation (9) any more. This
is a consequence of the very uneven spatial distribution of universities over the
regional system of political districts. There are not enough degrees of freedom
or independent variations in the university research expenditure data to allow
us to distinguish between inter- and intraregional knowledge spillovers.

One way out of this problem – and the way taken here – is to com-
bine the knowledge spillover aggregates that reflect the pools of intrare-
gional and interregional knowledge spillovers. Let us define, thus, Fi; t�q 1
ðUi; t�q þ SU

i; t�qÞ and Wi; t�q 1 ðRi; t�q þ S R
i; t�qÞ. Then we get:

log Ki; t ¼ b0 þ b1 log Fi; t�q þ b2 log Wi; t�q

þ b3 log Zi; t þ xi for i ¼ 1; . . . ;N ð10Þ

where b1; b2, and b3 are the parameters of interest; b0 is a constant and xi a
stochastic error term. F captures the pool of intra- and interregional univer-
sity spillovers as an aggregate, and W the pool of intra- and interregional
knowledge spillovers within the high-technology sector. Specification of the
length of the lag relationship has been – and this study makes no exception –
largely ad hoc, since past attempts to estimate rather than impose the param-
eter q have been inconclusive. We follow Verspagen and de Lo (1999) to as-
sume q ¼ 2, that is, an average lag of two years for inventions to accompany
research expenditures. In our study t refers to the year 1993 and, thus, t� q
to 1991.

Finally, it is worth noting that the Cobb-Douglas specification (10) of the
regional knowledge production function creates a particular sample selection
problem in so far as only observations for which all the variables (dependent
and independent) are non-zero can be utilised. Hence, our final data set only
includes those political districts for which patents and research expenditures
are available. The estimation is carried out with 72 out of 99 observational
units for which data are complete. These sample districts represent 100 per-

10 This spatial scale is the lowest at which relevant data are available. Political districts – though
political-administrative spatial units – are relatively homogeneous in so far that they generally
include one larger urban centre and its surroundings.
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cent of the university research expenditures (1991); 93.3 percent of the indus-
try R&D activities (1991) and 99.96 percent of the patent applications (1993)
in the high-tech sector. The data and specifications used are listed in Appendix
C.

4. Estimation issues

When models such as the Cobb-Douglas versions of (1), (2) and (8) or Eq. (10)
are estimated for cross-sectoral data on neighbouring spatial units, the lack
of independence across these spatial units may lead to spatial dependence
(spatial autocorrelation) in the regression equations and, thus, cause serious
problems in specifying and estimating the models. In the existing literature,
these e¤ects are typically ignored with a few exceptions such as Anselin et al.
(1997, 2000). We assess these e¤ects by means of a Lagrange Multiplier (LM)
test using six di¤erent spatial weights ðN;NÞ-matrices W with N ¼ 72 that
reflect di¤erent a priori notions on the spatial structure of dependence:

� the simple contiguity weights matrix (CONT),
� the inverse distance weights matrix (IDIS1),
� the square inverse distance weights matrix (IDIS2), and
� distance based matrices for 50 km (D50), 75 km (D75) and 100 km (D100)

between the administrative centres of the political districts.

This test is used here to assess the extent to which remaining unspecified spa-
tial knowledge spillovers may be present in the knowledge production func-
tion model. Spatial dependence can be incorporated in two distinct ways into
the model: as an additional regressor in the form of a spatially lagged depen-
dent variable or in the error structure. The former is referred to as Spatial Lag
Model and the latter Spatial Error Model.

For convenience let be K ¼ ðlog K1; t; . . . ; log KN; tÞ0 and x ¼ ðx1; . . . ; xNÞ0
with N ¼ 7. Then the Spatial Lag Version of (10) may be expressed in matrix
notation as

K ¼ rWK þ Xb þ x ð11Þ

where K is the ð72; 1Þ-vector of observations on the patent variable, WK is
the corresponding lag for the ð72; 72Þ-weights matrix W ;X is a ð72; 4Þ-matrix
of observations on the explanatory variables F;W;Z and a constant term,
with matching regression coe‰cients in the vector b. x is a ð72; 1Þ-vector
of normally distributed random error terms, with zero mean and constant
homoskedastic variance s2. r is the spatial autoregressive parameter. WK is
correlated with the disturbances, even when the latter are i.i.d. Consequently,
the spatial lag term has to be treated as an endogenous variable and proper
estimation procedures have to account for this endogeneity. Ordinary least
squares will be biased and inconsistent due to the simultaneity bias.

The second way to incorporate spatial autocorrelation into the regres-
sion model (10) is to specify a spatial process for the disturbance terms. The
resulting error covariance will be non-spherical, thus, while unbiased, ordi-
nary least squares [OLS] will be ine‰cient. Di¤erent spatial processes lead
to di¤erent error covariances with varying implications about the range and
extent of spatial interaction in the model (Anselin and Bera 1998). The most
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common specification is a spatial autoregressive process in the error terms that
results in the following matrix form of the spatial error model for regional
knowledge production:

K ¼ Xb þ x ð12Þ

with

x ¼ lWxþ h ð13Þ

that is a linear regression with error vector x, where l is the spatial autore-
gressive coe‰cient for the error lag Wx. X is a ð72; 4Þ-matrix of observa-
tions on the explanatory variables including a constant term as above, and b
a ð4; 1Þ-vector of regression coe‰cients. The errors x are assumed to follow
a spatial autoregressive process with autoregressive coe‰cients, and a white
noise error h.

The similarity between the Spatial Error Model (12)–(13) and the Spatial
Lag Model (11) for knowledge production complicates specification testing
in practice, since tests designed for a spatial lag specification will also have
power against a spatial error specification, and vice versa. But as evidenced in
a large number of Monte Carlo simulation experiments in Anselin and Rey
(1991), the joint use of the Lagrange Multiplier tests for spatial lag and spatial
error dependence suggested by Anselin (1988) provides the best guidance for
model specification. When both tests have high values indicating significant
spatial dependence in the data, the one with the highest value [lowest proba-
bility] will indicate the correct specification.

5. Empirical results

Table 1 presents the results of the estimation of the cross-sectional regres-
sion of the regional knowledge production function for 72 political districts in
Austria and the distance friction parameter11 g ¼ 2. All variables are in loga-
rithms.

We estimated the Spatial Error Model version of Eq. (10) (see Eqs.
(12)–(13)), and for matters of illustration two special cases of (10). Both
assume i.i.d. zero mean error terms. The first, termed Basic Model, addition-
ally assumes b3 ¼ 0, while the second, termed Extended Model, does not, but
assumes that knowledge externalities of the Marshall-Arrow-Romer and Isard-
Jacobs type play a decisive role. The results of the Basic Model are reported
in column 1, the results of the Extended Model in column 2 and those of the
Spatial Error Model in column 3. All estimation and specification tests were
carried out with SpaceStat Software (see Anselin 1995).

An influence of W on patent activities indicates knowledge production
internally to the high-technology industries including geographically medi-
ated spillovers between R&D laboratories. We interpret an influence of F on
patent activities as evidence of the existence of geographically mediated aca-

11 The distance friction parameter has been optimised for the Basic Model. The result achieved
(g ¼ 2) is in accordance with Sivitanidou and Sivitanides (1995). Note that the modelling results
obtained are relatively insensitive to the choice of g A ½1; . . . ; 4�.
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demic spillovers. The results provide strong further evidence of the empirical
relevance of geographic localisation of knowledge spillovers as was indicated,
for example, in Ja¤e (1989), Acs et al. (1992), Ja¤e et al. (1993), Audretsch
and Feldman (1994), and Anselin et al. (1997, 2000) for the American case.

All regression models yield highly significant and positive coe‰cients
for both university research and industry R&D spillovers (at p < 0.01). The
university research elasticities range in magnitude from 0.128 for the Basic
Model to 0.130 for the Spatial Error Model. The university research e¤ect is
much smaller than the industry R&D e¤ect. Knowledge externalities of the
Marshall-Arrow-Romer and Isard-Jacobs type are twice as important as indus-
try R&D e¤ects. For all models, diagnostic tests were carried out for hetero-
skedasticity, using the White (1980) test. In addition, specification tests for
spatial dependence and spatial error were performed, utilising the Lagrange

Table 1. Regression results for log (Patent applications) at the level of Austrian political districts
(N ¼ 72, 1993)

Model Basic model
[OLS]

Extended model
[OLS]

Spatial error
model [ML]

Constant 0.608***
(0.182)

3.741***
(0.783)

3.315***
(0.764)

Log F 0.128***
(0.040)

0.211***
(0.065)

0.213***
(0.064)

Log W 0.402***
(0.054)

0.100***
(0.037)

0.130***
(0.037)

Log Z 0.512***
(0.125)

0.438***
(0.121)

Spatial autoregressive
coe‰cient l

0.366*
(0.190)

Adjusted R2 0.598 0.672 0.699

Multicollinearity condition
number

3.978 21.341 21.341

White test for
heteroscedasticity

3.210 8.839

Breusch-Pagan test for
heteroscedasticity

2.277

Likelihood ratio test for
spatial error dependence

2.863
(D100)

Lagrange multiplier test for
spatial error dependence

10.092
(D100)

3.444
(D100)

Lagrange multiplier test for
spatial lag dependence

0.551
(D50)

0.889
(D75)

0.382
(IDIS2)

Notes: Estimated standard errors in parentheses; critical values for the White statistic respectively
5 and 9 degrees of freedom are 11.07 and 16.92 (p ¼ 0.05); critical value for the Breusch-Pagan
statistic with 3 degrees of freedom is 7.82 (p ¼ 0.05); critical values for Lagrange Multiplier Lag
and Lagrange Multiplier Error statistics are 3.84 ( p ¼ 0.05) and 2.71 ( p ¼ 0.10); critical value for
Likelihood Ratio-Error statistic with one degree of freedom is 3.84 (p ¼ 0.05); spatial weights
matrices are row-standardized: D100 is a distance-based contiguity for 100 kilometers; D75 a
distance-based contiguity for 75 kilometers; D50 a distance-based contiguity for 50 kilometers;
IDIS2 inverse distance squared; only the highest values for a spatial diagnostics are reported
* Denotes significance at the 10% level; ** Significance at the 5% level; *** Significance at the
one percent level
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Multiplier test. The tests for spatial autocorrelation were computed for the
six di¤erent spatial weights matrices (CONT, IDIS1, IDIS2, D50, D75 and
D100). Only the results for the most significant diagnostics are reported in
Table 1.

The Basic Model (column 1) confirms the strong significance of univer-
sity research and industry R&D spillovers. There is a clear dominance of the
coe‰cient of industry R&D over university research, indicating an elasticity
that is about three times higher. There is no evidence of heteroskedasticity,
but the Lagrange Multiplier test for spatial error dependence strongly indi-
cates misspecification of the model.

When the variable Z is added (see columns 2 and 3), the explana-
tory power of the regressions is substantially and significantly increased.
The model fit increases from 0.60 to 0.70 (measured in terms of adjusted
R2), with a positive and significant e¤ect for the knowledge externalities of
the Marshall-Arrow-Romer and Isard-Jacobs type. Geographically mediated
industry R&D and university research spillovers remain positive and signifi-
cant. But the addition of the variable causes the elasticity of both to drop
more or less substantially: industry R&D elasticity from 0.402 to 0.211 and
university research elasticity from 0.128 to 0.100. There is no evidence of het-
eroskedasticity, but the Lagrange Multiplier test for spatial error dependence
strongly indicates misspecification12.

The correct interpretation has to be based on the spatial error model that
removes any misspecification in the form of spatial autocorrelation. The other
results are only reported for completeness’ sake. The significant parameter of
the error term [l], the significant value of the Likelihood Ratio test in spatial
error dependence as well as the missing indication for spatial lag dependence
and heteroskedasticity (Breusch-Pagan test, see Breusch and Pagan 1979) are
taken as evidence for the correctness of the model. There is little change
between the interpretation of the model with and without spatial autocorre-
lation which is to be expected. The main e¤ect of the spatial error autocorre-
lation is on the precision of the estimates, but in this case it is not su‰cient to
alter any indication of significance.

In sum, the maximum likelihood (ML)-estimates in column 3 of Table 1
can be reliably interpreted to indicate the influence of university research on
knowledge increment in a political district, not only of university research
in the district itself, but also in the surrounding districts. The geographic
boundedness of university research spillovers is directly linked to a distance
decay e¤ect.

6. Summary and conclusions

In this paper, we have estimated knowledge spillovers from universities
within a knowledge production function framework. The production function
approach abandons the details of specific events and concentrates on total
output of knowledge generation as a function of industry R&D and university

12 Exogeneity of R and U were also checked by applying the Durbin-Wu-Hausman test. The null
hypothesis of exogeneity was not rejected ( p ¼ 0.22), suggesting that the single equation estima-
tion methods utilised are correct.
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research investment. While this approach is more general than the case study
approach, it is also coarser and su¤ers from a less sound behavioural foun-
dation. Nevertheless, it is currently the only available general way of trying to
answer questions about the importance and extent of spatial knowledge spill-
overs from university research.

The key assumption we made in analysing the link between knowledge
spillovers and corporate patent activity was that knowledge externalities are
more prevalent in high-technology industries where new – technological and
scientific – knowledge plays a crucial role. Knowledge spillovers were cap-
tured by means of spatially discounted spillover pools. Our empirical results
confirm the presence of geographically mediated knowledge spillovers from
university and show that these transcend the geographic scale of the political
district. The results also demonstrate that such spillovers follow a clear dis-
tance decay pattern, a result that is in accordance with Anselin et al. (1997,
2000) despite di¤erences in research design and context. But these externalities
appear to be relatively small in comparison to knowledge externalities of the
Marshall-Arrow-Romer and Isard-Jacobs type. These findings call for policy
strategies to facilitate flows of knowledge within Austrian regional systems of
innovation.

The findings are also important in that they highlight the relevance of
modelling knowledge spillovers in form of spatially discounted external stocks
of knowledge. But, some cautionary remarks are in order as well.

� First, we have chosen to focus on those districts where patent activity and
R&D research in the high-technology industries were observed. This leaves
aside the issue of why certain locations have R&D and patent activity and
others do not, especially when one of the two is present, but the other not.

� Second, we were forced to define the high-technology sector on the basis
of two-digit ISIC industries. Many products manufactured by these high-
technology industries are medium-tech or even low-tech. This aggregation
level evidently masks considerable underlying heterogeneity and may be too
crude to capture clearly university research e¤ects. The available industry
R&D expenditure data do not match the four- and three-digit ISIC levels.
Hence additional progress on the issue will have to await the appearance of
better data.

� Third, the MAUP problem in spatial analysis teaches us that the results of
spatial analytical studies tend to be – more or less – a¤ected by the spatial
units of analysis. Thus, the choice of appropriate spatial units is of crucial
importance. We have no doubt in mind that political districts qualify as
most appropriate units of observation in the Austrian context, not at least
because they come rather close to the idea of functional regions. But the
choice comes not without some price to be paid: the loss of the ability to
clearly distinguish intraregional from interregional spillovers.

� Fourth, our knowledge production function framework is comparative-
static and hence – as all the previous studies – abstracts from several
important dynamic issues. Because changes in knowledge have an impact
over many years, there is an intrinsic dynamic relationship between today’s
research investment and future knowledge generation. There are long, vari-
able and uncertain lags in the interval between the start of a research activity
and generating useful knowledge. The problem of the timing of spillovers
has – admittedly – not been given adequate attention in our study. Given
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the di¤use nature of knowledge spillovers and the likely presence of long
and variable lags, the assumption of a two year lag may be too crude to
adequately capture knowledge spillovers. Much more work needs to be done
to estimate rather than to a priori impose the time shape of the lag between
the input and the output of the knowledge production process.

� Fifth, in the context of our study some major research questions relate
to measurement issues. How much of university research in a region is
spillable? What is the appropriate size unit (the university institute, the uni-
versity department or the research group)? These and several other ques-
tions are crucial for measuring knowledge spillovers from universities. We
have chosen an approach essentially adapted from Varga (1998) to assign
academic departments and the associated expenditure figures to the high-
technology sector to which knowledge spillovers from university research
may flow. The approach is rather heuristic in nature. No doubt that much
more research needs to be done to address the above questions in some more
depth with the aim to come up with a somewhat more analytical matching
procedure.

Overall, one main conclusion of the study is that the spatial dimension of
knowledge spillovers is not something that should be disregarded. Even with
a less refined model version we were able to describe and illustrate the theo-
retical and empirical necessity to test for the presence of spatial e¤ects and –
when needed – to revise the knowledge production model to include them
explicitly. This type of spatial econometric analysis may lead to an increasing
understanding of the spatial extent of knowledge spillovers and, thus, provide
important empirical support for the theory of endogenous economic growth.

References

Acs ZJ, Audretsch DB, Feldman MP (1992) Real e¤ects of academic research: Comment. Amer-
ican Economic Review 82:363–367

Acs ZJ, Audretsch DB, Feldman MP (1994) R&D spillovers and recipient firm size. Review of
Economics and Statistics 76:336–340

Adams JD (1990) Fundamental stocks of knowledge and productivity growth. Journal of Political
Economy 98:673–702

Adams JD (1993) Science, R&D, and invention potential recharge: U.S. evidence. American
Economic Review 83:458–462

Alston JM, Norton GW, Pardey PG (1998) Science under scarcity. CAB International, New York
Anselin L (1988) Spatial econometrics: Methods and models. Kluwer, Boston
Anselin L (1995) SpaceStat Version 1.90. http://www.spacestat.com
Anselin L, Bera A (1998) Spatial dependence in linear regression models with an introduction to

spatial econometrics. In: Ullah A, Giles D (eds) Handbook of applied economic statistics.
Marcel Dekker, New York, pp 237–289

Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models.
Geographical Analysis 23:112–131

Anselin L, Varga A, Acs Z (1997) Local geographic spillovers between university research and
high technology innovations. Journal of Urban Economics 42:422–448

Anselin L, Varga A, Acs Z (2000) Geographic and sectoral characteristics of academic knowledge
externalities. Papers in Regional Science 79:435–443

Audretsch DB, Feldman MP (1994) Knowledge spillovers and the geography of innovation and
production. Discussion Paper no. 953, Centre for Economic Policy Research, London

Audretsch DB, Feldman MP (1996) R&D spillovers and the geography of innovation and pro-
duction. American Economic Review 86:630–640

316 M.M. Fischer, A. Varga



Bernstein JI, Nadiri MI (1988) Interindustry R&D spillovers, rates of return, and production in
high-tech industries. American Economic Review 78(2):429–434

Breusch T, Pagan A (1979) A simple test for heteroskedasticity and random coe‰cient variation.
Econometrics 47:1287–1294

Cohen WM, Levinthal DA (1989) Innovation and learning. The two faces of R&D. Economic
Journal 99:569–596

Dosi G (1988) Sources, procedures and microeconomic e¤ects of innovation. Journal of Economic
Literature 26:1120–1126

Feldman M (1994) The geography of innovation. Kluwer, Boston
Feldman MP, Audretsch DB (1999) Innovation in cities: Science-based diversity, specialisation

and localised competition. European Economic Review 43:400–429
Feldman MP, Florida R (1994) The geographic sources of innovation: Technological infra-

structure and product innovation in the United States. Annals of the Association of American
Geographers 84:210–229
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Appendix A
Assignment of patent classes to the high technology sectors at the two-digit
ISIC-level

ISIC
category

Industry sector IPC patent classes

30 Computers & O‰ce
Machinery

B41J, B41L [50%], G06C, G06E, G06F, G06G, G06J,
G06K, G06M, G11B, G11C

31–32 Electronics &
Electrical
Engineering

A45D [40%], A47J [80%], A47L [40%], A61H [30%],
B03C, B23Q [10%], B60Q, B64F [20%], F02P, F21H,
F21K, F21L; F21M, F21P, F21Q, F21S, F21V, F27B
[10%], G08B, G08G, H01B, H01F, H01G, H01H,
H01J, H01K, H01M, H01R, H01S, H01T, H02B,
H02G, H02H, H02J, H02K, H02M, H02N, H02P,
H03M, H05B, H05C, H05F, H05H, G08C, G09B
[50%], H01C, H01L, H01P, H01Q, H03B, H03C,
H03D, H03F, H03G, H03H, H03J, H03K, H03L,
H04A, H04B, H04G, H04H, H04J, H04K, H04L,
H04M, H04N, H04Q, H04R, H04S, H05K

33 Scientific
Instruments

A61B, A61C, A61D, A61F, A61G [90%], A61H [40%],
A61L [60%], A61M, A61N, A62B [50%], B01L, B64F
[10%], C12K [25%], C12Q, F16P [60%], F22B [20%],
F22D [20%], F22G [20%], F22X [20%], F23N, F23Q
[10%], F24F [20%], F41G, G01B, G01D, G01F [60%],
G01H, G01J, G01K, G01L, G01M, G01N, G01P,
G01R, G01S, G01T, G01V, G01W, G02B, G02C,
G02F, G03B, G03C, G03D, G03G, G03H, G04B,
G04C, G04F, G04G, G05B, G05C, G05D, G05F,
G05G, G06D, G07B, G07C, G07D, G07F, G07G,
G09G, G12B, G21F, G21G, G21H, G21K, H05G

29, 34–35 Machinery &
Transportation
Vehicles

A01B, A01C, A01D, A01F, A01G [10%], A01J [80%],
A01K [30%], A21B, A21C, A21D [30%], A22B [50%],
A22C [70%], A23C [10%], A23G [10%], A23N, A23P,
A24C, A24D [50%], A43D, A61H [30%], A62B [30%],
B01B, B01D, B01F, B01J, B02B [50%], B02C, B03B,
B03D, B04B, B04C, B05B [50%], B05C [95%], B05D,
B05X [50%], B06B, B07B, B07C, B08B, B09B [25%],
B22C [10%], B23Q [70%], B25J, B27J, B28B [60%],
B28C [60%], B28D [70%], B29B [80%], B29C [80%],
B29D [50%], B29F [80%], B29G [50%], B29H [50%],
B29J [40%], B30B, B31B, B31C [90%], B31D [80%],
B31F [80%], B41B, B41D, B41F, B41G, B42C [50%],
B60C [20%], B65B, B65C, B65G [40%], B65H, B66B,
B66C, B66D, B66F, B66G, B67B [50%], B67C, B67D,
C02F [30%], C10F, C12H, C12L, C12M, C13C, C13G,
C13H, C14B [50%], C14C [50%], D01B [50%], D01C
[50%], D01D [50%], D01F [50%], D01G [50%], D01H
[50%], D02D, D02G [50%], D02H [50%], D02J [50%],
D03D [50%], D03J, D04B [50%], D04C [50%], D04D
[50%], D04G [50%], D04H [50%], D06C, D06F [70%],
D06G, D06H [70%], D21F, D21G, E01B [50%], E01C
[50%], E01H [80%], E02D [30%], E03B [30%], E04D
[25%], E21B [45%], E21C, E21D [50%], F01B, F01C,
F01D, F01K, F01L, F01M, F01N, F01P, F02B, F02C,
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Appendix A (continued)

ISIC
category

Industry sector IPC patent classes

F02D, F02F, F02G, F02K, F03B, F03C, F03D,
F03G, F03H, F04B, F04C, F04D, F04F, F15B, F15C,
F15D, F16C, F16J [80%], F16K, F16N, F16T, F23B,
F23C, F23D, F23G, F23H, H23J, F23K, F23L,
F23M, F23Q [60%], F23R, F24F [80%], F24J [30%],
F25B, F25C, F25D, F25J, F26B, F27B [90%], F27D,
F28B, F28C, F28D, F28G, F41A, F41B, F41C, F41D,
F41F, F41H [50%], F42B, F42C, F42D [50%], G01F
[40%], G01G, G21J

23, 25 Oil Refining,
Rubber &
Plastics

A47G [50%], A47K [40%], A61J [40%], A62B [20%],
B29H [50%], B60C [80%], C10B, C10C, C10G, C10L,
C10M, D06N [50%], F42D [50%]

24 Chemistry &
Pharmaceuticals

A01M [20%], A01N, A61J [30%], A61K [95%], A61L
[40%], A62D, B09B [75%], B27K [70%], B29B [20%],
B29C [20%], B29D [50%], B29F [20%], B29G [50%],
B29K, B29L, B41M [15%], B44D [50%], C01B, C01C,
C01D, C01F, C01G, C02F [50%], C05B, C05C, C05D,
C05F, C05G, C06B, C06C, C06D, C06F, C07B [95%],
C07C [95%], C07D [95%], C07F [95%], C07G [95%],
C07H [90%], C07J, C07K, C08B, C08C, C08F, C08G,
C08H, C08J, C08K, C08L, C09B, C09C, C09D, C09F,
C09G, C09H, C09J, C09K, C10H, C10J, C10K,
C10N, C11B [50%], C11C [50%], C11D, C12D [90%],
C12K [75%], C12N [80%], C12P [50%], C12R [10%],
C12S, C14C [50%], E04D [25%], F41H [50%]

Note: The assignment is based on the MERIT concordance table (Verspagen et al. 1994) between
the International Patent Classification (IPC) and the International Standard Industrial Classifi-
cation of all economic activities (ISIC-rev.2) of the United Nations. The percentages in brackets in
the last column of the table give the share of the patents in the IPC-class assigned to the accessory
ISIC-category if not all patents in the IPC-class are assigned to the corresponding ISIC-category.
A percentage of 100%, for example, therefore means that all patents in the IPC-class are assigned
to the corresponding ISIC-category.
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Appendix B
Linking scientific fields/university departments to the two-digit high technology
sectors

ISIC
category

Industry sector Associated scientific fields/university departments

30 Computers & O‰ce
Machinery

Fields connected with Information Technologies:
Micro-Electronics, Automation and Robotics,
Computer Sciences, etc.

31–32 Electronics & Electrical
Engineering

Electrical Engineering, Micro-Electronics, Technical
Mathematics, Automation and Robotics,
Computer Sciences, etc.

33 Scientific Instruments Engineering Fields such as Mechanical Engineering,
Electrical Engineering, Micro-Electronics,
Automation and Robotics, Technical
Mathematics, Computer Sciences, Physics-Related
Fields, Medicine-Related Fields, Biology-Related
Fields, Materials Sciences, etc.

29, 34–35 Machinery &
Transportation
Vehicles

Engineering Fields including Mechanical
Engineering and Electrical Engineering, Heat
Science, Thermodynamics, Material Sciences,
Computer Sciences, Technical Mathematics,
Astronomy, Transport Science

23, 25 Oil Refining, Rubber
& Plastics

Chemistry-Related Fields including Materials
Sciences, Chemical Engineering and Care
Chemistry except for certain sectors such as
Quantum Chemistry, Biochemistry and
Geochemistry

24 Chemistry &
Pharmaceuticals

Chemistry-, Pharmaceuticals- and Medicine-Related
Fields including Microbiology, Pharmaceutical
Chemistry, Biochemistry, etc.

Source: On the basis of Levin et al. (1987), Feldman (1994); Audretsch and Feldman (1994) and
Varga (1998) in the spirit of Feldman and Audretsch (1999); only the most important scientific
fields/university departments are listed.
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Appendix C
Patent applications (1993), industry R&D (1991) and university research
(1991) for 72 Austrian political districts

Political District Patent
applications
(variable K )

Industry R&D
(variable R)

University research
and out-of-district
access to university
research (variable F)

Eisenstadt-Umgebung 3.00 35.45 1.24
Neusiedl am See 3.00 7.29 1.38
Oberpullendorf 1.00 3.80 0.52
Klagenfurt (Stadt) 19.50 3.29 36.14
Villach(Stadt) 8.00 16.16 0.13
Hermagor 1.00 0.34 0.09
Sankt Veit an der Glan 1.00 3.16 0.26
Spittal an der Drau 4.00 0.41 0.10
Villach Land 6.50 35.01 0.14
Wolfsberg 2.00 6.24 0.35
Feldkirchen 2.00 0.35 0.20
Krems (Stadt) 2.50 17.74 0.71
Sankt Pölten (Stadt) 7.50 21.34 1.01
Waidhofen (Stadt) 3.00 6.60 0.31
Wiener Neustadt (Stadt) 5.00 14.24 1.65
Amstetten 16.00 87.49 0.37
Baden 27.50 360.98 4.80
Gänserndorf 3.00 14.33 3.19
Korneuburg 12.50 46.70 9.82
Mödling 22.40 213.57 12.97
Neunkirchen 10.00 61.54 1.01
Sankt Pölten (Land) 3.50 4.61 1.45
Scheibbs 1.00 4.98 0.42
Tulln 2.80 34.12 3.29
Waidhofen an der Thaya 1.00 1.20 0.28
Wiener Neustadt (Land) 6.60 11.75 1.55
Vienna-Umgebung 14.60 323.08 25.35
Linz (Stadt) 62.30 1144.26 218.16
Steyr (Stadt) 28.60 1123.43 0.36
Wels (Stadt) 12.50 30.87 0.44
Braunau am Inn 8.50 14.73 0.13
Gmunden 19.10 103.77 0.20
Grieskirchen 10.00 49.42 0.24
Kirchdorf an der Krems 12.30 7.21 0.25
Linz-Land 10.70 111.67 2.74
Perg 13.00 26.41 0.44
Ried im Innkreis 5.30 11.96 0.17
Rohrbach 3.00 3.11 0.22
Schärding 5.00 10.34 0.14
Steyr-Land 8.00 10.43 0.28
Vöcklabruck 43.80 318.82 0.20
Wels-Land 5.00 77.04 0.28
Salzburg (Stadt) 34.30 36.70 117.1
Hallein 8.10 107.28 0.53
Salzburg-Umgebung 23.80 20.92 0.70
Zell am See 5.00 4.57 0.12
Graz (Stadt) 84.30 399.49 1195.15
Bruck an der Mur 4.30 9.17 1.09
Deutschlandsberg 5.50 93.80 0.97
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Appendix C (continued)

Political District Patent
applications
(variable K )

Industry R&D
(variable R)

University research
and out-of-district
access to university
research (variable F)

Feldbach 1.00 2.08 0.81
Fürstenfeld 2.00 12.38 0.61
Graz-Umgebung 8.50 347.15 8.75
Hartberg 1.00 5.53 0.65
Judenburg 12.00 42.26 0.38
Knittelfeld 3.00 20.34 0.48
Leibnitz 4.00 2.23 1.09
Leoben 3.00 5.93 98.51
Liezen 4.00 25.22 0.22
Mürzzuschlag 1.00 9.84 0.55
Voitsberg 10.00 7.88 1.57
Weiz 4.00 123.45 1.68
Innsbruck-Stadt 9.00 5.54 852.03
Innsbruck-Land 29.40 39.07 8.38
Kitzbühel 7.00 15.91 0.18
Kufstein 9.00 329.98 0.25
Lienz 3.00 8.73 0.08
Schwaz 15.00 80.21 2.58
Bludenz 1.00 17.86 0.06
Bregenz 12.00 66.74 0.04
Dornbirn 11.00 146.49 0.04
Feldkirch 14.00 90.23 0.05
Vienna 383.70 6999.29 3345.06

Notes: Industry R&D and University Research were measured in terms of expenditures, all
figures are in millions of 1991 ATS; Patent and industry R&D data refer to high technology
industries; University research data include those academic institutes that are expected to be
important for the high technology industries; Universities are located in seven political districts:
Vienna hosting six universities, Graz (Stadt), Innsbruck (Stadt), Salzburg (Stadt), Linz (Stadt),
Klagenfurt (Stadt) and Leoben; all the other political districts have only out-of-district access to
university research.
Sources: Patent data were compiled from the Austrian Patent O‰ce database; Industry R&D
data were compiled from the 1991 Industry R&D Survey of the Austrian Chamber of Commerce;
University research data were estimated on the basis of information provided by the Austrian
Federal Ministry for Science and Research.
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