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Abstract. This paper uses data from high technology industry clusters in U.S.
cities to establish a strong positive relationship between city, industry cluster
(and university) R&D, and subsequent employment in the same industry
cluster and city. Perhaps surprisingly, in view of recent results that heteroge-
neity favors growth, we found no evidence for spillovers from R&D in any one
high technology cluster to employment in any other. However, spillover ben-
efits from specialization appear microeconomically plausible in our context,
though the data panel is too short to obtain any conclusions regarding growth.

JEL classification: J23, J44, O30

1. Introduction

Why does economic activity cluster? According to Krugman (1991), econo-
mies of scale, transportation costs and market demand can interact to produce
agglomerations even in the absence of any pure external economies. However,
unless there are significant externalities, or other sources of social increasing
returns, it is unlikely that economic growth can proceed at a constant, non-
diminishing rate into the future (Griliches 1992).

What type of economic activity will promote positive externalities and,
therefore, economic growth? This question is important given the debate
in the literature about the nature of economic activity and how it a¤ects
economic growth. The Marshall-Arrow-Romer (MAR) externality concerns
knowledge spillovers between firms in an industry. Arrow (1962) presented an
early formalization; the paper by Romer (1986) is a recent and influential
statement. Applied to cities by Marshall (1890), this view says that the con-
centration of an industry in a city facilitates knowledge spillovers between
firms and, therefore the growth of that industry. According to this approach,
externalities work within industries (Loesch 1954).

These theories of dynamic externalities are extremely appealing because
they try to explain simultaneously how cities form and why they grow.
MAR, in particular, predict that industries cluster geographically to absorb



the knowledge spilling over between firms. In addition, they predict that re-
gionally specialized industries grow faster because neighboring firms can learn
from each other much better than geographically isolated firms.

A very di¤erent position has been attributed to Jacobs (1969). Jacobs per-
ceives information spillovers between industry clusters to be more important
for the firm than within-industry information flows. Heterogeneity, not spe-
cialization, is seen as the most important regional growth factor, so Jacobs
theory predicts that industries located in areas that are highly industrially di-
versified should grow faster1. Glaeser et al. (1992) analyze the six largest in-
dustries in each of 170 U.S. cities. Their results are consistent with the pres-
ence of Jacobs type externalities. Industries will grow sluggishly in cities with
high degrees of specialization. However, as Duranton and Puga (1999) point
out in their survey of this area, the results may depend on the sector concerned.
Thus, Henderson (1994) finds that traditional standardized goods tend to be
produced in more specialized cities, and (relative) demand for these products
has declined secularly as new product demand has grown.

While Glaeser et al. (1992), Henderson et al. (1995) and Henderson (1994)
have all examined the role of heterogeneity and specialization in economic
growth, none of these studies has directly examined the role of university or
industrial R&D, the ultimate source of new and existing knowledge for eco-
nomic growth. Recently, Ja¤e (1989), Ja¤e et al. (1993) and Varga (1998)
found that R&D and other knowledge spillovers not only generate external-
ities, but that such knowledge spillovers tend to be geographically bounded
within the region where the new economic knowledge was created. Anselin et
al. (1997, 1999) confirmed the positive relationship between university research
and innovative activity, and provided the first direct measure on the extent
of knowledge spillovers that extended over a range of 50 miles from the in-
novating Metropolitan Statistical Area (MSA). However, these studies have
only examined the e¤ect of knowledge spillovers on patent and/or innovation
counts but not on employment. The ultimate economic interest lies chiefly in
the product markets and jobs that are generated by R&D.

In a recent paper, Acs et al. (1999) examined the spillover e¤ects of uni-
versity R&D on high-technology employment at the urban level. While our
data was for a much shorter time period than Glaeser et al. (1992) and we
only looked at high tech employment, by using BLS data instead of County
Business Patterns data we did not have to estimate missing values. Moreover,
we had data at the three-digit level, instead of the two-digit level, permitting a
more disaggregated analysis. We found that after controlling for wages, prior
innovations, state fixed e¤ects and sample selectivity bias, university R&D
spillovers have a significant e¤ect on high technology employment within nar-
row industry bounds in MSAs.

In other words, university R&D spillovers appear to operate locally within
a narrow set of industries from university research through innovation to high
technology employment. There was no strong evidence of university R&D
spillovers across industries or MSAs. The transmission of university knowl-
edge spillovers across industries appears to be unimportant. It is certainly
plausible that the usefulness of university research to the firm is greatest if it is

1 This paper does not address the issue posed by these studies and also Porter (1990) and Schum-
peter (1942) on the role of competition and monopoly in promoting innovation and growth.
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in the same three or four-digit SIC classification. Di¤ering technologies and
professional specializations also suggest that university research is likely to be
less valuable to the firm, if it is carried out in di¤erent two-digit SIC codes.
Thus, we found no support for Jacobs-type externalities for university R&D
spillovers across industry clusters.

The purpose of this paper is to extend this research to industrial R&D. We
test the MAR hypothesis that industrial R&D does not spillover across re-
gional industry clusters. This is important for several reasons. First, the ratio
of business R&D to total R&D is about 0.725, and even larger in selected
three digit industries. Second, industrial R&D is more applied and closer to
employment and economic growth than university R&D. Third, the empirical
evidence suggests that R&D spillovers operate at the industry level and prox-
imity does matter (Ja¤e 1986).

In Sect. 2 we briefly summarize the literature on the search for R&D
spillovers at the industry level. In Sect. 3 we examine some of the theoretical
underpinnings of the heterogeneity and specialization hypotheses. Issues con-
cerning the measurement of high technology employment and R&D are out-
lined in Sect. 4. After the empirical specification and econometric issues are
discussed in Sect. 5, the results are presented in Sect. 6. The final section sum-
marizes our conclusions. We find that the channels of knowledge spillover are
similar for industrial R&D and university R&D. Both university and industry
R&D spillovers may operate within, but certainly do not operate across, nar-
row three-digit industry groupings, thus supporting the specialization thesis in
this context. However, these essentially cross-sectional data do not permit di-
rect conclusions about employment growth.

2. The search for industrial R&D spillovers

What are R&D spillovers? There are two distinct notions. First, R&D inten-
sive inputs are purchased from other industries at less than their full quality-
adjusted price. This is a problem of measuring capital equipment, other inputs
and their prices correctly and not really a case of pure knowledge spillovers. A
good example of such productivity transfers would be the computer industry.
It has experienced tremendous productivity growth. Di¤erent industries have
benefited di¤erentially from it depending on their rate of computer purchases.
But these are not pure knowledge spillovers; instead they are just consequences
of conventional measurement problems under uncertainty.

True spillovers are ideas borrowed by research teams of industry (or firm) i
from the research results of industry (or firm) j. The photographic equipment
industry (SIC 386) and the measuring and controlling device industry (SIC
382) may not purchase inputs from one another but may be in a sense working
on similar problems and hence able to benefit considerably from each other’s
research.

To measure R&D spillovers directly, one has to assume either that their
benefits are localized in a particular industry, or in a range of products. Or
that there are ways of identifying the relevant channels of influence, so ‘‘that
one can detect the path of the spillovers in the sands of the data’’ (Griliches
1992, p. S31). Arguably the usefulness of somebody else’s research to you is
highest if he is in the same four-digit SIC classification as you are. It is prob-
ably still high if she is in the same three-digit industry group. While research in
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your two-digit industry classification is less useful, it is still more valuable to
you than research outside of your two-digit industry.

If there are R&D spillovers within industries then the computed returns
should be higher at the industry than the firm level. A comparison of firm-
based R&D results with those found using various industry aggregates does
not, however, indicate consistently higher R&D coe‰cients at the aggregate
level (Mairesse and Mohnen 1990). This result may be due to measurement
error. These studies, for example, do not take into account explicitly the dif-
ference between private and social obsolescence rates (Griliches 1992).

Nevertheless, there are a significant number of reasonably well done studies
all pointing in the same direction: R&D spillovers at the industry level are
present, their magnitudes may be quite large, and social rates of return remain
significantly above private rates. See, for example, Ja¤e (1986), Griliches and
Lichtenberg (1984), and Bernstein and Nadiri (1989).

3. Heterogeneity versus specialization

The importance of location to employment growth may seem paradoxical in a
world of instant communications. However, as has been pointed out by Lucas
(1988, 1993) and Black and Henderson (1999), it is localized information and
knowledge spillovers, presumably through personal face-to-face contacts, that
make cities the engines of economic growth. Cities grow faster than rural
areas.

Despite the general consensus that knowledge spillovers within a given lo-
cation stimulate employment growth, there is little consensus as to exactly how
this occurs. The MAR model formalizes the insight that the concentration of
an industry in a city promotes knowledge spillovers between firms and there-
fore would facilitate employment growth in a city industry observation. An
important assumption is that knowledge externalities with respect to firms
exist, but only for firms within the same industry. Thus, the relevant unit of
observation is extended from the firm to the region in the theoretical tradition
of the MAR model and in subsequent empirical studies, but spillovers are
limited to occur within the relevant industry. The transmission of knowledge
spillovers across industries is assumed to be non-existent or at least trivial.

However, according to Jacobs (1969), the emphasis on within industry
spillovers may be misplaced. Jacobs’ idea is that the crucial externality in
cities is cross-fertilization of ideas across di¤erent lines of work and industries.
New York grain and cotton merchants saw the need for national and inter-
national financial transactions, and so the financial services industry was born.
Rosenberg (1963) discusses the spread of machine tools across industries and
describes how an idea is transmitted from one industry to another. Because
cities bring people together from di¤erent walks of life, they foster transmis-
sion of ideas. Lucas (1993) emphasizes metropolitan areas as the most natural
context in which the compact nature of the geographic growth facilitates per-
sonal interchange, communication and knowledge spillovers both within and
across industries.

Jacobs (1969) develops a theory which emphasizes that the variety of
industries within a geographic region promotes knowledge externalities and
ultimately employment and economic growth. A common science base facili-
tates the exchange of existing ideas and generation of new ones across disparate
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but complementary industries. Thus, in Jacobs’ view diversity rather than spe-
cialization is the operative mechanism of economic growth.

A second issue is the role of university R&D2. University R&D by defini-
tion exists outside the industry. However, university R&D is a source of sig-
nificant innovation generating knowledge which di¤uses initially through di-
rect personal contacts to adjacent firms. Since both basic and applied
university research may benefit private enterprise in various ways, it induces
firms to locate nearby (Ja¤e 1989, and Anselin et al. 1997). Lund (1986) sur-
veys industrial R&D managers and finds the proximity of university R&D to
be important for the location decision due to the initial spillover from neigh-
boring university research to commercial innovation. Of course, as research
results are embodied in commercial products and disseminated, the initial
learning advantage created by close geographic proximity between local high
technology industrial activity and the university would fade but may persist
for significant durations. Thus knowledge, both of a formal nature and em-
bodied in the tacit skills of mobile human capital, flows locally through a va-
riety of channels more easily and e‰ciently than over greater distances.3

4. Description of the data

Clusters are geographic concentrations of interconnected companies and in-
stitutions in a particular field or industry. Clusters encompass an array of
linked industries and other entities important to competition. They include,
for example, suppliers of specialized inputs such as components, machinery,
and services and providers of specialized infrastructure (Porter 1990).4 If
Marshall-Arrow-Romer (MAR) externality concerns knowledge spillovers be-
tween firms in an industry, or cluster of industries, they most probably operate
along these interconnections within clusters. We identified thirty two three-
digit standard industrial classification (SIC) industries as high technology in-
dustries on the basis of a relatively high ratio of R&D to industry sales (Acs
1996). These industries were grouped into the five clusters of technologically
closely related industries detailed in Table 1, namely Biotechnology and Bio-
medical, Information Technology and Services, High Technology Machinery
and Instruments, Defense and Aerospace, and Energy and Chemicals.5

Employment and wage data corresponding to the five industry clusters
were provided by the U.S. Department of Labor, Bureau of Labor Statistics
(BLS). These are reported to the BLS by the State Employment Security
Agencies (SESAs) of the 50 states as part of the Covered Employment and
Wages Program (that is, the EC-202þ report). Employers in private industry
provide SESAs with quarterly tax reports for an average of 90 million wage

2 This is discussed in more detail in Acs et al. (1999).
3 Note that we do not present here any tests for geographical spillovers, such as those conducted
by Anselin et al. (1999). Research and development occurring in a given MSA may well have
cross-regional employment impacts but consideration of the distinction between local and non-
local spillovers is outside the scope of this paper.
4 A rich literature has recently developed on industry clusters. See for example, Porter 1998;
Braunerhjelm and Carlsson 1999; Acs 1996; Storper 1995. For a review of the literature see Mui-
zer and Hospers 1998.
5 In our previous paper (Acs et al. 1999) which did not consider industrial R&D, we were able to
include the e¤ect of university R&D on employment for the High Technology Research sector.
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and salary workers in approximately 5.9 million reporting units. These reports
covered approximately 98% of total wage and salary civilian employment and
provide a virtual census of employees and their wages for nearly all sectors of
the economy.

This study utilizes specialized data runs for 36 MSAs which are listed in
Table 2 in descending order of total high technology employment in our five
clusters. There is considerable variation in employment levels both between
MSAs within an industry grouping and between sectors within a given city.
Unfortunately, labor market data were unavailable for additional MSAs due
to disclosure limitations.

In those cities and industries where there are only a few employers, the
data cannot be released due to the problem of potentially revealing the details
of individual records. This limits both the number of industries and the num-
ber of cities which can be studied using BLS data.

Although we could study employment in most of the 300 MSAs, disclosure
problems prohibit access to data on specific high technology industries. This
study of R&D spillovers, therefore, is necessarily confined to those cities that
have a large number of high technology industries.

Our measure of industrial research and development (R&D) is a proxy
based on data on professional employment in high technology research labo-
ratories in the Bowker Directories (Jacques Cattell Press 1985). While imper-
fect, this approach allowed us to construct a private R&D variable for all
MSAs. As indicated in Anselin, Varga and Acs (1997), our proxy variables are
remarkably similar to the R&D expenditures used in Ja¤e (1989).

Table 1. Industry clusters

Biotechnology and biomedical Defence and aerospace

Medicinals and botanicals (283) Ordnance and accessories (348)
Medical instruments and supplies (384) Aircraft and parts (372)
Ophthalmic goods (385) Guided missiles and space (376)

Search and navigation equipment (381)
Information technology and services

Energy and chemicalsComputer and o‰ce equipment (357)
Crude petroleum and natural gas (131)Electronic distribution equipment (361)
Industrial inorganic chemicals (281)Audio and video equipment (365)
Plastic materials and synthetics (282)Communications equipment (366)
Industrial organic chemicals (286)Electronic components and accessories (367)
Miscellaneous chemical products (289)
Petroleum refining (291)

Communication services (489)
Computer and data processing services (737)

High technology machinery and instruments

Engines and turbines (351)
Construction and related machinery (353)
General industrial machinery (356)
Electrical industrial apparatus (362)
Household appliances (363)
Electric lighting and wiring (364)
Miscellaneous electrical equipment and suppliers (369)
Measuring and controlling devices (382)
Photographic equipment and supplies (386)

Source: O‰ce of Management and Budget, Standard Industrial Classification Manual, 1987,
Washington DC, 1988.
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The data on university R&D are measured in expenditure rather than em-
ployment terms. Total university R&D spending in each city is disaggregated
by broad science department and allocated to each of the five industries.
The assignment of research funds by academic department to each industrial
grouping follows that used in Acs et al. (1999) which in turn was based on
the mapping of Audretsch and Feldman (1996). The data are compiled from
the National Science Foundation Survey of Scientific and Engineering Ex-
penditures at Universities and Colleges for various years. Table 3 reports
mean industrial and university R&D across the 36 MSAs by industrial group-
ing. Interestingly, there is an inverse relationship between our measures of
average industrial R&D and university R&D by sector. The biotechnology
sector, for example, has the smallest R&D laboratories in terms of employ-

Table 2. High technology employment by MSA and industry clusters, 1988

MSA BB DA HTM EC ITS TOTAL

Los Angeles 19535 219696 54176 24343 89321 407071
Boston 16481 44355 54176 5710 133252 253974
San Jose 10301 36315 40134 828 147266 234844
Chicago 11159 1587 59874 15835 80821 169276
Philadelphia 22026 19535 36315 22026 59874 159776
Dallas 3789 29732 12964 18033 80821 145339
Seattle 3714 98715 8184 464 15835 126912
Houston 1299 925 24343 73130 21162 120859
Minneapolis 12209 15063 29732 2565 59874 119443
Portland 5486 22026 73130 8184 8690 117516
Tucson 1224 3568 4188 1900 89321 100201
New York City 17676 4817 18215 6905 49020 96633
Rochester 7863 49020 9996 12835 14328 94042
Phoenix 2079 26903 5324 626 49020 83952
San Diego 6185 29732 14617 1286 29732 81552
Raleigh-Durham 5767 22026 5166 8184 26903 68046
Cleveland 2208 8103 24343 13766 10509 58929
Austin 2368 22026 3827 8184 22026 58431
Washington DC 2643 16155 7631 3789 26903 57121
Denver 4359 15214 4146 14328 15063 53110
Baltimore 2275 21162 6905 4402 17154 51898
Kansas City 437 22026 17154 8184 3568 51369
Cincinnati 4359 19341 11047 6502 7707 48956
Atlanta 2643 22026 953 8184 5377 39183
Pittsburgh 2892 259 15063 7707 12088 38009
Indianapolis 5271 3133 7785 2514 17154 35857
Orlando 1998 2344 14185 665 16647 35839
Nashville 837 14764 5431 249 11047 32328
Salt Lake City 3714 7115 2864 2018 14764 30475
San Francisco 3866 1998 2540 3197 16983 28584
Charlotte 1261 262 5166 9228 12209 28126
Columbus 1652 1685 9996 3751 10938 28022
St Louis 561 7785 2540 66 8866 19818
Miami 953 3361 7186 1808 6310 19618
Providence 1863 111 7942 2143 6438 18497
Louisville 6974 2253 2951 796 4769 17743

BB Biotechnology and biomedical; DA Defense and aerospace; HTM High technology machinery
and instruments; EC Energy and chemicals; ITS Information and technology services.
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ment but the largest expenditures in terms of university R&D (departments of
life sciences). This is because the more mature industries have higher industrial
R&D and the newer clusters, such as Biotechnology and Biomedical that are
rather young have larger university expenditures.

5. The empirical model

Since the data do not permit us to estimate a well specified labor demand
equation, the employment equation is written down as a simple log linear re-
duced form in Eq. (1):

EMPMIT ¼ a0 þ a1WMIT þ a2IRDMI þ a3IRDSPILLMI

þ a4URDMI ;T�3 þ a5URDSPILLMI ;T�3

þ a6INNOVM þ a7POPMT þ aV þ uMIT ð1Þ

where M ¼ 1 . . . 36 indexes the MSA, I ¼ 1 . . . 5 indexes industry grouping,
and T ¼ 1988 . . . 1991 indexes time, and all variables are in natural loga-
rithms. EMPMIT refers to high technology employment, WMIT is the corre-
sponding annual real wage per employee, defined as nominal wages deflated
by the appropriate producer price index. Note that the panel is very short,
including only four years of annual data, which compares unfavourably with,
say, Glaeser et al. (1992), who use observations drawn from 1956 and 1987 to
estimate employment growth equations. Since cross section variability domi-
nates in our data set, attempts to estimate equations specified in terms of em-
ployment growth rates, rather than in levels, proved fruitless.
URDMI ;T�3 refers to university R&D deflated by the gross national prod-

uct price deflator. Given the time span of the data set, it seems reasonable that
the use of R&D with a three year lag provides an appropriate delay for the
university research knowledge externality to be transmitted into commercial
products and employment. Edwards and Gordon (1984), for example, find
that innovations made in 1982 resulted from inventions made on average just
over four years previously.

To test directly for spillovers to employment in each sector from university
R&D expenditure outside of that matched to each industrial grouping, the

Table 3. Mean industrial and university R&D by cluster

Industrial cluster Industrial R&D
(laboratory
employment in 1985)

University R&D (annual
expenditure 1988 to 1991
in $ millions)

Biotechnology and biomedical 644.6 112.8
Defense and aerospace 962.4 47.9
High technology machinery

and instruments
1071.4 36.9

Energy and chemicals 1258.4 22.6
Information technology and

services
1909.9 7.9
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variable URDSPILLMI ;T�3 was constructed. It is the sum of all hard science
university R&D spending by MSA less the expenditure which corresponds to
each industry.
IRDMI is the industrial R&D proxy measured using employment in R&D

laboratories. Data were collected by sector and city for a single year, namely
1985. The variable IRDSPILLMI captures any spillover from industrial R&D
which is not specific to each industry grouping. It is constructed using the
same method as that described for the university spillover variable.
INNOVM is a count of the number of product innovations by MSA in

1982, the year for which the data base of U.S. commercial innovations was
compiled by the Small Business Administration. The count is based on an
extensive review of new product announcements in trade and technical pub-
lications. The data are disaggregated by MSA but not by industry, so cross-
industry spillover e¤ects from the innovation count cannot be directly tested
here6. In this model, the variable attempts to control for the e¤ect of pre-
existing commercial innovation, that ultimately leads to product development
and marketing with substantial time lags, on subsequent employment levels.
POPMT refers to MSA population and controls for local market size. Al-

though the market may well extend beyond MSA boundaries, we do not have
a more appropriate measure of demand. Finally V represents a vector of in-
dustry, state and annual time dummies. These control for fixed e¤ects which
may not have been captured by the continuous variables.

5.1. Sample selection bias

The disclosure limits of the BLS data described previously may introduce a
selection bias in the results. This arises since the data are suppressed in those
MSAs where high technology employment is low. A non-randomly selected
sample is, therefore, e¤ectively imposed by the BLS. This bias can be resolved
econometrically by constructing a joint model which represents both the em-
ployment equation and the selection process determining when the dependent
variable is observed7. If the selection rule is that employment is only reported
if it exceeds an unobserved disclosure threshold, EMP�

MIT , the model is de-
scribed statistically as follows:

EMPMIT ¼ b 0XMIT þ uMIT ð2Þ

EMP�
MIT ¼ g 0ZMIT þ eMIT ð3Þ

EMPMIT observed only if EMPMIT bEMP�
MIT

where ðuMIT ; eMITÞ are i.i.d. drawings from a bivariate normal distribution
with zero mean, variances s2

u and s2
e , and covariance sue. If this covariance is

nonzero, the OLS estimates of b will be biased. XMIT and ZMIT are vectors
of independent variables. The dependent variable EMP�

MIT is unobserved but

6 For a discussion of their limitations see Edwards and Gordon (1984), Feldman and Audretsch
(1999) and Varga (1998).
7 See Maddala (1983).
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has a dichotomous observable realization IMIT which is related to EMP�
MIT as

follows:

IMIT ¼ 1 if and only if EMPMIT bEMP�
MIT

IMIT ¼ 0 if and only if EMPMIT < EMP�
MIT

Equation (2) applies to the selected sample of 36 cities and summarizes the
specification in (1). Additional data were obtained on the right hand side vari-
ables for a further 77 MSAs which are non-selected in the sense that no high
technology employment observations were publicly available for these cases.
The additional observations permit correction of the sample selection bias in-
duced by censoring of the dependent variable using the two stage estimation
procedure proposed by Heckman (1979). In the first stage the parameters of
the probability that an MSA will be in the selected sample of 36 cities are es-
timated from a probit analysis of Eq. (3) using the full sample of 36 þ 77 ¼ 113
MSAs. From these estimates the values of the inverse of Mills’ ratio, denoted
l̂lMIT , are computed for each observation in the selected sample. The second
stage is to estimate the employment Eq. (2) by OLS with l̂lMIT as an additional
explanatory variable. It has been shown by Heckman and others that this
correction term is a proxy variable for the probability of selection, measuring
the sample selection e¤ect arising from undisclosed observations on employ-
ment. This procedure gives consistent estimates of the parameters of Eq. (2).

Note that ZMIT is a subset of XMIT . Since the non-disclosure problems
which apply to employment likewise a¿ict the wage data, the wage variable
is excluded from the ZMIT vector in the selection equation. The probability of
hi-tech employment disclosure is likely to be strongly related to city size which
is proxied here by the population variable. In addition, the innovation vari-
able, and the industrial and university R&D variables together with their
spillover counterparts are included. Table 4 provides basic summary statistics
for all the variables in the model, disaggregated by disclosure status, and pre-
sented in their raw (unlogged) form8. The 77 MSAs for which high technology

8 A human capital, labour supply variable for MSAs that was used with mixed results in our
previous work, was insignificant and hence omitted here.

Table 4. Summary statistics by variable

Variable 36 MSAs
Mean

36 MSAs
Coe‰cient of
variation

77 MSAs
Mean

77 MSAs
Coe‰cient of
variation

EMPMIT 17308 1.55
WMIT 31723 0.24
POPMT 2370200 0.82 647000 0.96
INNOVM 56 1.36 7 1.53
IRDMI 1169 1.79 187 2.93
IRDSPILLMI 4678 1.51 761 2.08
URDMI ;T�3 46 1.44 10 2.13
URDSPILLMI ;T�3 149 0.91 33 1.53

Note: (a) For ease of reading the table, the means are rounded to the nearest integer value; (b) the
university R&D variables are measured in $ millions.
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employment is not disclosed are clearly much smaller, with substantially fewer
innovations and considerably lower R&D than those 36 MSAs for which em-
ployment and wage data are available.

6. Results

The first column of Table 5 reports the ordinary least squares regression re-
sults using 720 observations drawn from five high technology clusters in 36
MSAs over the four year period, 1988 to 1991. The absolute t-statistics in
parentheses are based on White’s heteroskedastic consistent estimates of the
standard errors. The equation includes both state, time and industry fixed ef-
fects to control for unmeasured factors.

The coe‰cients on the fixed e¤ects are not tabulated but their joint sig-
nificance cannot be rejected by an F-test. Since the equation is estimated in
natural logarithms the coe‰cients should therefore be interpreted as elastic-
ities. These simple OLS estimates provide a baseline from which to assess the
impact of sample selection on the employment equation. Column (2) of Ta-

Table 5. High technology employment estimates

Dependent
variable

(1)
OLS

(2)
PROBIT

(3)
OLS

(4)
OLS

EMPMIT IMIT EMPMIT EMPMIT

Constant �22.69
(6.8)

�10.56
(19.5)

�22.03
(6.2)

�21.70
(5.3)

WMIT 2.61
(8.8)

2.61
(8.8)

WMI ;T�1 2.60
(7.6)

POPMT 0.26
(2.4)

1.08
(15.2)

0.22
(1.7)

0.20
(1.3)

INNOVM 0.29
(2.8)

0.38
(8.2)

0.26
(2.0)

0.27
(1.9)

IRDMI 0.12
(4.1)

0.03
(1.4)

0.12
(4.2)

0.11
(3.6)

IRDSPILLMI 0.02
(0.5)

�0.07
(3.1)

0.03
(0.7)

0.04
(0.7)

URDMI ;T�3 0.09
(3.5)

0.08
(3.5)

0.09
(3.0)

0.07
(2.3)

URDSPILLMI ;T�3 0.06
(1.5)

0.15
(5.1)

0.05
(1.0)

0.06
(1.1)

l̂lMIT �0.19
(0.6)

�0.23
(0.6)

R2 0.59 0.57 0.59 0.59
ŝs 0.899 0.900 0.903
n 720 2260 720 540

Notes: (a) Absolute t-statistics based on White’s heteroskedastic consistent standard errors are in
parentheses; (b) All variables are in natural logarithms; (c) R2 is the adjusted multiple correlation
coe‰cient, ŝs is the estimated standard error of the regression, and n is the number of observations;
(d) Unreported dummy variables for industry, time and state are also included in each of these
regressions except for the probit in column (2).
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ble 5 reports the coe‰cient estimates of the disclosure probability equation
estimated by maximum likelihood probit on the full sample of 113 MSAs
over the four year period. The probit equation performs satisfactorily. All of
the variables with the partial exception of industrial R&D, IRDMI , are sta-
tistically significant at conventional levels, and the equation correctly pre-
dicts disclosure status in 84% of cases. Curiously, the signs on the two inter-
industry spillover variables are opposite. Larger values for R&D spillovers
assigned to a given MSA and industry (university) are likely to be asso-
ciated with a smaller (greater) probability of employment disclosure, all else
equal. Note, however, that the magnitudes of the R&D coe‰cients are com-
paratively small. It is mainly MSA size in terms of population, and to a smaller
degree, the number of innovations that most powerfully determine disclosure
probability.

Column (3) lists the estimated coe‰cients of the employment equation
corrected for sample selection. Under the null hypothesis of no selection bias,
the coe‰cient of the estimated inverse Mills’ ratio, l̂lMIT , has a t-distribution.
Using a t-test, we cannot reject the null at conventional levels of statistical
significance. This outcome implies that there is no sample selection problem
for these data. Hence including a term to capture sample selection makes very
little di¤erence respect to the remaining coe‰cients, as a comparison of the
corrected equation in column (3) with the unadjusted equation in column (1)
indicates.

There are several important findings in column (3). First, the major result
is that the estimates suggest, if anything, a rejection of the heterogeneity hy-
pothesis. Although the coe‰cient on the university R&D spillovers in other
clusters, URDSPILLMI ;T�3, is slightly larger than that for the corresponding
industrial R&D spillover, IRDSPILLMI , both are statistically insignificant at
conventional levels.

Second, industrial and university R&D are positive and statistically sig-
nificant determinants of high technology employment. The employment elas-
ticities are similar in magnitude, 0.12 and 0.09 respectively, though they are
not strictly comparable given the di¤erent bases of measurement.

Third, and perhaps surprisingly, real wages and employment are positively
related ceteris paribus. To correct for any possible simultaneity between em-
ployment and real wages, the equation was also estimated using lagged wages.
The results are reported in column (4) and are very similar to those in columns
(1) and (3). Neither unreported re-estimates with 2SLS or random e¤ects
models produced any di¤erence in this result which thus appears to be robust
to estimation technique.

Without a measure of output we cannot estimate a production function or
a structural model of labor demand. Our reduced form relationship between
wages and high technology employment suggests that we may have captured
the dynamics of labor supply in the face of mobility costs and specific skills.
Faster growing local industries may need higher wages to recruit scarce skills
from further afield to compensate for relocation and transport costs. There is
an analogy with the well known firm size-wage correlation, and of course
higher employment is likely to imply larger firms on average9.

9 Higher wages and employment may be a legacy of faster growth in previous years not included
in our short panel.
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7. Conclusions

We have established a striking correlation between local R&D and subsequent
high technology employment in the same MSA and three-digit industry clus-
ter. There is apparently no spillover relationship from R&D in the other in-
dustry groups. This result may seem surprising in the light of much recent re-
search which seems rather to support the Jacobs’ (1969) view of the benefits of
diversity. Of course, our essentially cross-sectional data cannot directly ad-
dress the key issues of growth performance, which require longer panels. And
we have only focussed on a narrow subset of industries, albeit important ones
in the context of knowledge spillovers. In addition, our industry groupings
o¤er no evidence on spillovers within groups, between the related industries
we have aggregated and listed in Table 1, though such spillovers are to be ex-
pected among similar technologies, and would also not lend support to the
diversity thesis.

From a microeconomic perspective, our evidence for the benefits of spe-
cialization, following MAR, does appear plausible in our context and raises
several challenges for future research. These include extensions to other in-
dustries and longer panels which allow for further direct testing of spillovers
from R&D to growth and productivity in other industries.
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