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Abstract. The future operations of transportation systems involve a lot of un-
certainty – in both inputs and model parameters. This work investigates the
stability of contemporary transport demand model outputs by quantifying the
variability in model inputs, such as zonal socioeconomic data and trip gener-
ation rates, and simulating the propagation of their variation through a series
of common demand models over a 25-zone network. The results suggest that
uncertainty is likely to compound itself – rather than attenuate – over a series
of models. Mispredictions at early stages (e.g., trip generation) in multi-stage
models appear to amplify across later stages. While this e¤ect may be coun-
teracted by equilibrium assignment of tra‰c flows across a network, predicted
tra‰c flows are highly and positively correlated.

JEL classification: C15, D80, R41

1. Introduction

The future operations of transportation systems involve substantial uncer-
tainty. Modeling these complicated systems requires many variables and be-
havioral components whose variability may be poorly identified or simply
ignored. Without explicit and rigorous statistical recognition of uncertainty in
transportation demand forecasts, transportation planning of towns, cities, and
metropolitan areas takes on unnecessary risk. Transportation plans and polices
based on these forecasts may be inaccurate and even misleading. As a result,
transport facility investments may be poorly directed.

Generally, large-scale transport demand models are estimated sequen-
tially, with the results or estimates of one model acting as inputs to subsequent
models. In almost all cases, only point estimates are passed forward, rather
than estimates of variation and covariation. Such modeling processes limit the
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final results to point estimates, so comparisons of plans or scenarios based
on the results may be incorrect. In reality, outcomes of alternative plans or
scenarios may overlap, and the di¤erence between alternatives may not be
statistically significant.

This work investigates the nature of uncertainty propagation in contem-
porary transport demand models, by quantifying variability in model outputs
and tracking the sources of this variability – in the form of variable model in-
puts and parameters. The work’s objective is a comparison of point estimates
under input variation. Monte Carlo simulation and sensitivity analysis are used
to investigate error propagation over an 818-link network covering a 25-zone
area of the Dallas-Fort Worth metro region.

The following sections of this paper include a background and literature
review, model specification and assumptions, simulation results, and a sensi-
tivity analysis. The paper concludes with a summary of the research findings
and identification of possible extensions to this work.

2. Background

There are many sources of forecast errors. Modelers can do relatively little
about errors due to mis-measurement, poor sampling, mis-computation, model
mis-specification, and data aggregation (e.g., spatial aggregation). (Barton-
Aschman et al. 1997). In contrast, purely stochastic errors can be accommo-
dated statistically and explicitly. Components of these stochastic errors arise
from three sources, which here are termed ‘‘inherent uncertainty’’, ‘‘input un-
certainty’’, and ‘‘propagated uncertainty’’. Since travel demand model param-
eters are random variables, estimated from samples of the population, model
estimates are associated with variations and covariations. These variations
constitute inherent uncertainty. Also, the use of predictions of future demo-
graphic data (e.g., employment and land use) as inputs to tra‰c demand fore-
casting models contributes input uncertainty. Moreover, since transport de-
mand models are generally estimated and applied sequentially, the results or
estimates of one model act as input to subsequent models. Their uncertainty is
passed forward, producing propagated uncertainty. The cumulative impact of
these three forms of uncertainty is the focus of this research.

Unfortunately, current travel-demand-modeling practice does not acknowl-
edge all these sources of uncertainty, especially input uncertainty. For exam-
ple, rigorous statistical models produce estimates of variance and covariance
along with their point (or mean) estimates. However, only point estimates (of
variables’ mean values) are carried forward through travel demand models.
The covariance information is generally lost. Many variables used as inputs
to transport demand models come from other models, whose associated un-
certainty is not known or incorporated. If point estimates of these future vari-
ables (such as population, housing, and automobile ownership) are to be used
in travel demand models, an appreciation of variability in all results requires
distributional information on the inputs.

Modeling methods based on point estimates dramatically constrain all
final results into point estimates, and the point estimates may be highly biased.
Alonso (1968) raised this question in land use and transportation prediction.
For example, the expected value of a linear function of independent variables
requires only mean values of the input variables. However, non-linear functions
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and any functions involving correlated variables require distributional infor-
mation in order to avoid bias when estimating the function’s mean value (see,
e.g., Rice 1995). Comparisons of alternative transportation plans or scenarios
based on these do not convey information regarding uncertainty in estimates –
or the statistical significance of di¤erences. Neglect of data and parameter
uncertainties and their correlation ultimately weaken the reliability of trans-
portation planning, policy-making, and infrastructure decisions. For example,
Rodier and Johnston (2001) suggested that the plausible uncertainty in popu-
lation and employment projections may result in a region’s transportation plan
not meeting the air quality conformity tests in a five- or ten-year time horizon.

To assess some forms of uncertainty in model predictions, most transport
modeling processes employ ‘‘model validation’’ to test a model’s forecast abil-
ity. Although validation compares model predictions with the observed data
that are not used in model estimation, this procedure can only assess the model’s
predictive strength for contemporary situation. Variations in future forecasts
due to input and inherent uncertainty, however, change over time. Thus, there
is no guarantee that future predictions will be bounded by an acceptable range.

Barton-Aschman et al. (1997) have provided a set of specific guidelines
for model validation and have recognized that input error and inherent un-
certainty add to overall uncertainty. There is the concern that each step in the
Urban Transportation Planning System (UTPS) models could possibly in-
crease the overall error. They write that ‘‘while there is a potential for the errors
to o¤set each other, there is no guarantee that they will.’’ (1997, p. 12) but make
no attempt to quantify the propagated uncertainty.

A ‘‘before and after’’ study is another method used to assess a model’s
predictive accuracy. But it is di‰cult to draw useful conclusions from an
individual study (Aitken and White 1972); examples include Horowitz and
Emsile (1978), ITE (1980), and Mackinder and Evans (1981). Comparisons of
predicted and observed volumes via percent root mean square error (%RMSE)
provide validation tools for tra‰c assignment models. Practical results sug-
gest that average hourly or daily flow forecasts come with %RMSE of 30–50%
(Barton-Aschman et al. 1997; Martin 1998), and links with low flows tend to
have higher %RMSE than those with high flows. However, without sensitivity
analysis, one does not know which inputs contribute most to final uncertainty.
Mackinder and Evans (1981) have suggested that the errors in socioeconomic
variables might dominate highway volume forecast errors, but their work did
not explicitly investigate this hypothesis.

There is a fair amount of transportation research focused on modeling un-
certainties. For example, Robbins (1978) estimated the possible error in each
of the four-step models. However, several of his assumptions were simplistic.
For example, he used a fixed-proportion mode split model. Bonsall (1977) pro-
posed a more systematic approach with sensitivity analysis, but no particular
input distributions were specified; instead, an ad hoc set of values was used.

More sophisticated approaches have adopted simulation to capture ran-
dom input patterns. Ashley (1980) studied the probability distribution of var-
ious outputs from an interurban highway forecasting model due to various
input uncertainties. His correlated inputs were drawn from multivariate prob-
ability distributions; but he neglected many forms of uncertainty (e.g., destina-
tion choice), did not detail the specifics of his simulations, and did not investi-
gate which error sources contributed most to overall uncertainty. In contrast,
Pell’s (1984) work examined forecast variability by identifying those sources
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of input uncertainty and error that make the largest contributions to forecast
uncertainty. Pell proposed two criteria for selecting the most important error
sources: the sensitivity of forecasts to input errors, as measured by elasticity;
and the magnitude of forecast errors, as measured by coe‰cients of variation
(also called ‘‘percentage error’’ or ‘‘relative error’’). His 73 simulations sug-
gested link-flow coe‰cients of variation of 0.30 to 2.0, but they did not employ
correlated inputs. For practical applications, Pell recommended fewer simula-
tion runs after one has identified the influence of a small number of uncertain
sources.

There are several other, less relevant studies in uncertainty analysis. For
example, Rose’s network study (1986) focused on flow predictions but did not
permit correlated inputs. And Leurent (1998) developed a sensitivity and un-
certainty analysis method for the equilibrium solution to a dual-criteria model
on a small-scale network.

In summary, many researchers have examined the propagation of uncer-
tainty through travel demand models. Simulation techniques are suggested as
one of the most useful methods in this field because one can simulate uncer-
tainty from a variety of sources simultaneously and impose correlation across
inputs. Sensitivity analysis is another e¤ective tool for studying uncertainty. It
traces output uncertainty back to inputs, revealing both linear and non-linear
relationships. However, due to cost, computational, and other limitations,
prior studies exhibit common weaknesses. Few large-scale data applications
have been undertaken, and few firm conclusions have been reached.

3. Model application

This work investigates the stability of transportation demand model outputs
by using traditional, four-step urban transportation planning process (UTPP)
models on a Dallas-Ft. Worth (DFW) subregion. Inputs and parameters are
varied randomly, to approximate errors and uncertainties; and Monte Carlo
simulation and sensitivity analysis are the primary tools used (see, e.g., Hahn
and Shapiro 1967 and Cullen and Frey 1999). A multivariate regression analy-
sis of results (as a function of input levels) along with linear and rank correla-
tion coe‰cients suggests dependencies and sensitivities between input and out-
put uncertainties.

This work considers the traditional UTPP model paradigm via its
primary components: trip generation, trip distribution, mode choice, and route
selection. There are a number of alternative model formulations one might use,
along with a variety of specifications one might choose for each model compo-
nent. As the first reasonably comprehensive investigation of its type, this study
only adopts general, simplified specifications. Such focus permits a clearer pic-
ture of output dependencies and general model behaviors – while reducing the
computational e¤ort involved in simulating and solving the full UTPP model
100 times. Table 1 provides average parameter values for each of the model
components, and the component specifications are described here now.

3.1. Trip generation

Trip generation models have two basic structures: (1) regression equations at
an aggregate (zonal) or disaggregate (household/person) level, and (2) cross-
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classification of trip rates at an aggregate level. This study uses the following
simplified cross-classification models to calculate the home-based work trips
(HBW).

Trip Production:

Ti ¼ aHHi ð1Þ

where Ti is the number of HBW trips produced in zone i, HHi is the total
number of households in zone i, and a is the trip production rate.

Trip Attraction:

Ai ¼
X
k; l

bklEMPikxil ð2Þ

where Ai is the number of HBW trips attracted to zone i, EMPik is the total
number of jobs of type k in zone i, xil is an indicator variable for zone type
(i.e., 1 if this zone is of type l, 0 otherwise), and bkl is the trip attraction rate of
employment of type k in zone type l.

In this study, three types of employment are used: basic employment, retail
employment, and service employment.1 Four zone types are specified based on

Table 1. Simulation set-up: model parameters*

Model Parameter Mean SD Coef. of
variation

Distribution Covar.

Trip
generation

a 2.303 0.691 0.30 Lognormal –
b1; 1 1.389 0.417 0.30 Lognormal –
b1; 2 1.328 0.398 0.30 Lognormal –
b1; 3 1.309 0.393 0.30 Lognormal –
b1; 4 1.476 0.443 0.30 Lognormal –
b2; 1 1.396 0.419 0.30 Lognormal –
b2; 2 1.530 0.459 0.30 Lognormal –
b2; 3 1.448 0.434 0.30 Lognormal –
b2; 4 1.386 0.416 0.30 Lognormal –
b3; 1 1.304 0.391 0.30 Lognormal –
b3; 2 1.371 0.411 0.30 Lognormal –
b3; 3 1.369 0.411 0.30 Lognormal –
b3; 4 1.392 0.418 0.30 Lognormal –

Trip
distribution

g 1.16E �3 3.48E �4 0.30 Lognormal –

Model split ytransit �0.549** 0.165 0.30 MVLognormal* r ¼ 0:67
d �0.0297 0.0089 0.30 MVLognormal*

Tra‰c
assignment

a0 0.84 0.252 0.30 Lognormal –
b0 5.50 1.65 0.30 Lognormal –

* The mean parameter values come from the DFW area travel model report. (NCTCOG 1999).
** To impose negativity, these parameters are drawn from a multivariate lognormal distribution
and then given negative signs.

1 Basic employment consists of agriculture, mining, construction, manufacturing, transportation,
communications, utilities, wholesale, and non-retail employment. Retail employment consists of
jobs in businesses primarily engaged in selling goods to the public. Service employment includes
financial, insurance, real estate, and other non-governmental service jobs.
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the population and employment density: these are business district, urban resi-
dential, suburban residential, and rural. To balance total trip productions and
attractions, this study constrains HBW trips to equal the estimated trip attrac-
tions.

The mean values of demographic inputs (i.e., number of household and
di¤erent employment types) come from the Dallas-Ft. Worth (DFW) travel
model’s data set. These are shown in Table 1, along with other model compo-
nent parameter values. For clarity and focus, the coe‰cients of variation are
all set to 0.30 (and later to 0.10 and 0.50). Thus, the standard deviations (SDs)
are determined by multiplying mean values by 0.30. As previously discussed,
the actual values may be higher or lower; it depends on the model specifica-
tions and data sets used for calibration. Coe‰cients of variation of 0.30 sug-
gest t-statistics of 3.33, signifying values that di¤er from zero in highly statis-
tically significant ways; such statistical significance in parameter estimates is
common to many behavioral models of travel demand.

The distribution of demographic inputs (i.e., household and employment
numbers across zones) is assumed to be multivariate normal with a correlation
coe‰cient of þ0.30 across all variables. One would expect a positive correla-
tion in these forecasts, given a general increase or reduction in population and
jobs for the region. But, depending on the predictive models used (for house-
holds and employment), actual correlations may be weaker or stronger2; they
also may fall with distance between zones. Estimates from long-term popula-
tion and economic/jobs forecasting models would be needed for determination
of actual correlations.

3.2. Trip distribution

The most common model form used for trip distribution is the gravity model,
and this is the model used here. This model form, subject to a production con-
straint, is defined as follows:

Tij ¼ Ti
AjF ðtijÞP
k

AkF ðtikÞ

0
B@

1
CA ð3Þ

where Tij is the number of trips from zone i to zone j, Ti is the number of trip
productions in zone i, Aj is the number of trip attractions in zone j, tij is the
impedance (time or generalized cost) from i to j, and FðtijÞ is the impedance
function recognizing travel cost between zones i and j.

The impedance function should be inversely related to zonal separation.
Gamma, power, or exponential functions usually are used. Here a simple ex-
ponential function is used, as follows:

F ðtijÞ ¼ t
g
ij ð4Þ

where g is the impedance parameter.

2 For example, it may be that a single target population or jobs number is forecast for the region,
and these are then distributed in simple proportion to current numbers – producing perfect posi-
tive correlation.
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Equation (3) yields a trip matrix consistent with the number of produc-
tions in each zone but not with the number of attractions. Thus, this form
of the gravity model is ‘‘singly constrained’’. This study applies three itera-
tions of proportional fitting, switching between the attraction- and production-
constrained calculations to meet the margins totals of the trip matrix. To some
extent, this fitting of the trip table dampens the e¤ects of the trip distribution
parameters.

Murchland (1978) has suggested, via extensive calculation, that for small
errors in both trips generated and impedance matrix values, the relative vari-
ance (i.e., the coe‰cient of variation squared) of the resultant cell values is
approximately the sum of the relative variances of the input.

3.3. Mode split

Multinomial and nested logit models are very common models of mode
choice. A multinomial logit (MNL) specification essentially assumes equal com-
petition across alternatives. Using this model, the proportion of trips made by
mode m between zones i and j is the following:

Prmjij ¼
eVmjijP
l

eVljij
ð5Þ

where Vmjij is the utility of mode m given origin i and destination j. Vmjij is
specified to be a linear function of trip time, cost, and other variables. Here, a
simple linear function is used:

Vm ¼ ym þ TTm dþ em ð6Þ

where TTm is total travel time by mode m, em represents unobserved hetero-
geneity (assumed to be iid GEV), and ym and d are model parameters.

So the total number of trips by mode m from zone i to zone j, Tijm, is the
following:

Tijm ¼ Tij Prmjij ð7Þ

This study simplifies the travel mode choice by allowing only two options:
drive alone and all other modes (based on public transit travel times).

3.4. Route choice

Network assignment of trips can include several common features. For ex-
ample, an all-or-nothing method assigns all tra‰c flows between an origin-
destination (O-D) pair to the shortest path. Capacity-restrained assignments
attempt to approximate an equilibrium solution by iterating between all-
or-nothing tra‰c loading and recalculating link travel times based on link
capacity functions. User equilibrium (UE) methods utilize an iterative process
to achieve a convergent solution (‘‘equilibrium’’) in which no traveler can im-
prove his/her travel time by shifting routes.

The uncertainty in assignment model results appears to be small if
equilibrium techniques are used. Leurent (1998) suggested that an equilibrium
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network assignment is very stable, given well-defined criteria and constraints.
Indeed, in congested networks the equilibration process may reduce the mag-
nitude of uncertainties from the distribution models, in reproducing of link
flows.

This study employs a user equilibrium method in its trip assignment model.
UE algorithms incorporate link capacity functions in their search for conver-
gence to an equilibrium state. A common link performance function, developed
by the Bureau of Public Roads, is the following:

t ¼ tf 1þ a0
q

qmax

	 
b0" #
ð8Þ

where t is the impedance of a given link at flow q, tf is free flow impedance of
the link, qmax is link ‘‘capacity’’, and a0 and b0 are volume/delay coe‰cients.

The traditional BPR values for a0 and b0 are 0.15 and 4.0, respectively, but
these are based on using a qmax for level of service C. For a qmax correspond-
ing to true capacity (i.e., maximum flow under level of service E), NCHRP
Report 365 (Martin 1998) suggests larger values, of 0.84 and 5.5, respectively.
These larger values are applied here.

All together, this sequence of four sub-models produces a set of link-flow
estimates. These are the model outputs of greatest interest in this work, and
their variability is due solely to input and parameter uncertainties. These un-
certainties are simulated by first specifying their distributions and then ran-
domly generating values from these distributions. To impose sign constraints
on many of these variables (for example, trip generation rate cannot be less than
zero), lognormal distributions are used. To accommodate covariation across
input and parameter values, multivariate distributions were specified, including
the multivariate lognormal distribution.

The four-step model approach is applied into a road network (see Fig. 1)
with 25 zones and 818 links, which is separated from the Dallas-Fort Worth
highway system. The area contains about 18,000 households and represents
about 2.5% of DFW region. It is located around Irving, Texas (to the north-
west of Dallas). For outside inputs, this study uses the demographic data as-
sociated with the network data. For model parameters, it uses mean values
from the DFW area travel model description report (NCTCOG 1999). Neces-
sary simplifications and modifications have been made based on NCHRP Re-
ports 187 (Sosslau et al. 1978) and 365 (Martin 1998). However, there are sev-
eral variation and covariation assumptions; these include a single coe‰cient of
variation for all inputs and parameters and a single correlation coe‰cient (of
þ0.30) relating all demographic data inputs. More reliable estimates of varia-
tion and covariation are likely to require model estimation using actual travel
data, since estimates of variation and covariation are rarely reported in the lit-
erature. The rather simplistic assumptions used here provide a general exam-
ple of variations; certainly, some models will o¤er stronger parameter estimates
than others, and covariances can be both positive and negative. The simplicity
of the approach used here permits a clarity in focus on the problem of primary
interest: the sensitivity of model outputs to the various inputs and parameter
values.

The modeling software used here for the first three sub-model steps (i.e.,
trip generation, trip distribution, and mode choice) is @Risk (Palisade 1998),
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which loads through Microsoft Excel software. This is a very flexible and user-
friendly software for Monte Carlo simulation and risk analysis; however, many
standard programming languages and other software packages are viable for
such techniques. TransCAD (Caliper Co. 1996) is used here for the final, trip
assignment sub-model in order to apply its commercialized UE algorithm.
The convergence of a UE assignment is assumed when the maximum absolute
change in all link flows between consecutive iterations is less than 5 vehicles per
hour.

The results of greatest interest are variations of link flows and their ma-
trices of covariation, across model simulations. These are discussed in the
following section.

4. Simulation results

The sequence of four-step sub-models produces a set of link-flow esti-
mates. The study simulates the forecasting approach by running the four-step
models 100 times, using 100 di¤erent sets of input and parameter values. In

Fig. 1. 25-zone subnet from the Dallas-Fort Worth highway network
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general, the number of simulations run needs to be large enough to obtain
robust and accurate results. When simulation samples of size 10 and 20 were
used here, average coe‰cients of variation in total VMT and VHT (two pri-
mary output indicators) were found to range from 0.22 to 0.26. In this study,
100 simulations/replications were used, so a substantially more stable estimate
of output variation is expected (e.g., on the order of 2.2 to 3.2 times narrower
a band than for the N ¼ 20 and N ¼ 10 scenarios). Adopting an even larger
number of runs would further improve accuracy in estimates of final un-
certainties, but it would require substantially more computational e¤ort and
time. Based on the smaller-sample estimates obtained, the 100-run simulation
appears su‰cient to provide robust and accurate results for this 25-zone sub-
network.3

Final link flows were obtained from the converged UE assignment results.
Most of the ratios of volume versus capacity were relatively low (e.g., 85% of
them were less than 0.76 and the mean was 0.39), indicating that the assign-
ment equilibrium was not heavily congested. In fact, the result is a portion of
a general assignment; it only includes morning peak hour home-based work
auto trip assignment. The flow volumes from one assignment are shown in
Fig. 2. Two example arcs are chosen for explicit consideration. Link one (Ro-
chelle Blvd. between Northgate and Rochelle) represents the general pattern
of congested links, while link two (SH183 eastbound passed Story Road ramp)
represents other, uncongested links. The flow distributions of 100 simulation
results for these two links are shown in Fig. 4. Not surprisingly, given the log-
normal distribution assumptions of input and parameters, the resulting distri-
butions appear approximately lognormal.

The overall uncertainty results are shown in Table 2. As evident in these
results, the variability of the selected link flows is sizable. Both coe‰cients of
variation of the two link flows are larger than 0.30, which suggests the final
uncertainty may be compounded and end higher than any input or parameter
uncertainty. The flow uncertainty appears not to have a strong relation with
congestion, as suggested by Fig. 4, which plots the uncertainty of all loaded
links versus their volume-to-capacity (v/c) ratios. As can be seen, most link flow
uncertainties are larger than 0.30, no matter what their v/c ratios are. Some
points in the lower-left area provide a possibility that under very low v/c levels,
overall uncertainty may be reduced to some degree. However, the average link
travel times exhibit a relatively strong relation to congestion. The travel time
uncertainty of the example congested link, 1.899, is much higher than that of
the uncongested link, 0.127.

The coe‰cient of variation estimated for VMT is just 0.236, which is rel-
atively low. This also is true for uncertainty in total vehicle hours traveled
(VHT) across the network. As shown in Table 3, the link flows show great
correlation between one another. For probabilistic simulations, correlations
greater than 0.5 between inputs and outputs suggest substantial dependence.
Since total VMT is the weighted sum of all link flow volumes, there is a strong
correlation between total VMT and individual link flows.

3 A more complicated set of travel demand models, using more parameters and inputs, would
likely require more simulations, to achieve stable estimates. However, a factorial design of the
experiment (introducing orthogonality across experimental values) and more e‰cient sampling
methods across input spaces (e.g., Latin Hypercube [Fishman 1996]) may enhance simulation and
stability of estimates.
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Fig. 3a,b. Distribution of 100 assignment results for selected links. a Link 1’s flow distribution;
b Link 2’s flow distribution

Fig. 4. Scatter plot of uncertainty and volume/capacity ratios
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Overall, the uncertainty propagation process through the four-step travel
demand forecast model is shown in Fig. 5. In each model step, there is a finite
amount of inputs and outputs. Given the distribution assumption of the input
and parameters of the model, the simulation yields 100 observations of each
output. Although the amount of outputs of each step is di¤erent, the average
COV, as a scaleless measurement, can be collected to track the changes in un-
certainty through model stages. The five percentile and ninety-five percentile
of the uncertainty among each step are also shown in Fig. 5 to indicate the
variability of the uncertainty. Even though all the input uncertainties are set
to be the same value, 0.30, the actual simulation data drawn from certain dis-
tributions may contain uncertainties slightly di¤erent from this value. Thus, the
5% and 95% of demographic input uncertainty are 0.2592 and 0.3397, respec-
tively.

As can be seen, the increasing average uncertainty in the first three step
models suggests significant uncertainty propagation through those models.
Nevertheless, the final step assignment model somehow reduces the previous
compounded uncertainty, but generally not lower than the input uncertainty.
The expanding 5% and 95% bound suggests that through the four-step model,
the variability of final uncertainty extends. Thus, some link flows’ uncertainty
may be reduced substantially while others may increase considerably, which
indicates the possibility of wide swings in the system. However, one still can
improve UTPP model forecasting by providing information on the associated
uncertainty of final results. In this way, policymakers will be aware of the un-
certainty when comparing scenarios.

Table 2. Network flow simulation results*

Variable Description Mean SD Coef. of
variation

Avg.
V/C
ratio

f1 Main direction flow on link 1 1172 363 0.310 1.116
f2 Main direction flow on link 2 1522 489 0.322 0.235
T1 Average travel time on link 1 (hour) 0.1058 0.201 1.899 –
T2 Average travel time on link 2 (hour) 0.0137 0.0017 0.127 –
Total VMT Total vehicle-miles traveled on the

network
129518 30579 0.236 –

Total VHT Total vehicle-hours traveled on the
network

3347 777 0.232 –

* All the results are based on converged UE assignments for 100 runs. The total demand (morn-
ing peak hour HBW auto trips) has a mean of 23856 and an SD of 5503.

Table 3. Correlation coe‰cients between link flows

f1 f2 Total VMT Total VHT

f1 1.000 0.601 0.849 0.862
f2 0.601 1.000 0.724 0.725
Total VMT 0.849 0.724 1.000 0.983
Total VHT 0.862 0.725 0.983 1.000
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Similar results are found in Fig. 6, where all input and parameter COVs
are assumed to be 0.1 or 0.5, rather than 0.3. The first three model steps com-
pound the uncertainty, while the final step appears to reduce the propagated
uncertainty.

The simulation results suggest the trip assignment equilibrium technique
may reduce the overall uncertainty, which is partially consistent with Leurent’s
(1998) study. Leurent suggested that in congested networks the equilibration
process may reduce the magnitude of uncertainties in the reproduction of link
flows. One possible explanation is the capacity constraint restricts the variabil-

Fig. 5. Uncertainty propagation through 4-step models

Fig. 6. Uncertainty propagation through 4-step models with di¤erent input/parameter uncertainty
levels. Note: There are 117 random input variables, 50 random trip generation outputs, 625 trip
distribution outputs, 625 mode split (DA) outputs, and 818 trip assignment outputs.
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ity of link flows. However, in this study, relatively few of the links (6%) are con-
gested; the average volume-to-capacity ratio is just 0.39. The coe‰cient of vari-
ation (COV) of a sum of independent random variables is less than the average
COV of such variables. Notationally:

COV
X
i

aiXi

 !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

a2i s
2
i

r
P
i

aimi
aAvg:COVi ¼

P
i

aisi

miP
i

ai
;

wheere Xi’s are independent random variables and ai’s are constants.
Since link flows essentially are the sum of variable flows between various

O-D trip pairs, one might expect a reduction in the coe‰cient of variation a
priori. Strong positive correlation dilutes this e¤ect to a certain degree, but it is
still evident here.

For better understanding and interpretation of the four-step model results,
sensitivity analysis was used to identify model inputs that are key contributors
to uncertainty in model output. First, the sample correlation coe‰cients (Table
4) indicate the linear correlation between inputs and outputs. Since there are
many demographic input variables (i.e., the number of households and jobs

Table 4. Sample correlations between inputs and outputs

Model Parameter f1 f2 Total VMT Total VHT

Trip generation a 0.0589 0.1280 0.1024 0.0990
b1; 2 0.0345 0.0133 �0.0399 �0.0283
b1; 3 0.2150* 0.3182* 0.3396* 0.3204*
b1; 4 �0.0274 �0.0594 �0.0262 �0.0269
b1; 5 0.0467 0.0343 �0.0008 0.0035
b2; 2 0.0869 �0.0248 0.0549 0.0562
b2; 3 �0.1094 0.0394 �0.0086 �0.0004
b2; 4 0.0091 �0.0123 �0.0023 �0.0076
b2; 5 0.1270 0.2089 0.1500 0.1483
b3; 2 0.1013 0.1582 0.0326 0.0488
b3; 3 0.6052* 0.3646* 0.5944* 0.5987*
b3; 4 �0.0356 �0.0226 �0.0636 �0.0555
b3; 5 �0.1701 �0.1753 �0.1259 �0.1297

Trip distrib. g 0.0244 0.0099 0.0084 0.0049
Mode split ytransit 0.0711 0.1558 0.1121 0.1075

d 0.0457 0.1651 0.1327 0.1271
Tra‰c assign. a0 �0.0431 �0.0427 �0.0793 �0.0628

b0 �0.0409 0.0305 0.0223 0.0080
Inputs Total households 0.4419* 0.3354* 0.4719* 0.4791*

Total basic
employment

0.4511* 0.3230* 0.5639* 0.5706*

Total retail
employment

0.5212* 0.3244* 0.5347* 0.5427*

Total service
employment

0.6055* 0.3872* 0.6427* 0.6517*

Note: An ‘‘*’’ indicates the correlation is significant at the 0.05 level (2-tailed).
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in each zone), only the sums of these variables across zones are presented. One
can compare the output’s sensitivity to parameters in each model step. Not
surprisingly, the parameter which has the strongest correlation with link flows
is the trip generation rate. This is partially consistent with Smith and Cleve-
land’s results (1976). Also, the overall outputs are sensitive to the demographic
inputs. Most zonal demographic inputs contribute substantially to the overall
uncertainty in link flows. Given the linear function pattern of the trip genera-
tion model, it is not surprising that the demographic inputs and the trip gener-
ation parameters show strong linear correlation with the overall outputs.
Moreover, the rank correlation coe‰cients (Table 5) show the non-linear cor-
relation between inputs and outputs. The results are somewhat similar to the
linear correlation analysis.

To further identify the most important contributors to overall uncertainty,
a regression analysis was conducted. Figure 7 shows the final model results
(following a series of stepwise deletions of statistically insignificant (at 0.10
level) variables). Before the computation of regression coe‰cients, the variables
are standardized by dividing each observation on a variable by its standard
deviation. In Fig. 7, the lengths of these bars stand for the standardized co-
e‰cient, or beta weight coe‰cient values. They measure the e¤ect of a one-
standard-deviation change in an independent variable on the dependent vari-
able (also measured in standard deviation units). For a selected link, the major
contributors to variation in flow estimates are the parameters from trip gen-

Table 5. Rank correlations between inputs and outputs

Model Parameter f1 f2 Total VMT Total VHT

Trip generation a 0.0698 0.0959 0.1558 0.1596
b1; 1 0.0191 0.0220 �0.0433 �0.0291
b1; 2 0.1471* 0.2296* 0.3019* 0.2827*
b1; 3 0.0594 �0.0509 0.0585 0.0602
b1; 4 0.0713 0.0387 0.0211 0.0248
b2; 1 0.1254 �0.0109 0.0930 0.1001
b2; 2 �0.1326 �0.0495 �0.0485 �0.0474
b2; 3 �0.0254 �0.0053 0.0178 0.0050
b2; 4 0.1982 0.2266* 0.1897 0.1909
b3; 1 0.0291 0.1156 0.0031 0.0155
b3; 2 0.5879* 0.3360* 0.5517* 0.5531*
b3; 3 �0.0836 �0.0899 �0.1048 �0.1050
b3; 4 �0.1582 �0.1437 �0.1548 �0.1625

Trip distrib. g 0.0057 �0.0184 �0.0327 �0.0399
Mode split ytransit 0.0963 0.1187 0.1227 0.1139

d 0.0815 0.1530 0.1303 0.1282
Tra‰c assign. a0 �0.0068 �0.0534 �0.0469 �0.0308

b0 �0.0430 0.0641 0.0045 �0.0053
Inputs Total households 0.4408* 0.3548* 0.4679* 0.4727*

Total basic
employment

0.4276* 0.3172* 0.5327* 0.5391*

Total retail
employment

0.4950* 0.3334* 0.4924* 0.5010*

Total service
employment

0.5680* 0.3867* 0.6093* 0.6141*

Note: An ‘‘*’’ indicates the correlation is significant at the 0.05 level (2-tailed).
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eration step and total employment input levels4. Similar results for total VMT
can be seen in Fig. 7. Thus, the demographic inputs and parameters to trip gen-
eration are primary contributors to the total VMT output. It is not surprising
that the trip attraction rates of basic and service employments for land use type
3 (suburban residential) show stronger correlation to final results than other
parameters in trip generation, because most zones in this study area belong to
suburban residential and basic and service employments are the main employ-
ment types in these zones. In addition, the parameters in mode split are found
to play important roles in result variation. In contrast, results exhibit relatively
little sensitivity to the parameters of the trip distribution and trip assignment
models; this result may be due to the less-than-straightforward application of
those models – due to iterative trip-balancing for trip distribution and user-

Fig. 7. Regression-based sensitivity analysis for final outputs

4 100 simulation observations are not su‰cient to estimate more than 100 unknown parameters;
so only the total number of households and employment (of the three di¤erent types) across the 25
zones are used in the regression.
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equilibrium feedbacks used in trip assignment. Furthermore, the constraint that
trip productions equal attractions negates the e¤ects of the single, multiplica-
tive trip generation rate, permitting trip attraction rates to play the important
role in final estimates.

5. Conclusions

This work investigated the stability of contemporary transport demand model
outputs by simulating a four-step travel demand model over a 25-zone net-
work. Point estimates of outputs were compared following a series of input
variations. Sensitivity analyses also were undertaken, to suggest ways for more
e¤ective direction of modeling and planning resources.

The results of this work suggest that uncertainty is somewhat com-
pounded over the four stages of the travel demand model and is highly cor-
related across outputs. Mispredictions at early stages of the multi-stage model
(e.g., trip generation) appear to be amplified across later stages. In particular,
tra‰c flow uncertainty appears to vary substantially across links: some link
flows are much more variable than others. However, network-predicted flows
across various links were relatively stable across simulations, probably as a
result of equilibrium assignment (which acknowledges congestion feedbacks).
Trip assignment, the final step of the traditional, four-step model, was found to
reduce uncertainties developed in the first three steps; however, in general, it
could not reduce final flow uncertainties below the levels of input uncertainty.
Overall, the results indicate that predictions from many travel demand models
may be highly uncertain, due to input and parameter uncertainties. The se-
quence of models and equilibrium assignment do not attenuate the underlying
uncertainties.

To clarify the outcomes and emphasize the model components having
greatest impact, this study applied simple model specifications on a sub-
network. The results are focused yet general – providing greater applicability
to a variety of contexts than more complex or constrained specifications. It is
hoped that this work provides a clear starting point and valuable tools for ad-
ditional analysis of variation in travel demand model outputs.

Further work on this issue and related topics is still needed. For example,
applications on more realistic networks may be examined with more simula-
tion runs. And a variety of common model specifications (e.g., a stochastic
user equilibrium trip assignment) may be estimated and then tested. In addi-
tion, feedbacks of travel-time estimates to destination, mode, and route choices
would be valuable. Also, factorized ‘‘experiments’’ rather than random simula-
tions may be more e‰cient at sampling the set of possible environments and
distinguishing the contributions and interactions of di¤erent random inputs
and parameters. Such work will help identify which aspects of modeling prac-
tice are the biggest contributors to result uncertainty – and where modeling
improvements are likely to be most e¤ective for added precision.

In general, since inputs and parameter estimates are uncertain, transporta-
tion modelers would do better to recognize, estimate, and specify result uncer-
tainties. In addition, policymakers should appreciate these uncertainties and
incorporate such information in their decision-making. This work represents a
step in this direction.
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