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Abstract

Information criteria have been widely used in many quantitative applications as an
effort to select the most appropriate model that describes well enough the unknown
population behavior for a given dataset. Studies have shown that their performance
depends on several elements and the selection of the best fitted model is not always
the same for all criteria. For this purpose, this research evaluates the performance
of the three most often used information criteria, such as the Akaike information
criterion, the Bayesian information criterion and Hannan and Quinn information cri-
terion, for selecting spatial processes, taking into account that the sample in spatial
analysis is regarded as a realization of a spatial process that incorporates the spatial
dependence between the observations. Using a Monte Carlo analysis for the three
most frequently applied in practice spatial processes, such as the first-order spa-
tial autoregressive process, SAR(1), the first-order spatial moving average process,
SMA(1), and the mixed spatial autoregressive moving average process, SARMA(1,
1), this study finds that these information criteria can assist the analyst to select the
true process, but their behavior depends on sample size as well as on the magnitude
of the spatial parameters, leading occasionally to alternative competitive processes.

JEL Classification C20 - C21 - C52 - C53

1 Introduction

An important aspect of analyzing data collected from different geographical regions,
known as spatial data, is the emergence of spatial autocorrelation, a situation where
the values of a variable are correlated according to their geographical positions,
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creating clusters of observations, and, as Anselin (1988) reports, spatial autocorrelation
is attributed to spatial dependence, which along with spatial heterogeneity, is outcome
of spatial effects inherent in this type of data. The presence of spatially nonindepend-
ent observations causes serious problems in quantitative analysis, since the sample
contains less information than a counterpart with independent spatial elements, and,
moreover, the concept of the random sample is violated, as Schabenberger and Gotway
(2005) have indicated. Therefore, any conventional statistical inference will produce
unreliable results, unless spatial dependence is incorporated to the model, as it happens
in time-series data with time autocorrelation. For this reason, a spatial sample should
be considered as a realization of a spatial process and not as a random sample, as in
time-series analysis.

The traditional Box and Jenkins (1976) methodology for time-series analysis has
been extended to spatial analysis as an effort to model spatial dependence between
observations of the same variable. Likewise, spatial correlograms and spatial partial
correlograms are constructed, using the Moran’s [ spatial autocorrelation coefficient or
some other measures that have been proposed as presented by Cliff and Ord (1981), to
identify the most adequate spatial generation mechanism of an observed dataset. How-
ever, diagrams may often be unable to identify correctly the underlying mechanism
producing in that sense confusing results, as in time-series analysis, where this issue of
selecting the best fitted model is addressed by several information criteria.

Hence, it will be very interesting to examine and evaluate the performance of
the three most often used in practice information criteria in spatial analysis, such
as the Akaike information criterion (AIC), the Bayesian information criterion
(BIC) and the Hannan and Quinn information criterion (HQC), in terms of select-
ing pure spatial processes. Indeed, the behavior of these criteria has been investi-
gated thoroughly in the literature for time-series processes and regression models
but not for spatial models, if you exclude the studies of Hoeting et al. (2006) and Lee
and Ghosh (2008) in which they considered geostatistical models, i.e., models used
for point-referenced geostatistical data that incorporate the dependence applied to
a covariance function that determines the relationship for observations at different
distance locations. Using a Monte Carlo analysis, this study finds that these informa-
tion criteria can successfully contribute to spatial modeling, although their overall
behavior depends not only on the sample size but also on the magnitude of the spa-
tial parameters of the true generating processes.

The remaining of the paper is organized as follows. Section 2 depicts the most
important spatial processes that will be considered for the simulation analysis and
presents the three aforementioned information criteria. Section 3 describes the
design of the simulation analysis and discusses the results. Finally, the concluding
remarks are presented in Sect. 4.

2 Spatial processes and information criteria
Spatial processes can be regarded as multidirectional extensions of the well-known

time-series processes on the geographical space, meaning that the dependence among
values of a variable is expressed according to their geographical positions and not
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according to their chronological order. For example, for a sample of 7 cross-sectional
observations collected from »n different geographical units, the spatial dependence is
incorporated into the process by the definition of a spatial (n X n) weights matrix W
that captures the spatial interaction between the neighboring locations. The matrix W
is usually used in its row-standardized form such that its Wij element is different from
zero if the locations 7 and j are neighbors, otherwise it is zero, where the determination
of the neighbors for each spatial unit is clearly the most important issue for construct-
ing such a matrix in spatial analysis. Indeed, a variety of criteria have been proposed
in the literature for spatial weights formation including boundary contiguity and dis-
tance measures, as, for example, can be seen in Cliff and Ord (1981) and in Anselin
(1988). Contiguity criteria consider as neighbors the spatial units which share common
borders, so they are contiguous, while other criteria which are based on distance meas-
ures define the neighborhood according to the distance between two regions. A brief
presentation of the three most commonly used spatial processes that express spatial
dependence, namely the spatial autoregressive process of order 1, the spatial moving
average process of order 1 and the mixed spatial autoregressive moving average process
of orders 1 and 1, is given below.

The spatial autoregressive process of order 1, i.e., SAR(1), was initially introduced
by Whittle (1954) and by Besag (1974) as an extension of the autoregressive process
of order 1, i.e., AR(1), in time-series analysis to geographical context. Utilizing matrix
notation and considering zero mean value for the examined variable, the SAR(1) pro-
cess, as presented by LeSage and Pace (2009), is defined as:

y=pWy+e

where y is an (n X 1) vector of observations of the process collected from n geo-
graphical points, W is the (n X n) spatial weights matrix, p is the spatial autore-
gressive parameter and € is an (n X 1) white noise random vector. The vector Wy is
called spatial lag, and each element, for a row-standardized W, is a weighting aver-
age of y values in neighboring units for every region.

The log-likelihood function of a SAR(1) process, assuming that £~N(0, ¢’I) with I
being the identity matrix and ¢” a constant variance, is obtained as:

_y=pWY)'(y - pWy)
2062

InL(p,0?) =—gln(27t)— glnaz +1In|I— pW|

where |I — pW]| is the Jacobian determinant for the transformation of the random
vector € into the vector y. Substituting the maximum likelihood estimator for the

variance of the process, i.e., a}%,[L = ¢’e/n, the log-likelihood function becomes:

InL(p) = ~(n/2)In21) — (/2) = (n/2) In ((1/n)(y = pWy)'(y = pWy)) +In|I - pW|

which is clearly only a function of the parameter p.
Next, the spatial moving average process of order 1, i.e., SMA(1), is defined as:

y=¢— AWe
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where again £~N(0, ¢’I) and 4 is the spatial moving average coefficient, as pre-
sented by Haining (1978). The log-likelihood function of a SMA(1) process is:

InL(A,06%) = =(n/2)In@2n) — (n/2)Inc? — (1/26?) [A - AW)—‘y]’(I —AW)ly —In|T - AW|
which can be written as:

InL(A) = —(n/2)In 2x) — (n/2) — (n/2) In ((l/n) [@-aw)'y]'a- /IW)"ly) —In|I- AW]

for 0'1%“ =¢'e/n and |I — AW]| being the Jacobian determinant. Note, that as in the
case of SAR(1), the log likelihood of SMA(1) is a function solely of the parameter A.

Lastly, as in time-series analysis mixed models are also defined in spatial analysis,
known as spatial autoregressive moving average processes, i.e., SARMA, as introduced
by Huang (1984). The simplest mixed spatial autoregressive moving average process is

the SARMAC(1, 1) process defined as:
y=pWy+e— AW,e

where W, and W, denote (n X n) spatial weights matrices for the autoregressive and
the moving average term, respectively. It should be pointed out that the SARMAC(1,
1) process is properly defined if and only if different weight matrices are used for the
two components of the process, as can be seen in Mur and Angulo (2007). Unlike
time-series analysis where for a proper definition of an ARMAC(I, 1) process, the
autoregressive parameter must not be equal to the moving average parameter, the
SARMAC(1, 1) process is well defined even for equal values of p and 4, provided that
the weights matrices are different, i.e., W, # W,. Actually, a SARMA(1, 1) pro-
cess is a process that combines global and local effects, since the SAR(1) process
expresses the global spatial dependence, i.e., influences from one geographical point
that spread and affect the whole study region, whereas the SMA(1) process defines
local spatial dependence with effects covering only the neighborhood regions.
The log-likelihood function of a SARMA (1, 1) process is obtained as:

InL(p, 4,0%) = =(n/2)In(2m) — (n/2)Ino* — (1/26%) [B-lAy]’B-lAy +In|A| —In|B|
where A =1— pW,and B =1 - AW,, and takes the following form:
InL(p, A) = —(n/2)In 1) — (/2) — (n/2) In ((1/n)[B—1Ay]’B—1Ay> +1In]A| - In[B]

which is a function only of the spatial parameters.

The log-likelihood functions of the three presented spatial processes are maxi-
mized by applying a numerical method for an observed dataset in order to esti-
mate the spatial coefficients p and A, emphasizing the fact that the most impor-
tant element of this maximization process is the log-determinant of the Jacobian
matrix. For this purpose, Ord (1975) has proposed a convenient method for deal-
ing with this issue by using the eigenvalues of W. For example, the log-determi-
nant term for the spatial parameter p can be decomposed as:

@ Springer



Evaluating information criteria for selecting spatial... 681

n
In|I-pW| = Zln (1 - pa)j)
J=1

where o; are the eigenvalues of the weights matrix W, provided that these values
are real numbers. If, on the other hand, the eigenvalues are complex, Bivand et al.
(2013) have suggested an alternative method of computing the log-determinant of
the Jacobian matrix as follows:

In|ll-pW| =L, +L,

where
k k
L= n[(1-p@)(1-p@)] =} In [(1 ~p)” + (r”bj)z]
j=1 j=
and
n—k
L= In(1-pg)
Jj=k+1

while ®; = @; + ib; and ®; = a; — ib; denoting the 2 k complex eigenvalues, i is the
imaginary unit and ¢; represents a real eigenvalue.

However, it should be mentioned that in spatial analysis, unlike time-series analy-
sis, the values of the coefficients p and A are not necessarily restricted strictly to the
interval (—1,+ 1), but the estimation process can be implemented provided that the
Jacobian matrix is nonsingular, an outcome that is related to the eigenvalues of the
spatial weights matrices. Row-standardized spatial weights matrices have always the
largest eigenvalue equal to unity, something which ensures that the upper limit of the
interval will be always + 1, while the value for the lower limit is unknown and sev-
eral times smaller than —1. Ord (1975) has demonstrated that the spatial parameters
for symmetric matrices before standardization could take values within the interval
(1 [@ins 1/ a)max), where w,,;, and o, are the smallest and largest real eigenvalues
of W. On the other hand, in the case of asymmetric row-standardized weights matri-
ces with complex eigenvalues, LeSage and Pace (2009) suggested that the Jacobian
is nonsingular when the spatial parameters have values in the interval (1 / re, 1),
where r is the most negative purely real eigenvalue of W. Lastly, if the parameters
take values inside the feasible interval, corresponding to the applied weights matrix,
the Jacobian determinant will be positive, meaning that its logarithm will exist, and
the likelihood function of a process will be well defined.

Hence, if the log-likelihood functions are maximized, the best fitted model is
selected according to the minimum value of any of the widely used information
criteria. The first criterion most often appeared in practice is the Akaike informa-
tion criterion (AIC) suggested by Akaike (1973) which was developed on the Kull-
back-Leibler divergence measure for evaluating the discrepancy between a true
model and a candidate model. The AIC is computed as follows:
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AIC = —2InL+2p

where In L is the maximized value of the log-likelihood function and p is the num-
ber of parameters of the process. The other two well often applied criteria are the
Bayesian information criterion (BIC), suggested by Schwarz (1978) as an attempt to
improve AIC performance, and the Hannan and Quinn information criterion (HQC),
suggested by Hannan and Quinn (1978), defined, respectively, as follows:

BIC = —2InL +plnn
and
HQC = —2InL +2plnlnn

where n is the sample size used for the estimation. Obviously, the number of exist-
ing information criteria is not limited to those three previously presented, but these
criteria are typically the most often used in practice not only because it is fairly easy
to compute their values but also because they are reported by almost every statisti-
cal package. However, since it is known in the literature that the AIC criterion is
strongly negatively biased in small samples, as shown by Sugiura (1978) and Hur-
vich and Tsai (1989), bias-corrected version of AIC proposed by Hurvich and Tsai
(1989) and denoted as AICc, i.e.,

2p(p + 1)

AICc = AIC +
n—p-—1

is also considered.

The philosophy of an information criterion is based on the quantification of the
goodness of fit of an estimated model including a penalty for the number of esti-
mated parameters and for the sample size. The selection process of a model consists
of estimating several different models, for which the value of the designated crite-
rion is computed, and the best fitted model is the one at which the value of the cri-
terion is minimized, emphasizing that alternative information criteria do not always
select the same best model. Actually, AIC is known as an asymptotically efficient
criterion, meaning that, if the true model is not among the candidate models, the cri-
terion chooses the model with the minimum one-step expected quadratic forecasting
error as the sample increases, i.e., AIC chooses the model which is the best approxi-
mation of the unknown and, perhaps, of an infinite-dimensional model. On the other
hand, BIC and HQC are considered as consistent criteria in the sense that if the true
model is among the candidate models, these criteria select the true model with prob-
ability approaching to 1 as sample increases (see details regarding their properties in
Diebold 2007, Judge et al. 1985 and Burnham and Anderson 2002).

Overall, AIC has the tendency to select a more elaborate model, as Jones (1975)
and Shibata (1976) have demonstrated that for autoregressive time-series processes,
AIC overestimates the true order of the process, while BIC chooses simpler models
according to the parsimonious concept. In this lieu, Hurvich and Tsai (1989) showed
that AIC is a biased estimator of the Kullback—Leibler information causing in that
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sense overfitting of the model. Therefore, it will be very exciting to evaluate the
performance of these information criteria for spatial analysis, i.e., for observation in
a lattice environment appropriate for economic and regional data, knowing also that
their behavior has been examined for time-series and regression models.

3 Simulation results

The performance of the three previously presented information criteria, i.e., AIC,
BIC and HQC, is investigated in this section for spatial data using a Monte Carlo
analysis, in terms of selecting the right spatial process among the three candidate
processes, i.e., SAR(1), SMA(1) and SARMAC(I1, 1). Spatial dependence is intro-
duced into the processes by defining two separate row-standardized spatial weights
matrices W, and W, for the autoregressive and moving average terms, respectively.
More precisely, matrices W, and W, are constructed using the rook (four neighbors-
common edge) and the queen (eight neighbors-common edge and vertex) contiguity
definitions, respectively, over a squared regular lattice for dimensions 10x 10 and
20x 20 providing samples of 100 and 400 observations. Using this formation, the
matrices are symmetric originally, but they become asymmetric after row standardi-
zation, although it must be said that their structure behaves relatively like a sym-
metric matrix. Moreover, the research is extended into a situation with extremely
asymmetric weights matrices in order to further investigate the performance of these
information criteria under a realistic environment. For this purpose, the geographi-
cal structure of Greece at the local authority districts of Kallikrates Operational
Programme consisting of 325 municipalities is considered to construct matrices W,
and W, according to the four-nearest-neighbor and the eight-nearest-neighbor defi-
nitions, respectively, based on the geographical coordinates of the centroid for each
municipality.! Note that in this case the matrices are asymmetric before and after
row standardization, since the nearest neighbors criterion defines spatial relations
asymmetrically.

Table 1 presents the feasible ranges of the spatial parameters p and A accord-
ing to the spatial structures as specified above. As can be seen from this table, the
lower bounds of the spatial coefficients are significantly less than —1 for all matri-
ces except for those created with rook contiguity. Moreover, the row-standardized
weights matrices that have been constructed with rook definition over the regular
lattices and with the nearest neighbors over the Greek geographical structure yield
complex eigenvalues.

Having described the formation of W, and W, matrices, the spatial processes are
generated as follows: the SAR(1) process asy = (I - pW, )_18, the SMA(1) process
asy = (I— AW, )e and the SARMA(I, 1) process as y = (I — le)_l (I— AW, )e,
where the spatial parameters p and A are allowed to take values within the feasible
range intervals defined in Table 1 and the vector of random errors € is considered

! The Greek geographical structure is obtained from https://geodata.gov.gr/en/dataset/oria-demon-kalli
krates, excluding thought the Mountain Athos region.
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Table 1 Characteristics of the weights matrices along with the lower and upper limits of the spatial
parameters p and 4

n Weights (row-standard- Complex  Most negative Largest  Lower limit p, A Upper
ized) eigenval-  purely real eigen-  eigen- limit
ues value value p, A
100 Rook Yes -1 1 -1 1
100 Queen No —0.508 1 -1.970 1
400 Rook Yes -1 1 -1 1
400 Queen No -0.520 1 —-1.921 1
325 4-Nearest Neighbors Yes —0.676 1 —1.478 1
325 8-Nearest Neighbors Yes —0.368 1 —2.720 1

asN(0,I). The whole simulation process is conducted in R using the SPDEP pack-
age developed by Bivand (2015) for the spatial weights matrices manipulation as
well as for the generation of the processes. Each spatial generation process is then
estimated for all three model specifications, i.e., for the SAR(1) with W, for the
SMA(1) with W, and for the SARMAC(1, 1) with W, and W, as the weights matri-
ces, respectively, by maximizing the log-likelihood function, using the nlminb func-
tion in R, so that the values of all three information criteria can be calculated. The
best fitted model is selected according to the minimum value of any criterion based
on 1000 replications.

Table 2 presents the percentages of model selection by any of the three criteria
when the true generating process is the SAR(1) model. As can be seen from this
table, the selection behavior of all three information criteria is pretty much similar,
independent of the construction of the weights matrix, and it depends mainly on
the magnitude of the parameter p, meaning that the true SAR(1) process is selected
more often by all criteria as the absolute value of p increases for given sample,
reaching almost at the 99% level based on the BIC criterion for n=400. It turns out
though that the BIC criterion has the best behavior, among the other two criteria, in
terms of most frequently selecting the true model regardless of sample size and the
value of p, a result that confirms the overall well-known behavior of BIC in terms
of selecting parsimonious models over AIC. The HQC criterion behaves closely to
BIC criterion but with lower probability of selecting the true model. For small abso-
lute values of p, the second best fitted model is the SMA(1) process selected by all
criteria, whereas for large absolute values of p, the second best fitted model selected
mainly by AIC is the SARMAC(1, 1) process. Finally, as sample size increases, the
true model is selected more often even for small values of p, i.e., for p=0.2, the
SAR(1) process is selected by BIC 64.9% and 84.4% for n=100 and 400, respec-
tively. It should be noted that the corrected AIC criterion, although it is not reported,
behaves very similarly, if not identically in most cases, as the AIC criterion. The
AlCc selects slightly more frequently the correct spatial process than the AIC for
small sample sizes, whereas for large sample sizes the selection rate is almost the
same. For example, for =100 and for values of p=-0.9, —0.5, 0.2 and 0.8, the
AlICc selects the SAR(1) process 82.9%, 81.3%, 59.4% and 84.5%, respectively, as
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Table 2 Percentage of selections for all three spatial processes based on AIC, BIC and HQC when the
true data-generating model is the SAR(1) process for various values of p using 1000 replications

N IC Model P

-13 -1.1 -09 -08 -05 -02 02 05 08 09

100 AIC  SAR(l) 80.7 81.1 804 574 588 79.6 832 8338
SMA() 0 0 48 341 313 84 0 0

SARMA(1, 1) 193 189 148 8.5 99 12 16.8 16.2

BIC  SAR(1) 96.8 965 921 624 649 87.6 967 96.9
SMA(1) 0 0 59 365 328 93 04 O

SARMA(l, 1) 32 35 2 1.1 23 31 29 31

HQC SAR(1) 893 893 874 60.7 635 852 926 91.7
SMAC(1) 0 0 51 359 322 93 01 0

SARMA(1, 1) 10.7  10.7 7.5 34 43 55 73 83

400 AIC  SAR(1) 83.1 832 847 768 758 82.8 828 82.1
SMA(1) 0 0 0 131 145 O 0 0

SARMA(, 1) 169 168 153 10.1 9.7 172 172 179

BIC  SAR(1) 983 983 985 855 844 985 987 98.6
SMAC(1) 0 0 01 139 152 04 O 0

SARMA(1, 1) 1.7 1.7 14 06 04 11 13 14
HQC SAR(1) 94.1 947 94 834 824 944 938 93
SMA(1) 0 0 0 138 152 01 O 0
SARMAC(1, 1) 59 53 6 2.8 24 55 62 7

325 AIC  SAR(1) 843 84.1 838 842 843 695 694 839 843 839
SMA(1) 0 0 0 0 06 222 213 04 O 0

SARMA(,1) 157 159 162 158 15.1 8.3 9.3 157 157 16.1

BIC  SAR(1) 982 982 981 98 97.1 763 773 973 98.1 978
SMA(1) 0 0 0 0 1 226 216 13 O 0

SARMA(1,1) 1.8 1.8 1.9 2 1.9 1.1 .1 14 19 22

HQC SAR(1) 947 948 947 946 942 74 753 93.1 946 938
SMA(1) 0 0 0 0 09 225 214 1 0 0

SARMA(L,1) 53 52 53 54 49 35 33 59 54 62

opposed to the relevant AIC selection rates of 80.7%, 80.4%, 58.8% and 83.2% pre-
sented in Table 2.

Similar conclusions can be made for the special case of using a real geographi-
cal structure to generate the spatial processes. The main interesting feature of this
case is that the SAR(1) process is well defined even for values of p smaller than —1,
as can be seen from Table 1. For all these values, the behavior of all information
criteria is similar, if not identical, to the largest absolute value of the autoregressive
parameter within the range of (—1, 1), as can be seen from Table 2 for suggestive
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values of p equal to —1.3 and —1.1.% Hence, the presence of these values does not
provide any additional information of relevance to the Monte Carlo analysis, but
these values do exist mathematically to ensure the consistency of the Jacobian
matrix so that the likelihood function can be computed. In practice, however, it is
very unlikely to obtain such values as estimates of the spatial autoregressive param-
eter, although the feasible range of all values of p obtained from the construction
of the weights matrix, based on a specific geographical structure, is included in the
maximization process.

The selection rates for all three spatial processes based on all information criteria
when the true generating process is the SMA(1) model are reported in Table 3. It
is evident that all three information criteria behave quite similarly, as in the previ-
ous case, regardless of the construction of the weights matrix. The SMA(1) pro-
cess is selected more often as the absolute value of the moving average parame-
ter A increases for all samples, reaching almost at the 99% level based on the BIC
criterion for n=400. Among all criteria, the SMA(1) process is selected most fre-
quently for any given value of 1 and sample size by BIC followed by HQC and AIC.
For small absolute values of 4 the second best fitted model is the SAR(1) process
selected by all criteria, as equivalently the SMA(1) process was the second best fit-
ted model selected by all criteria in the case of the true generating SAR(1) process
for small absolute values of the autoregressive parameter, whereas for large absolute
values of 1 the selection of the SARMA(1, 1) process appears to be as the second
choice for the AIC criterion. It is also worth mentioning that the selection process
of the true model is improving as sample increases by all criteria and for all values
of the moving average parameter, i.e., for A=0.2, the SMA(1) process is selected
by AIC 58.9% and 72.4% for n=100 and 400, respectively. As in the case of the
SAR(1) process, the AICc criterion selects the correct spatial moving average pro-
cess slightly more frequently than the AIC only for small sample sizes.

Moreover, the construction of the W, matrix to generate SMA(1) processes,
either as a queen definition or as a special case of a real geographical structure with
eight neighbors contiguity definitions, resulted to values of the moving average
parameter smaller than —1 for both cases, as Table 1 reports. Like the SAR(1) case,
the use of these values does not provide any additional information to the overall
analysis, since the behavior of all information criteria in terms of selecting the best
fitted model remains the same as their behavior for the largest absolute value of the
moving average parameter within the range of (—1, 1), as can be seen from Table 3
for selected values of 4 equal to —1.4 for the queen formation and —1.4 and —2.4 for
the real geographical structure, as presented in Table 3.2

Tables 4 and 5 report the selection percentages of each candidate model based on
all three information criteria obtained through this simulation analysis when the true
generating model is the SARMAC(1, 1) process for specific values of p and A, since

2 Note that similar results can be obtained for values of p equal to —1.4 and —1.2.

3 Note that similar results can be obtained for values of A equal to —1.1, —1.3, —1.5 and —1.8 for the
queen formation and for values of 1 equal to —1.1, —1.3, —1.5, —1.8, —2.0 and —2.6 for the special geo-
graphical case with eight nearest neighbors.
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Table 3 Percentage of selections of all three spatial processes based on AIC, BIC and HQC information
criteria when the true data generating model is the SMA(1) process for various values of A using 1000
replications

N 1C Model i
-24 - -09 - -05 -02 02 05 08 09
1.4 0.8

100 AIC  SAR(1) 0 4.5 82 221 388 322 9 01 0

SMA(1) 837 834 819 709 539 589 803 841 83

SARMAC(1, 1) 163  12.1 9.9 7 7.3 89 107 158 17

BIC  SAR(1) 0.4 6.8 9.7 228 409 35 95 02 0
SMA(1) 96.5 923 894 764 578 63 87.3 96.2 937
SARMAC(1, 1) 3.1 0.9 0.9 0.8 1.3 2 32 36 63

HQC SAR(1) 0.3 6 9.5 226 40 338 95 01 0
SMA(1) 914 895 873 743 565 613 851 923 8938
SARMA(1, 1) 8.3 4.5 32 3.1 35 49 54 76 102

400 AIC  SAR(1) 0 0 0 0 2 254 189 04 O
SMA(1) 84 826 827 835 66.1 724 836 838 835
SARMAC(1, 1) 16 174 173 145 8.5 87 16 16.2 16.5

BIC  SAR(1) 0 0 0.1 42 261 20 05 0 0
SMA(1) 98.5 987 98.7 953 735 793 982 985 98.7
SARMAC(1, 1) 1.5 1.3 1.2 0.5 0.4 07 13 15 13

HQC SAR(1) 0 0 0 36 258 193 04 O 0
SMA(1) 94 945 943 927 713 774 94 944 937
SARMAC(1, 1) 6 5.5 5.7 3.7 2.9 33 56 56 63

325 AIC  SAR(l) 0 0 0.7 1.5 109 327 268 19 0 0
SMA(1) 83.8 822 833 832 793 59.1 638 832 846 835
SARMA(1, 1) 162 17.8 16 15.3 9.8 8.2 94 149 154 165

BIC  SAR(1) 0 0 1.7 35 115 341 281 3 0 0

SMA(1) 98.2 988 97.7 96.1 88 654 712 962 978 98

SARMA(,1) 1.8 1.2 0.6 0.4 0.5 0.5 07 08 22 2

HQC SAR(1) 0 0 1.2 29 115 338 28 29 0 0
SMA(1) 935 935 934 922 858 639 697 924 941 943

SARMA(1, 1) 6.5 6.5 5.4 49 2.7 2.3 23 47 59 57

it was not technically feasible to include all results in one table for all possible com-
binations of p and A. For this purpose, Tables 4 and 5 report only simulation results
for small, moderate and large positive values of p and A, respectively, against sev-
eral values of the other parameter.* As can be seen from these tables, the main find-
ings can be summarized into four points, meaning that the percentage of selecting

4 Simulations have been conducted for small, moderate and large negative values of p and A, against
the reported values of Tables 4 and 5 of the other parameters, including cases with the extreme negative
values.
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Table 4 Percentage of selections for all three spatial processes based on AIC, BIC and HQC information
criteria when the true data generating model is the SARMA(1, 1) process for p=0.2, 0.5 and 0.9 and for
various values of 4 using 1000 replications

N IC p 0.2
Model/A -09 -08 -05 -02 02 05 08 09

100 AIC  SAR(D) 105 168 399 576 439 64 01 0
SMA(1) 583 582 521 394 341 608 621 561
SARMA(1,1) 312 25 8 3 22 328 378 439

BIC  SAR(l) 203 258 433 59 528 77 02 0
SMA(1) 755 727 566 40 416 807 849 8l
SARMA(1,1) 42 15 0l 1 56 116 149 19

HQC  SAR(1) 16 2 427 583 483 73 02 0
SMA(1) 68 675 562 398 389 715 73 69

SARMA(L, 1) 16 10.5 1.1 19 128 212 268 31

400 AIC  SAR(D 0 0 7 58 374 03 0 0
SMA(1) 175 187 229 242 155 319 262 198
SARMA(1,1) 825 813 701 178 471 678 738 802

BIC  SAR(l) 01 09 267 682 61 04 0 0
SMA(1) 55 573 607 318 252 724 676 59.1

SARMA(I, 1) 449 418 126 0 127 272 324 409

HQC  SAR(l) 0 01 15 662 534 04 0 0
SMA(1) 325 34 401 305 21 517 44 366
SARMA(L,1) 675 659 449 33 256 479 56 634

325 AIC  SAR(D) 1.1 26 22 585 431 08 0 0
SMA(1) 371 39 425 363 221 415 218 6.1
SARMA(1,1) 618 584 355 52 348 577 782 939

BIC  SAR(1) 78 146 389 621 635 09 0 0
SMA(1) 741 732 604 379 286 756 569 277
SARMA(l,1) 181 122 07 0 79 235 431 723

HQC  SAR(1) 25 74 349 616 554 08 0 0
SMA(1) 538 557 559 377 256 567 38 14.1

SARMAC(1, 1) 43.7 36.9 9.2 0.7 19 42.5 62 85.9
N 1C p 0.5

Model/A -09 -08 —-05 -02 02 0.5 0.8 0.9

100  AIC SAR(1) 11.1 20.8 53 71.6 69.2 334 0.6 0.1
SMA(1) 4.3 5.1 7.7 8.9 55 79 16.3 10.7
SARMA(1,1)  84.6 74.1 39.3 135 253 587 831 89.2

BIC SAR(1) 329 46 76 85.6 859 519 1.7 0.1
SMA(1) 16.8 17.3 17.2 13.1 5.8 13.8 405 296
SARMA(,1) 503 36.7 6.8 13 8.3 343 578 703

HQC SAR(1) 21 31.3 66 82.8 783 428 1 0.1
SMA(1) 8.4 9.8 124 11.7 5.7 10.6 249 17.8

SARMA(, 1)  70.6 58.9 21.6 5.5 16 46.6  74.1 82.1
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Table 4 (continued)

N IC p 0.5
Model/A -09 -08 -05 -02 02 05 08 09
400 AIC  SAR(D) 0 0 113 659 592 38 0 0
SMA(1) 0 0 0 0 0 0 0 0

SARMAC(l, 1) 100 100 88.7 34.1 408  96.2 100 100

BIC  SAR(1) 04 26 475 916 894 212 0 0
SMA(1) 0 0 02 04 01 03 2 0.3
SARMA(I,1) 99.6 974 523 8 105 785 98 99.7

HQC  SAR(1) 0 04 243 807 768 10 0 0
SMA(1) 0 0 0 0 0 02 01 0
SARMA(1,1) 100  99.6 757 193 232 898 999 100

325 AIC  SAR(l) 12 31 284 701 658 79 0 0
SMA(1) 0 0 0 02 07 0 02 0
SARMA(I,1) 988 969 716 297 335 921 998 100

BIC  SAR(l) 107 208 639 939 908 338 0 0
SMA(1) 0.3 0.7 1.4 19 07 03 08 01
SARMA(I, 1) 89 785 347 42 85 659 992 999

HQC  SAR(1) 34 88 448 836 807 165 0 0
SMA(1) 0 0 0.3 09 07 01 03 0
SARMA(1,1) 966 912 549 155 186 834 997 100

N IC p 0.9
Model/A -09 -08 -05 -02 02 05 08 09
100 AIC  SAR(l) 25 51 3R 721 794 56 243 97
SMA(1) 0 0 0 0 0 0 01 01
SARMA(I,1) 97.5 949 68 279 206 44 756 902

BIC  SAR(1) 10 194 601 912 949 811 481 226
SMA(1) 0 0 0 0 0 01 02 04
SARMA(L, 1) 90 80.6 399 8.8 s1 188 517 77

HQC  SAR(1) 46 105 453 838 894 682 332 143
SMA(1) 0 0 0 0 0 01 02 03
SARMA(1,1) 954 895 547 162 106 377 666 854

400 AIC  SAR(D) 0 0 3 535 631 174 06 0.1
SMA(1) 0 0 0 0 0 0 0 0
SARMA(1,1) 100 100 97 465 369 826 994 999

BIC  SAR(1) 0 0 175 868 913 512 78 06
SMA(1) 0 0 0 0 0 0 0 0
SARMA(1,1) 100 100 825 132 87 488 922 994

HQC  SAR(1) 0 0 77 714 794 311 21 03
SMA(1) 0 0 0 0 0 0 0 0

SARMA(1, 1) 100 100 92.3 28.6 206 689 979  99.7
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Table 4 (continued)

N IC p 0.9
Model/A -09 -08 -05 -02 02 05 08 09
325 AIC  SAR(D) 0 02 117 635 663 104 03 0
SMA(1) 0 0 0 0 0 0 0 0

SARMA(1,1) 100 998 883 365 337 896 997 100

BIC  SAR(l) 1 37 408 897 925 4l 1 0.1
SMA(1) 0 0 0 0 0 0 0 0

SARMA(1,1) 99 963 592 103 75 59 99 999
HQC  SAR(1) 0.1 09 218 794 822 23 05 0

SMA(1) 0 0 0 0 0 0 0 0

SARMA(L,1) 999 99.1 782 206 17.8 77 995 100

the right model by all information criteria increases, regardless of the construction
of the weights matrices: a) as the absolute values of p, A and n increase, b) as the
absolute value of A1 increases for given values of p and n, c) as the absolute value
of p increases for given values of 1 and n and d) as sample size increases for given
values of p and 2.5 Unlike the previous two cases, AIC has now the dominant role
of selecting the right model most frequently, followed by HQC, especially for small
sample sizes, whereas the BIC criterion in this case is the least reliable criterion for
selecting the true model, a finding that was expected, since, as discussed, the AIC
criterion has the tendency to select large models.

For small values of the moving average parameter as well as for the autoregres-
sive parameter, all criteria select almost exclusively the SAR(1) process and/or the
SMA(1) process and not the true SARMA(1, 1) process, especially for small sample
size. For example, for A=0.2 and p=0.9, the SAR(1) process is selected 79.4% by
AIC, 94.9% by BIC and 89.4% by HQC, as Table 4 reports for n=100, whereas
for p=0.2 and for 1=0.9 the SMA(1) process is selected 56.1% by AIC, 81% by
BIC and 69% by HQC, as Table 5 reports for n=100. Clearly, when the moving
average (autoregressive) parameter is very low, the autoregressive (moving average)
term prevails and that is why all information criteria prefer model SAR(1) (SMA(1))
instead of the true SARMAC(1, 1) model. However, when the values of both param-
eters are large, all criteria select more frequently the true SARMA (1, 1) process,
i.e., for values of 1 and p equal to (0.8, 0.9) and (0.9, 0.8), the SARMAC(1, 1) process
is selected 75.6% and 95.9%, respectively, by AIC criterion, even for n=100. Unlike

5 The term absolute value is used to include all cases. Similar results are also obtained for the negative
values of both parameters, i.e., for values of —0.2, —0.5 and —0.9 against all other values of the other
parameter, although are not reported here, with minor exceptions regarding the magnitude of the selec-
tion rate of the true model for small sample size.
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Table 5 Percentage of selections for all three spatial processes based on AIC, BIC and HQC information
criteria when the true data generating model is the SARMAC(I, 1) process for of A=0.2, 0.5 and 0.9 and
for various values of p using 1000 replications

N IC A 0.2
Model/p -09 -08 -05 -02 02 0.5 0.8 0.9
100 AIC SAR(1) 59.2 59.6 61.3 48.2 439 692 799 794
SMA(1) 0 0 5.8 45.4 34.1 5.5 0.1 0
SARMA(, 1) 4038 40.4 329 6.4 22 253 20 20.6
BIC SAR(1) 84 84.3 80 50.8 528 859 944 949
SMA(1) 0 0.1 11.6 48.9 41.6 5.8 0.2 0
SARMA(1, 1) 16 15.6 8.4 0.3 5.6 8.3 5.4 5.1
HQC SAR(1) 70.7 70.7 71.5 50.3 483 783 88 89.4
SMA(1) 0 0 8.4 48.1 38.9 5.7 0.2 0
SARMA(1,1) 293 29.3 20.1 1.6 12.8 16 11.8 10.6
400  AIC SAR(1) 22 23.8 29.4 339 374 592 669 63.1
SMA(1) 0 0 0 234 15.5 0 0 0
SARMA(, 1) 78 76.2 70.6 42.7 47.1 408  33.1 36.9
BIC SAR(1) 62.3 64.6 70.8 56.9 62.1 89.4 928 913
SMA(1) 0 0 0.1 40.3 252 0.1 0 0
SARMA(,1) 377 354 29.1 2.8 12.7 10.5 72 8.7
HQC SAR(1) 39.5 42.1 47.5 47.9 534 768 82 79.4
SMA(1) 0 0 0 34.4 21 0 0 0
SARMA(1, 1)  60.5 579 52.5 17.7 256 232 18 20.6
325  AIC SAR(1) 443 454 49 47 43.1 65.8 699 663
SMA(1) 0 0 0.6 39.1 22.1 0.7 0 0
SARMA(1,1) 557 54.6 50.4 13.9 348 335 301 33.7
BIC SAR(1) 81.4 82.5 84.6 55.5 635 908 932 925
SMA() 0 0 3 44.2 28.6 0.7 0 0
SARMA(1, 1) 18.6 17.5 124 0.3 7.9 8.5 6.8 7.5
HQC SAR(1) 63.2 65 68 542 554 80.7 848 822
SMA(1) 0 0 1.2 435 25.6 0.7 0 0
SARMA(1, 1)  36.8 35 30.8 2.3 19 18.6 15.2 17.8
N IC A 0.5
Model/p -09 -08 -05 -02 02 0.5 0.8 0.9
100  AIC SAR(1) 6.4 7.3 9.8 12 6.4 334 543 56
SMA(1) 0 0 5.7 63 60.8 79 0.3 0
SARMA(1,1)  93.6 92.7 84.5 25 328 587 454 44
BIC SAR(1) 19.7 20.4 27.8 19.1 77 519 717 811
SMA(1) 0 0 16.4 77.6 80.7 13.8 0.3 0.1
SARMA(,1)  80.3 79.6 55.8 33 11.6 343 22 18.8
HQC SAR(1) 10.5 11.8 15.6 15.4 73 428 646 682
SMA(1) 0 0 9.8 71.5 715 10.6 0.3 0.1

SARMA(, 1)  89.5 88.2 74.6 13.1 212 466  35.1 31.7
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Table 5 (continued)

N IC A 0.5
Model/p -09 -08 -05 -02 02 0.5 0.8 0.9
400  AIC SAR(1) 0 0 0 0.3 0.3 3.8 17.9 17.4
SMA(1) 0 0 0 24.7 31.9 0 0 0

SARMAC(l, 1) 100 100 100 75 678 962  82.1 82.6
BIC SAR(1) 0 0.1 0.5 1.2 04 212 509 512

SMA(1) 0 0 0 61.1 72.4 0.3 0 0

SARMA(, 1) 100 99.9 99.5 37.7 272 785  49.1 48.8

HQC SAR(1) 0 0 0.2 0.4 0.4 10 31.1 31.1
SMA(1) 0 0 0 39.6 51.7 0.2 0 0
SARMA(, 1) 100 100 99.8 60 479 89.8 689 689

325  AIC SAR(1) 0.2 0.3 1 1.9 0.8 7.9 14.4 104
SMA(1) 0 0 0 37.7 41.5 0 0 0
SARMA(1,1)  99.8 99.7 99 60.4 577 921 856  89.6

BIC SAR(1) 3 3.6 6.9 8.2 09 338 453 41
SMA(1) 0 0 1.7 72.7 75.6 0.3 0 0
SARMA(,1) 97 96.4 914 19.1 235 659 547 59

HQC SAR(1) 1.3 1.3 2.1 3.7 0.8 16.5 285 23
SMA(1) 0 0 0.5 53.6 56.7 0.1 0 0

SARMA(, 1) 987 98.7 97.4 42.7 425 834 715 77
N 1C A 0.9

Model/p -09 -08 -05 -02 02 05 08 09

100 AIC  SAR(l) 0 0 0 0 0 01 3 9.7
SMA(1) 0 0 27 563 561 107 1.1 0.1
SARMA(I,1) 100 100  97.3 437 439 892 959 902

BIC  SAR(l) 0 0 0 0 0 01 79 226
SMA(1) 0 0 86 806 81 296 44 04
SARMA(I,1) 100 100 914 194 19 703 8717 77

HQC  SAR(1) 0 0 0 0 0 01 44 143
SMA(1) 0 0 5 687 69 178 19 03
SARMA(L,1) 100 100 95 313 31 821 937 854

400 AIC  SAR(D) 0 0 0 0 0 0 0 0.1
SMA(1) 0 0 0 159 198 0 0 0
SARMA(1,1) 100 100 100  84.1 802 100 100  99.9

BIC  SAR() 0 0 0 0 0 0 01 06
SMA(1) 0 0 0 489 591 03 0 0
SARMA(I,1) 100 100 100 511 409 997 999 994

HQC  SAR(1) 0 0 0 0 0 0 0 0.3
SMA(1) 0 0 0 282 366 0 0 0

SARMA(, 1) 100 100 100 71.8 63.4 100 100 99.7
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Table 5 (continued)

N IC A 0.9
Model/p -09 -08 -05 -02 02 0.5 0.8 0.9
325  AIC SAR(1) 0 0 0 0 0 0 0 0
SMA(1) 0 0 0 2.6 6.1 0 0 0
SARMAC(l, 1) 100 100 100 97.4 93.9 100 100 100
BIC SAR(1) 0 0 0 0 0 0 0 0.1
SMA(1) 0 0 0 17.8 27.7 0.1 0 0

SARMA(1,1) 100 100 100 822 723 999 100  99.9

HQC  SAR(1) 0 0 0 0 0 0 0 0
SMA(1) 0 0 0 8 141 0 0 0
SARMA(1,1) 100 100 100 92 859 100 100 100

the previous two cases, the corrected AIC criterion selects less frequently the true
SARMAC(1, 1) process than the AIC criterion only for small sample sizes; i.e., for
n=100 and for values of p and 4 equal to (0.2, 0.8) and (0.9, —0.5), the SARMAC(1,
1) process is selected by AICc 36.2% and 66.2%, respectively, as opposed to the
37.8% and 68% selection rates by AIC reported in Table 4, and similar results can be
found for all other values of A and p. For large sample sizes, both criteria select the
true model at the same rate.

It should be stated though that the whole simulation process is conducted even for
identical values of both parameters p and A due to the fact that the weights matrices
W, and W, are different, excluding in that sense the presence of a common spa-
tial root. If both weights matrices were exactly the same, the SARMAC(1, 1) process
would have been simply a spatial white noise process for all identical values of p and
/A, causing serious issues in the whole Monte Carlo analysis. Lastly, similar conclu-
sions can be found for the special geographical structure that was used to construct
the weights matrices, indicating the behavior of the selection of all information cri-
teria for values smaller than —1 for both parameters; it was similar to the extreme
absolute values of both parameters and did not deliver any additional information to
the overall analysis, as already has been recognized.

4 Concluding remarks

The objective of this study was to investigate the behavior of the three most fre-
quently used information criteria, AIC, BIC and HQC, for model selection among
competitive models for spatial data, using a Monte Carlo analysis. For this purpose,
three spatial processes, the SAR(1), the SMA(1) and the SARMAC(1, 1) processes,
are generated either by using a hypothetical geographical structure based on regular
grids or by using a real geographical structure based on a map of the administrative
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units of Greece. For the autoregressive part, the weight matrix is constructed with a
rook definition for the theoretical case of both grids and with the four closest neigh-
bor definitions for the real case, whereas for the moving average part the weight
matrix is constructed with a queen definition for the theoretical case of both grids
and with the eight closest neighbor definitions for the real case. The three spatial
models are estimated next, based on the predefined weights matrices, using the
nlminb function in R that maximizes the log-likelihood function to obtain the cor-
responding values of all three information criteria. The best fitted model is selected
by the minimum value of any of the three used information criteria.

Simulation results showed that the behavior of these criteria is not the same. BIC
performs better for selecting models with small number of parameters, whereas AIC
works better for large models, findings that coincide with the overall knowledge
of the performance of these criteria. On the other hand, the HQC criterion always
comes second in order among the three criteria either right after BIC for small mod-
els or right after AIC for large models. However, the selection mechanism of the
true generating process contains a large volume of ambiguity, especially when the
sample size is small and/or when the values of both parameters are also small, indi-
cating that all three criteria have difficulty in successfully recognizing the true gen-
erating process. Things are even more complicated for spatial analysis.

First, one may argue that the results are sensitive to the construction of the
weights matrices, although two different types of structures are employed for the
theoretical part in this simulation process. The truth is that in spatial analysis, spatial
dependence is defined exogenously for every model with a variety of neighborhood
criteria, indicating that these matrices are not uniquely constructed. Moreover, the
application of the same spatial neighborhood definition to different spatial structures
can lead to completely dissimilar spatial weights matrices. For this purpose, this
study considered additionally a real geographical structure, i.e., the spatial structure
of Greece, which has a lot of geographical peculiarities resulting in quite asymmet-
ric spatial weights matrices, either as an effort to alternatively support the simulated
results or as an effort to minimize the validity of such an argument. It turns out
that the behavior of all information criteria is not affected by the construction of
these matrices since the same selection rate is obtained regardless of the geographi-
cal structures that were used either on the theoretical basis of regular grids or on the
practical basis of a real geographical structure, as it is expresses through the patterns
of a map.

The concept of properly defining the SARMAC(1, 1) process is another important
element in spatial analysis, which is highly related to the construction of the weights
matrices W, and W,. Typically, the SARMAC(1, 1) process must be defined with
different spatial weights matrices for its two components, so that issues concerning
common spatial roots will not theoretically appear in the analysis, as it was carefully
imposed in this applied simulation process. However, the estimation of this process
can be executed even with identical weights matrices, but not with the same or near
the same values of the autoregressive and moving average parameters. The question
though remains unclear as how these weights matrices are viewed as different, since
dissimilarity is a subjective and ambiguous concept. The truth is that spatial weights
matrices are sparse matrices that only a small number of their elements are different
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from zero, regardless of how the dependence is defined. The construction of the sec-
ond weight matrix, i.e., the matrix that corresponds to the moving average part of
the SARMAC(1, 1) process, by an alternative method reassures that the two weights
matrices are typically different, but not practically. The W, matrix is constructed
in such a way that leads to a more dense matrix than the W, matrix, since it has
some more elements different than zero. Therefore, it is hard to tell whether these
two matrices are different, knowing that both matrices are sparse matrices and hence
it may be difficult to evaluate the performance of these information criteria under
these circumstances.

Another way to distinguish processes is to calculate the Frobenius distance
between the covariance matrices of two processes. The Frobenius distance measures
the distance between two matrices, and it is defined as:

Fam = X 3 0,1

i=1 j=1

where A={q;} and B={b;} are square matrices having the same dimensions.
Clearly, when the value of F(A, B) is close to zero, the matrices A and B are very
similar and identical in the case where F(A, B)=0. Hence, the larger the value of the
Frobenius distance, the more different the matrices are. The covariance matrices for
the SAR(1), SMA(1) and SARMAC(1, 1) processes are defined, respectively, as:

E[yy'] = o*[(1- pW',) (1= pW,)]

Elyy'| = ¢*(I- AW,)(1- AW',)

Elyy'] = o2 (1= pW,) ™" (1= 2W,) (1= aW,)'[ (1 - le)_l],

and since o is the same for all processes, it can be ignored. Table 6 presents the
Frobenius distance for cases that needed extra attention, i.e., for cases of common
values for the two parameters, where the distinction between spatial processes
is even more difficult. As can be seen from Table 6, it is easier to distinguish a
SAR(1) process from a SMA(1) or a SARMAC(1, 1) process than a SMA(1) from a
SARMAC(1, 1), where the value of the Frobenius distance increases as sample size
increases and/or as the absolute value of both parameters increases.

Lastly and more importantly, the estimation procedure is another issue that needs
special attention. It is unknown whether the estimated values of the spatial coef-
ficients have been influenced by the very small lower limits of their feasible range
intervals, resulting from the queen and the nearest neighbors spatial dependence
definitions and/or by the maximization algorithm that the R statistical package uses
through the nlminb function. Perhaps, an alternative estimation procedure may pro-
duce different results concerning the selection rates of all information criteria, espe-
cially for small sample sizes.
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Table 6 Frobepius distanice P A F (A, B) F (A, C) F(B,C)
between covariance matrices
of the following processes, A: 100 02 02 3.629 3.633 0.171
SAR(1), B: SMA(1) and C:
SARMAC(I, 1) 0.5 0.5 11.889 11.897 0.374
0.9 0.9 151.882 151.839 1.081
0.2 -02 1.299 1.319 0.213
0.5 -0.5 5.307 5.379 0.705
0.9 -09 142.808 143.196 3.677
-02 0.2 1.799 1.807 0.174
-0.5 0.5 8.061 8.076 0.415
- 0.9 0.9 148.388 148.417 1.121
400 0.2 0.2 6.945 6.948 0.215
0.5 0.5 22.582 22.588 0.458
0.9 0.9 260.553 260.507 1.381
0.2 -0.2 2.593 2.609 0.274
0.5 -0.5 10.158 10.221 0912
0.9 -0.9 243.283 243.643 4.682
-02 0.2 3.546 3.552 0.218
-0.5 0.5 15.474 15.485 0.504
-0.9 0.9 254.066 254.076 1.275
325 0.2 0.2 5.961 6.140 1.369
0.5 0.5 21.413 22.080 4.017
0.9 0.9 459.219 464.737 21.609
0.2 -0.2 2.340 2.736 1.382
0.5 -0.5 11.477 12.751 4.488
0.9 -09 445.544 457.854 28.885
-0.2 0.2 2.229 2.602 1.319
-0.5 0.5 6.823 7.872 3.628
-0.9 0.9 20.554 22.968 8.312

Information criteria are by far the best statistical tools for selecting and/or for
evaluating models for any type of quantitative analysis. Their role is to guide the
analyst in discovering the true underlying generating mechanism of any phenom-
enon based on a given dataset. However, it turns out that these criteria occasion-
ally fail to select the true model, especially when the sample does not convey strong
qualitative and quantitative evidence of the true population behavior of any vari-
able. In this case, all criteria most probably will select the next closest behavior, but
not the right one, as it was presented and analyzed in this study. For small sample
sizes and for small absolute values of the autoregressive and/or the moving average
parameters, the selection rate of the true model was not large enough, whereas in the
contrary case the selection rate was so high that the true model was selected in sev-
eral cases even with certainty.
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