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Abstract
Information criteria have been widely used in many quantitative applications as an 
effort to select the most appropriate model that describes well enough the unknown 
population behavior for a given dataset. Studies have shown that their performance 
depends on several elements and the selection of the best fitted model is not always 
the same for all criteria. For this purpose, this research evaluates the performance 
of the three most often used information criteria, such as the Akaike information 
criterion, the Bayesian information criterion and Hannan and Quinn information cri-
terion, for selecting spatial processes, taking into account that the sample in spatial 
analysis is regarded as a realization of a spatial process that incorporates the spatial 
dependence between the observations. Using a Monte Carlo analysis for the three 
most frequently applied in practice spatial processes, such as the first-order spa-
tial autoregressive process, SAR(1), the first-order spatial moving average process, 
SMA(1), and the mixed spatial autoregressive moving average process, SARMA(1, 
1), this study finds that these information criteria can assist the analyst to select the 
true process, but their behavior depends on sample size as well as on the magnitude 
of the spatial parameters, leading occasionally to alternative competitive processes.

JEL Classification  C20 · C21 · C52 · C53

1  Introduction

An important aspect of analyzing data collected from different geographical regions, 
known as spatial data, is the emergence of spatial autocorrelation, a situation where 
the values of a variable are correlated according to their geographical positions, 
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creating clusters of observations, and, as Anselin (1988) reports, spatial autocorrelation 
is attributed to spatial dependence, which along with spatial heterogeneity, is outcome 
of spatial effects inherent in this type of data. The presence of spatially nonindepend-
ent observations causes serious problems in quantitative analysis, since the sample 
contains less information than a counterpart with independent spatial elements, and, 
moreover, the concept of the random sample is violated, as Schabenberger and Gotway 
(2005) have indicated. Therefore, any conventional statistical inference will produce 
unreliable results, unless spatial dependence is incorporated to the model, as it happens 
in time-series data with time autocorrelation. For this reason, a spatial sample should 
be considered as a realization of a spatial process and not as a random sample, as in 
time-series analysis.

The traditional Box and Jenkins (1976) methodology for time-series analysis has 
been extended to spatial analysis as an effort to model spatial dependence between 
observations of the same variable. Likewise, spatial correlograms and spatial partial 
correlograms are constructed, using the Moran’s I spatial autocorrelation coefficient or 
some other measures that have been proposed as presented by Cliff and Ord (1981), to 
identify the most adequate spatial generation mechanism of an observed dataset. How-
ever, diagrams may often be unable to identify correctly the underlying mechanism 
producing in that sense confusing results, as in time-series analysis, where this issue of 
selecting the best fitted model is addressed by several information criteria.

Hence, it will be very interesting to examine and evaluate the performance of 
the three most often used in practice information criteria in spatial analysis, such 
as the Akaike information criterion (AIC), the Bayesian information criterion 
(BIC) and the Hannan and Quinn information criterion (HQC), in terms of select-
ing pure spatial processes. Indeed, the behavior of these criteria has been investi-
gated thoroughly in the literature for time-series processes and regression models 
but not for spatial models, if you exclude the studies of Hoeting et al. (2006) and Lee 
and Ghosh (2008) in which they considered geostatistical models, i.e., models used 
for point-referenced geostatistical data that incorporate the dependence applied to 
a covariance function that determines the relationship for observations at different 
distance locations. Using a Monte Carlo analysis, this study finds that these informa-
tion criteria can successfully contribute to spatial modeling, although their overall 
behavior depends not only on the sample size but also on the magnitude of the spa-
tial parameters of the true generating processes.

The remaining of the paper is organized as follows. Section 2 depicts the most 
important spatial processes that will be considered for the simulation analysis and 
presents the three aforementioned information criteria. Section  3 describes the 
design of the simulation analysis and discusses the results. Finally, the concluding 
remarks are presented in Sect. 4.

2 � Spatial processes and information criteria

Spatial processes can be regarded as multidirectional extensions of the well-known 
time-series processes on the geographical space, meaning that the dependence among 
values of a variable is expressed according to their geographical positions and not 
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according to their chronological order. For example, for a sample of  n cross-sectional 
observations collected from n different geographical units, the spatial dependence is 
incorporated into the process by the definition of a spatial (n × n) weights matrix W 
that captures the spatial interaction between the neighboring locations. The matrix W 
is usually used in its row-standardized form such that its Wij element is different from 
zero if the locations i and j are neighbors, otherwise it is zero, where the determination 
of the neighbors for each spatial unit is clearly the most important issue for construct-
ing such a matrix in spatial analysis. Indeed, a variety of criteria have been proposed 
in the literature for spatial weights formation including boundary contiguity and dis-
tance measures, as, for example, can be seen in Cliff and Ord (1981) and in Anselin 
(1988). Contiguity criteria consider as neighbors the spatial units which share common 
borders, so they are contiguous, while other criteria which are based on distance meas-
ures define the neighborhood according to the distance between two regions. A brief 
presentation of the three most commonly used spatial processes that express spatial 
dependence, namely the spatial autoregressive process of order 1, the spatial moving 
average process of order 1 and the mixed spatial autoregressive moving average process 
of orders 1 and 1, is given below.

The spatial autoregressive process of order 1, i.e., SAR(1), was initially introduced 
by Whittle (1954) and by Besag (1974) as an extension of the autoregressive process 
of order 1, i.e., AR(1), in time-series analysis to geographical context. Utilizing matrix 
notation and considering zero mean value for the examined variable, the SAR(1) pro-
cess, as presented by LeSage and Pace (2009), is defined as:

where � is an ( n × 1 ) vector of observations of the process collected from n geo-
graphical points, W is the (n × n) spatial weights matrix, � is the spatial autore-
gressive parameter and ε is an ( n × 1 ) white noise random vector. The vector �� is 
called spatial lag, and each element, for a row-standardized � , is a weighting aver-
age of � values in neighboring units for every region.

The log-likelihood function of a SAR(1) process, assuming that ε ~ N(0, σ2I) with Ι 
being the identity matrix and σ2 a constant variance, is obtained as:

where |I − ��| is the Jacobian determinant for the transformation of the random 
vector ε into the vector � . Substituting the maximum likelihood estimator for the 
variance of the process, i.e., �2

ML
= ���∕n , the log-likelihood function becomes:

which is clearly only a function of the parameter ρ.
Next, the spatial moving average process of order 1, i.e., SMA(1), is defined as:

� = ��� + �

lnL
(
�, �2

)
= −

n

2
ln (2π) −

n

2
ln �2 −

(� − ���)�(� − ���)

2�2
+ ln |I − ��|

lnL(�) = −(n∕2) ln (2π) − (n∕2) − (n∕2) ln
(
(1∕n)(� − ���)�(� − ���)

)
+ ln |I − ��|

� = � − ���
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where again ε ~ N(0, σ2I) and λ is the spatial moving average coefficient, as pre-
sented by Haining (1978). The log-likelihood function of a SMA(1) process is:

lnL
(
�, �2

)
= −(n∕2) ln (2π) − (n∕2) ln �2 −

(
1
/
2�2

)[
(I − ��)−1�

]�
(I − ��)−1� − ln |I − ��|

which can be written as:

for �2
ML

= ���∕n and |I − ��| being the Jacobian determinant. Note, that as in the 
case of SAR(1), the log likelihood of SMA(1) is a function solely of the parameter λ.

Lastly, as in time-series analysis mixed models are also defined in spatial analysis, 
known as spatial autoregressive moving average processes, i.e., SARMA, as introduced 
by Huang (1984). The simplest mixed spatial autoregressive moving average process is 
the SARMA(1, 1) process defined as:

where �1 and �2 denote (n × n) spatial weights matrices for the autoregressive and 
the moving average term, respectively. It should be pointed out that the SARMA(1, 
1) process is properly defined if and only if different weight matrices are used for the 
two components of the process, as can be seen in Mur and Angulo (2007). Unlike 
time-series analysis where for a proper definition of an ARMA(1, 1) process, the 
autoregressive parameter must not be equal to the moving average parameter, the 
SARMA(1, 1) process is well defined even for equal values of ρ and λ, provided that 
the weights matrices are different, i.e., �1 ≠ �2 . Actually, a SARMA(1, 1) pro-
cess is a process that combines global and local effects, since the SAR(1) process 
expresses the global spatial dependence, i.e., influences from one geographical point 
that spread and affect the whole study region, whereas the SMA(1) process defines 
local spatial dependence with effects covering only the neighborhood regions.

The log-likelihood function of a SARMA (1, 1) process is obtained as:

where � = I − ��1 and � = I − ��2 , and takes the following form:

which is a function only of the spatial parameters.
The log-likelihood functions of the three presented spatial processes are maxi-

mized by applying a numerical method for an observed dataset in order to esti-
mate the spatial coefficients ρ and λ, emphasizing the fact that the most impor-
tant element of this maximization process is the log-determinant of the Jacobian 
matrix. For this purpose, Ord (1975) has proposed a convenient method for deal-
ing with this issue by using the eigenvalues of � . For example, the log-determi-
nant term for the spatial parameter ρ can be decomposed as:

lnL(�) = −(n∕2) ln (2π) − (n∕2) − (n∕2) ln
(
(1∕n)

[
(I − ��)−1�

]�
(I − ��)−1�

)
− ln |I − ��|

� = ��1� + � − ��2�

lnL
(
�, �, �2

)
= −(n∕2) ln (2π) − (n∕2) ln �2 −

(
1
/
2�2

)[
�−1��

]�
�−1�� + ln |�| − ln |�|

lnL(�, �) = −(n∕2) ln (2π) − (n∕2) − (n∕2) ln
(
(1∕n)

[
�−1��

]�
�−1��

)
+ ln |�| − ln |�|
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where ωj are the eigenvalues of the weights matrix � , provided that these values 
are real numbers. If, on the other hand, the eigenvalues are complex, Bivand et al. 
(2013) have suggested an alternative method of computing the log-determinant of 
the Jacobian matrix as follows:

where

and

while �j = �j + ibj and �j = �j − ibj denoting the 2 k complex eigenvalues, i is the 
imaginary unit and �j represents a real eigenvalue.

However, it should be mentioned that in spatial analysis, unlike time-series analy-
sis, the values of the coefficients ρ and λ are not necessarily restricted strictly to the 
interval (−1, + 1), but the estimation process can be implemented provided that the 
Jacobian matrix is nonsingular, an outcome that is related to the eigenvalues of the 
spatial weights matrices. Row-standardized spatial weights matrices have always the 
largest eigenvalue equal to unity, something which ensures that the upper limit of the 
interval will be always + 1, while the value for the lower limit is unknown and sev-
eral times smaller than −1. Ord (1975) has demonstrated that the spatial parameters 
for symmetric matrices before standardization could take values within the interval (
1∕�min , 1∕�max

)
 , where ωmin and ωmax are the smallest and largest real eigenvalues 

of � . On the other hand, in the case of asymmetric row-standardized weights matri-
ces with complex eigenvalues, LeSage and Pace (2009) suggested that the Jacobian 
is nonsingular when the spatial parameters have values in the interval 

(
1
/
rs , 1

)
 , 

where rs is the most negative purely real eigenvalue of � . Lastly, if the parameters 
take values inside the feasible interval, corresponding to the applied weights matrix, 
the Jacobian determinant will be positive, meaning that its logarithm will exist, and 
the likelihood function of a process will be well defined.

Hence, if the log-likelihood functions are maximized, the best fitted model is 
selected according to the minimum value of any of the widely used information 
criteria. The first criterion most often appeared in practice is the Akaike informa-
tion criterion (AIC) suggested by Akaike (1973) which was developed on the Kull-
back–Leibler divergence measure for evaluating the discrepancy between a true 
model and a candidate model. The AIC is computed as follows:

ln |I − ��| =
n∑

j=1

ln
(
1 − ��j

)

ln |I − ��| = L1 + L2

L1 =

k∑

j=1

ln
[(
1 − ��j

)(
1 − ��j

)]
=

k∑

j=1

ln

[(
1 − ��j

)2
+
(
�bj

)2]

L2 =

n−k∑

j=k+1

ln
(
1 − � �j
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where ln L̂ is the maximized value of the log-likelihood function and p is the num-
ber of parameters of the process. The other two well often applied criteria are the 
Bayesian information criterion (BIC), suggested by Schwarz (1978) as an attempt to 
improve AIC performance, and the Hannan and Quinn information criterion (HQC), 
suggested by Hannan and Quinn (1978), defined, respectively, as follows:

and

where n is the sample size used for the estimation. Obviously, the number of exist-
ing information criteria is not limited to those three previously presented, but these 
criteria are typically the most often used in practice not only because it is fairly easy 
to compute their values but also because they are reported by almost every statisti-
cal package. However, since it is known in the literature that the AIC criterion is 
strongly negatively biased in small samples, as shown by Sugiura (1978) and Hur-
vich and Tsai (1989), bias-corrected version of AIC proposed by Hurvich and Tsai 
(1989) and denoted as AICc, i.e.,

is also considered.
The philosophy of an information criterion is based on the quantification of the 

goodness of fit of an estimated model including a penalty for the number of esti-
mated parameters and for the sample size. The selection process of a model consists 
of estimating several different models, for which the value of the designated crite-
rion is computed, and the best fitted model is the one at which the value of the cri-
terion is minimized, emphasizing that alternative information criteria do not always 
select the same best model. Actually, AIC is known as an asymptotically efficient 
criterion, meaning that, if the true model is not among the candidate models, the cri-
terion chooses the model with the minimum one-step expected quadratic forecasting 
error as the sample increases, i.e., AIC chooses the model which is the best approxi-
mation of the unknown and, perhaps, of an infinite-dimensional model. On the other 
hand, BIC and HQC are considered as consistent criteria in the sense that if the true 
model is among the candidate models, these criteria select the true model with prob-
ability approaching to 1 as sample increases (see details regarding their properties in 
Diebold 2007, Judge et al. 1985 and Burnham and Anderson 2002).

Overall, AIC has the tendency to select a more elaborate model, as Jones (1975) 
and Shibata (1976) have demonstrated that for autoregressive time-series processes, 
AIC overestimates the true order of the process, while BIC chooses simpler models 
according to the parsimonious concept. In this lieu, Hurvich and Tsai (1989) showed 
that AIC is a biased estimator of the Kullback–Leibler information causing in that 

AIC = −2 ln L̂ + 2p

BIC = −2 ln L̂ + p ln n

HQC = −2 ln L̂ + 2p ln ln n

AICc = AIC +
2p(p + 1)

n − p − 1
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sense overfitting of the model. Therefore, it will be very exciting to evaluate the 
performance of these information criteria for spatial analysis, i.e., for observation in 
a lattice environment appropriate for economic and regional data, knowing also that 
their behavior has been examined for time-series and regression models.

3 � Simulation results

The performance of the three previously presented information criteria, i.e., AIC, 
BIC and HQC, is investigated in this section for spatial data using a Monte Carlo 
analysis, in terms of selecting the right spatial process among the three candidate 
processes, i.e., SAR(1), SMA(1) and SARMA(1, 1). Spatial dependence is intro-
duced into the processes by defining two separate row-standardized spatial weights 
matrices �1 and �2 for the autoregressive and moving average terms, respectively. 
More precisely, matrices �1 and �2 are constructed using the rook (four neighbors-
common edge) and the queen (eight neighbors-common edge and vertex) contiguity 
definitions, respectively, over a squared regular lattice for dimensions 10 × 10 and 
20 × 20 providing samples of 100 and 400 observations. Using this formation, the 
matrices are symmetric originally, but they become asymmetric after row standardi-
zation, although it must be said that their structure behaves relatively like a sym-
metric matrix. Moreover, the research is extended into a situation with extremely 
asymmetric weights matrices in order to further investigate the performance of these 
information criteria under a realistic environment. For this purpose, the geographi-
cal structure of Greece at the local authority districts of Kallikrates Operational 
Programme consisting of 325 municipalities is considered to construct matrices �1 
and �2 according to the four-nearest-neighbor and the eight-nearest-neighbor defi-
nitions, respectively, based on the geographical coordinates of the centroid for each 
municipality.1 Note that in this case the matrices are asymmetric before and after 
row standardization, since the nearest neighbors criterion defines spatial relations 
asymmetrically.

Table  1 presents the feasible ranges of the spatial parameters ρ and λ accord-
ing to the spatial structures as specified above. As can be seen from this table, the 
lower bounds of the spatial coefficients are significantly less than −1 for all matri-
ces except for those created with rook contiguity. Moreover, the row-standardized 
weights matrices that have been constructed with rook definition over the regular 
lattices and with the nearest neighbors over the Greek geographical structure yield 
complex eigenvalues.

Having described the formation of �1 and �2 matrices, the spatial processes are 
generated as follows: the SAR(1) process as � =

(
I − ��1

)−1
� , the SMA(1) process 

as � =
(
I − ��2

)
� and the SARMA(1, 1) process as � =

(
I − ��1

)−1(
I − ��2

)
� , 

where the spatial parameters ρ and λ are allowed to take values within the feasible 
range intervals defined in Table 1 and the vector of random errors � is considered 

1  The Greek geographical structure is obtained from https​://geoda​ta.gov.gr/en/datas​et/oria-demon​-kalli​
krate​s, excluding thought the Mountain Athos region.

https://geodata.gov.gr/en/dataset/oria-demon-kallikrates
https://geodata.gov.gr/en/dataset/oria-demon-kallikrates
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asN(0, I) . The whole simulation process is conducted in R using the SPDEP pack-
age developed by Bivand (2015) for the spatial weights matrices manipulation as 
well as for the generation of the processes. Each spatial generation process is then 
estimated for all three model specifications, i.e., for the SAR(1) with �1 , for the 
SMA(1) with �2 and for the SARMA(1, 1) with �1 and �2 as the weights matri-
ces, respectively, by maximizing the log-likelihood function, using the nlminb func-
tion in R, so that the values of all three information criteria can be calculated. The 
best fitted model is selected according to the minimum value of any criterion based 
on 1000 replications.

Table 2 presents the percentages of model selection by any of the three criteria 
when the true generating process is the SAR(1) model. As can be seen from this 
table, the selection behavior of all three information criteria is pretty much similar, 
independent of the construction of the weights matrix, and it depends mainly on 
the magnitude of the parameter ρ, meaning that the true SAR(1) process is selected 
more often by all criteria as the absolute value of ρ increases for given sample, 
reaching almost at the 99% level based on the BIC criterion for n = 400. It turns out 
though that the BIC criterion has the best behavior, among the other two criteria, in 
terms of most frequently selecting the true model regardless of sample size and the 
value of ρ, a result that confirms the overall well-known behavior of BIC in terms 
of selecting parsimonious models over AIC. The HQC criterion behaves closely to 
BIC criterion but with lower probability of selecting the true model. For small abso-
lute values of ρ, the second best fitted model is the SMA(1) process selected by all 
criteria, whereas for large absolute values of ρ, the second best fitted model selected 
mainly by AIC is the SARMA(1, 1) process. Finally, as sample size increases, the 
true model is selected more often even for small values of ρ, i.e., for ρ = 0.2, the 
SAR(1) process is selected by BIC 64.9% and 84.4% for n = 100 and 400, respec-
tively. It should be noted that the corrected AIC criterion, although it is not reported, 
behaves very similarly, if not identically in most cases, as the AIC criterion. The 
AICc selects slightly more frequently the correct spatial process than the AIC for 
small sample sizes, whereas for large sample sizes the selection rate is almost the 
same. For example, for n = 100 and for values of ρ = −0.9, −0.5, 0.2 and 0.8, the 
AICc selects the SAR(1) process 82.9%, 81.3%, 59.4% and 84.5%, respectively, as 

Table 1   Characteristics of the weights matrices along with the lower and upper limits of the spatial 
parameters ρ and λ 

n Weights (row-standard-
ized)

Complex 
eigenval-
ues

Most negative 
purely real eigen-
value

Largest 
eigen-
value

Lower limit ρ, λ Upper 
limit 
ρ, λ

100 Rook Yes −1 1 −1 1
100 Queen No −0.508 1 −1.970 1
400 Rook Yes −1 1 −1 1
400 Queen No −0.520 1 −1.921 1
325 4-Nearest Neighbors Yes −0.676 1 −1.478 1
325 8-Nearest Neighbors Yes −0.368 1 −2.720 1
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opposed to the relevant AIC selection rates of 80.7%, 80.4%, 58.8% and 83.2% pre-
sented in Table 2.

Similar conclusions can be made for the special case of using a real geographi-
cal structure to generate the spatial processes. The main interesting feature of this 
case is that the SAR(1) process is well defined even for values of ρ smaller than −1, 
as can be seen from Table 1. For all these values, the behavior of all information 
criteria is similar, if not identical, to the largest absolute value of the autoregressive 
parameter within the range of (−1, 1), as can be seen from Table 2 for suggestive 

Table 2   Percentage of selections for all three spatial processes based on AIC, BIC and HQC when the 
true data-generating model is the SAR(1) process for various values of ρ using 1000 replications

Ν IC Model ρ

− 1.3 − 1.1 − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 80.7 81.1 80.4 57.4 58.8 79.6 83.2 83.8
SMA(1) 0 0 4.8 34.1 31.3 8.4 0 0
SARMA(1, 1) 19.3 18.9 14.8 8.5 9.9 12 16.8 16.2

BIC SAR(1) 96.8 96.5 92.1 62.4 64.9 87.6 96.7 96.9
SMA(1) 0 0 5.9 36.5 32.8 9.3 0.4 0
SARMA(1, 1) 3.2 3.5 2 1.1 2.3 3.1 2.9 3.1

HQC SAR(1) 89.3 89.3 87.4 60.7 63.5 85.2 92.6 91.7
SMA(1) 0 0 5.1 35.9 32.2 9.3 0.1 0
SARMA(1, 1) 10.7 10.7 7.5 3.4 4.3 5.5 7.3 8.3

400 AIC SAR(1) 83.1 83.2 84.7 76.8 75.8 82.8 82.8 82.1
SMA(1) 0 0 0 13.1 14.5 0 0 0
SARMA(1, 1) 16.9 16.8 15.3 10.1 9.7 17.2 17.2 17.9

BIC SAR(1) 98.3 98.3 98.5 85.5 84.4 98.5 98.7 98.6
SMA(1) 0 0 0.1 13.9 15.2 0.4 0 0
SARMA(1, 1) 1.7 1.7 1.4 0.6 0.4 1.1 1.3 1.4

HQC SAR(1) 94.1 94.7 94 83.4 82.4 94.4 93.8 93
SMA(1) 0 0 0 13.8 15.2 0.1 0 0
SARMA(1, 1) 5.9 5.3 6 2.8 2.4 5.5 6.2 7

325 AIC SAR(1) 84.3 84.1 83.8 84.2 84.3 69.5 69.4 83.9 84.3 83.9
SMA(1) 0 0 0 0 0.6 22.2 21.3 0.4 0 0
SARMA(1, 1) 15.7 15.9 16.2 15.8 15.1 8.3 9.3 15.7 15.7 16.1

BIC SAR(1) 98.2 98.2 98.1 98 97.1 76.3 77.3 97.3 98.1 97.8
SMA(1) 0 0 0 0 1 22.6 21.6 1.3 0 0
SARMA(1, 1) 1.8 1.8 1.9 2 1.9 1.1 1.1 1.4 1.9 2.2

HQC SAR(1) 94.7 94.8 94.7 94.6 94.2 74 75.3 93.1 94.6 93.8
SMA(1) 0 0 0 0 0.9 22.5 21.4 1 0 0
SARMA(1, 1) 5.3 5.2 5.3 5.4 4.9 3.5 3.3 5.9 5.4 6.2
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values of ρ equal to −1.3 and −1.1.2 Hence, the presence of these values does not 
provide any additional information of relevance to the Monte Carlo analysis, but 
these values do exist mathematically to ensure the consistency of the Jacobian 
matrix so that the likelihood function can be computed. In practice, however, it is 
very unlikely to obtain such values as estimates of the spatial autoregressive param-
eter, although the feasible range of all values of ρ obtained from the construction 
of the weights matrix, based on a specific geographical structure, is included in the 
maximization process.

The selection rates for all three spatial processes based on all information criteria 
when the true generating process is the SMA(1) model are reported in Table 3. It 
is evident that all three information criteria behave quite similarly, as in the previ-
ous case, regardless of the construction of the weights matrix. The SMA(1) pro-
cess is selected more often as the absolute value of the moving average parame-
ter λ increases for all samples, reaching almost at the 99% level based on the BIC 
criterion for n = 400. Among all criteria, the SMA(1) process is selected most fre-
quently for any given value of λ and sample size by BIC followed by HQC and AIC. 
For small absolute values of λ the second best fitted model is the SAR(1) process 
selected by all criteria, as equivalently the SMA(1) process was the second best fit-
ted model selected by all criteria in the case of the true generating SAR(1) process 
for small absolute values of the autoregressive parameter, whereas for large absolute 
values of λ the selection of the SARMA(1, 1) process appears to be as the second 
choice for the AIC criterion. It is also worth mentioning that the selection process 
of the true model is improving as sample increases by all criteria and for all values 
of the moving average parameter, i.e., for λ = 0.2, the SMA(1) process is selected 
by AIC 58.9% and 72.4% for n = 100 and 400, respectively. As in the case of the 
SAR(1) process, the AICc criterion selects the correct spatial moving average pro-
cess slightly more frequently than the AIC only for small sample sizes.

Moreover, the construction of the �2 matrix to generate SMA(1) processes, 
either as a queen definition or as a special case of a real geographical structure with 
eight neighbors contiguity definitions, resulted to values of the moving average 
parameter smaller than −1 for both cases, as Table 1 reports. Like the SAR(1) case, 
the use of these values does not provide any additional information to the overall 
analysis, since the behavior of all information criteria in terms of selecting the best 
fitted model remains the same as their behavior for the largest absolute value of the 
moving average parameter within the range of (−1, 1), as can be seen from Table 3 
for selected values of λ equal to −1.4 for the queen formation and −1.4 and −2.4 for 
the real geographical structure, as presented in Table 3.3

Tables 4 and 5 report the selection percentages of each candidate model based on 
all three information criteria obtained through this simulation analysis when the true 
generating model is the SARMA(1, 1) process for specific values of ρ and λ, since 

3  Note that similar results can be obtained for values of λ equal to −1.1, −1.3, −1.5 and −1.8 for the 
queen formation and for values of λ equal to −1.1, −1.3, −1.5, −1.8, −2.0 and −2.6 for the special geo-
graphical case with eight nearest neighbors.

2  Note that similar results can be obtained for values of ρ equal to −1.4 and −1.2.



687

1 3

Evaluating information criteria for selecting spatial…

it was not technically feasible to include all results in one table for all possible com-
binations of ρ and λ. For this purpose, Tables 4 and 5 report only simulation results 
for small, moderate and large positive values of ρ and λ, respectively, against sev-
eral values of the other parameter.4 As can be seen from these tables, the main find-
ings can be summarized into four points, meaning that the percentage of selecting 

Table 3   Percentage of selections of all three spatial processes based on AIC, BIC and HQC information 
criteria when the true data generating model is the SMA(1) process for various values of λ using 1000 
replications

Ν IC Model λ

− 2.4 −  
1.4

− 0.9 −  
0.8

− 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 0 4.5 8.2 22.1 38.8 32.2 9 0.1 0
SMA(1) 83.7 83.4 81.9 70.9 53.9 58.9 80.3 84.1 83
SARMA(1, 1) 16.3 12.1 9.9 7 7.3 8.9 10.7 15.8 17

BIC SAR(1) 0.4 6.8 9.7 22.8 40.9 35 9.5 0.2 0
SMA(1) 96.5 92.3 89.4 76.4 57.8 63 87.3 96.2 93.7
SARMA(1, 1) 3.1 0.9 0.9 0.8 1.3 2 3.2 3.6 6.3

HQC SAR(1) 0.3 6 9.5 22.6 40 33.8 9.5 0.1 0
SMA(1) 91.4 89.5 87.3 74.3 56.5 61.3 85.1 92.3 89.8
SARMA(1, 1) 8.3 4.5 3.2 3.1 3.5 4.9 5.4 7.6 10.2

400 AIC SAR(1) 0 0 0 0 2 25.4 18.9 0.4 0
SMA(1) 84 82.6 82.7 83.5 66.1 72.4 83.6 83.8 83.5
SARMA(1, 1) 16 17.4 17.3 14.5 8.5 8.7 16 16.2 16.5

BIC SAR(1) 0 0 0.1 4.2 26.1 20 0.5 0 0
SMA(1) 98.5 98.7 98.7 95.3 73.5 79.3 98.2 98.5 98.7
SARMA(1, 1) 1.5 1.3 1.2 0.5 0.4 0.7 1.3 1.5 1.3

HQC SAR(1) 0 0 0 3.6 25.8 19.3 0.4 0 0
SMA(1) 94 94.5 94.3 92.7 71.3 77.4 94 94.4 93.7
SARMA(1, 1) 6 5.5 5.7 3.7 2.9 3.3 5.6 5.6 6.3

325 AIC SAR(1) 0 0 0.7 1.5 10.9 32.7 26.8 1.9 0 0
SMA(1) 83.8 82.2 83.3 83.2 79.3 59.1 63.8 83.2 84.6 83.5
SARMA(1, 1) 16.2 17.8 16 15.3 9.8 8.2 9.4 14.9 15.4 16.5

BIC SAR(1) 0 0 1.7 3.5 11.5 34.1 28.1 3 0 0
SMA(1) 98.2 98.8 97.7 96.1 88 65.4 71.2 96.2 97.8 98
SARMA(1, 1) 1.8 1.2 0.6 0.4 0.5 0.5 0.7 0.8 2.2 2

HQC SAR(1) 0 0 1.2 2.9 11.5 33.8 28 2.9 0 0
SMA(1) 93.5 93.5 93.4 92.2 85.8 63.9 69.7 92.4 94.1 94.3
SARMA(1, 1) 6.5 6.5 5.4 4.9 2.7 2.3 2.3 4.7 5.9 5.7

4  Simulations have been conducted for small, moderate and large negative values of ρ and λ, against 
the reported values of Tables 4 and 5 of the other parameters, including cases with the extreme negative 
values.
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Table 4   Percentage of selections for all three spatial processes based on AIC, BIC and HQC information 
criteria when the true data generating model is the SARMA(1, 1) process for ρ = 0.2, 0.5 and 0.9 and for 
various values of λ using 1000 replications

Ν IC ρ 0.2

Model/λ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 10.5 16.8 39.9 57.6 43.9 6.4 0.1 0
SMA(1) 58.3 58.2 52.1 39.4 34.1 60.8 62.1 56.1
SARMA(1, 1) 31.2 25 8 3 22 32.8 37.8 43.9

BIC SAR(1) 20.3 25.8 43.3 59 52.8 7.7 0.2 0
SMA(1) 75.5 72.7 56.6 40 41.6 80.7 84.9 81
SARMA(1, 1) 4.2 1.5 0.1 1 5.6 11.6 14.9 19

HQC SAR(1) 16 22 42.7 58.3 48.3 7.3 0.2 0
SMA(1) 68 67.5 56.2 39.8 38.9 71.5 73 69
SARMA(1, 1) 16 10.5 1.1 1.9 12.8 21.2 26.8 31

400 AIC SAR(1) 0 0 7 58 37.4 0.3 0 0
SMA(1) 17.5 18.7 22.9 24.2 15.5 31.9 26.2 19.8
SARMA(1, 1) 82.5 81.3 70.1 17.8 47.1 67.8 73.8 80.2

BIC SAR(1) 0.1 0.9 26.7 68.2 62.1 0.4 0 0
SMA(1) 55 57.3 60.7 31.8 25.2 72.4 67.6 59.1
SARMA(1, 1) 44.9 41.8 12.6 0 12.7 27.2 32.4 40.9

HQC SAR(1) 0 0.1 15 66.2 53.4 0.4 0 0
SMA(1) 32.5 34 40.1 30.5 21 51.7 44 36.6
SARMA(1, 1) 67.5 65.9 44.9 3.3 25.6 47.9 56 63.4

325 AIC SAR(1) 1.1 2.6 22 58.5 43.1 0.8 0 0
SMA(1) 37.1 39 42.5 36.3 22.1 41.5 21.8 6.1
SARMA(1, 1) 61.8 58.4 35.5 5.2 34.8 57.7 78.2 93.9

BIC SAR(1) 7.8 14.6 38.9 62.1 63.5 0.9 0 0
SMA(1) 74.1 73.2 60.4 37.9 28.6 75.6 56.9 27.7
SARMA(1, 1) 18.1 12.2 0.7 0 7.9 23.5 43.1 72.3

HQC SAR(1) 2.5 7.4 34.9 61.6 55.4 0.8 0 0
SMA(1) 53.8 55.7 55.9 37.7 25.6 56.7 38 14.1
SARMA(1, 1) 43.7 36.9 9.2 0.7 19 42.5 62 85.9

Ν IC ρ 0.5

Model/λ − 0.9 − 0.8 −  0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 11.1 20.8 53 77.6 69.2 33.4 0.6 0.1
SMA(1) 4.3 5.1 7.7 8.9 5.5 7.9 16.3 10.7
SARMA(1, 1) 84.6 74.1 39.3 13.5 25.3 58.7 83.1 89.2

BIC SAR(1) 32.9 46 76 85.6 85.9 51.9 1.7 0.1
SMA(1) 16.8 17.3 17.2 13.1 5.8 13.8 40.5 29.6
SARMA(1, 1) 50.3 36.7 6.8 1.3 8.3 34.3 57.8 70.3

HQC SAR(1) 21 31.3 66 82.8 78.3 42.8 1 0.1
SMA(1) 8.4 9.8 12.4 11.7 5.7 10.6 24.9 17.8
SARMA(1, 1) 70.6 58.9 21.6 5.5 16 46.6 74.1 82.1
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Table 4   (continued)

Ν IC ρ 0.5

Model/λ − 0.9 − 0.8 −  0.5 − 0.2 0.2 0.5 0.8 0.9

400 AIC SAR(1) 0 0 11.3 65.9 59.2 3.8 0 0

SMA(1) 0 0 0 0 0 0 0 0

SARMA(1, 1) 100 100 88.7 34.1 40.8 96.2 100 100

BIC SAR(1) 0.4 2.6 47.5 91.6 89.4 21.2 0 0

SMA(1) 0 0 0.2 0.4 0.1 0.3 2 0.3

SARMA(1, 1) 99.6 97.4 52.3 8 10.5 78.5 98 99.7

HQC SAR(1) 0 0.4 24.3 80.7 76.8 10 0 0

SMA(1) 0 0 0 0 0 0.2 0.1 0

SARMA(1, 1) 100 99.6 75.7 19.3 23.2 89.8 99.9 100
325 AIC SAR(1) 1.2 3.1 28.4 70.1 65.8 7.9 0 0

SMA(1) 0 0 0 0.2 0.7 0 0.2 0
SARMA(1, 1) 98.8 96.9 71.6 29.7 33.5 92.1 99.8 100

BIC SAR(1) 10.7 20.8 63.9 93.9 90.8 33.8 0 0
SMA(1) 0.3 0.7 1.4 1.9 0.7 0.3 0.8 0.1
SARMA(1, 1) 89 78.5 34.7 4.2 8.5 65.9 99.2 99.9

HQC SAR(1) 3.4 8.8 44.8 83.6 80.7 16.5 0 0
SMA(1) 0 0 0.3 0.9 0.7 0.1 0.3 0
SARMA(1, 1) 96.6 91.2 54.9 15.5 18.6 83.4 99.7 100

Ν IC ρ 0.9

Model/λ − 0.9 − 0.8 −0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 2.5 5.1 32 72.1 79.4 56 24.3 9.7
SMA(1) 0 0 0 0 0 0 0.1 0.1
SARMA(1, 1) 97.5 94.9 68 27.9 20.6 44 75.6 90.2

BIC SAR(1) 10 19.4 60.1 91.2 94.9 81.1 48.1 22.6
SMA(1) 0 0 0 0 0 0.1 0.2 0.4
SARMA(1, 1) 90 80.6 39.9 8.8 5.1 18.8 51.7 77

HQC SAR(1) 4.6 10.5 45.3 83.8 89.4 68.2 33.2 14.3
SMA(1) 0 0 0 0 0 0.1 0.2 0.3
SARMA(1, 1) 95.4 89.5 54.7 16.2 10.6 37.7 66.6 85.4

400 AIC SAR(1) 0 0 3 53.5 63.1 17.4 0.6 0.1
SMA(1) 0 0 0 0 0 0 0 0
SARMA(1, 1) 100 100 97 46.5 36.9 82.6 99.4 99.9

BIC SAR(1) 0 0 17.5 86.8 91.3 51.2 7.8 0.6
SMA(1) 0 0 0 0 0 0 0 0
SARMA(1, 1) 100 100 82.5 13.2 8.7 48.8 92.2 99.4

HQC SAR(1) 0 0 7.7 71.4 79.4 31.1 2.1 0.3
SMA(1) 0 0 0 0 0 0 0 0
SARMA(1, 1) 100 100 92.3 28.6 20.6 68.9 97.9 99.7
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the right model by all information criteria increases, regardless of the construction 
of the weights matrices: a) as the absolute values of ρ, λ and n increase, b) as the 
absolute value of λ increases for given values of ρ and n, c) as the absolute value 
of ρ increases for given values of λ and n and d) as sample size increases for given 
values of ρ and λ.5 Unlike the previous two cases, AIC has now the dominant role 
of selecting the right model most frequently, followed by HQC, especially for small 
sample sizes, whereas the BIC criterion in this case is the least reliable criterion for 
selecting the true model, a finding that was expected, since, as discussed, the AIC 
criterion has the tendency to select large models.

For small values of the moving average parameter as well as for the autoregres-
sive parameter, all criteria select almost exclusively the SAR(1) process and/or the 
SMA(1) process and not the true SARMA(1, 1) process, especially for small sample 
size. For example, for λ = 0.2 and ρ = 0.9, the SAR(1) process is selected 79.4% by 
AIC, 94.9% by BIC and 89.4% by HQC, as Table  4 reports for n = 100, whereas 
for ρ = 0.2 and for λ = 0.9 the SMA(1) process is selected 56.1% by AIC, 81% by 
BIC and 69% by HQC, as Table  5 reports for n = 100. Clearly, when the moving 
average (autoregressive) parameter is very low, the autoregressive (moving average) 
term prevails and that is why all information criteria prefer model SAR(1) (SMA(1)) 
instead of the true SARMA(1, 1) model. However, when the values of both param-
eters are large, all criteria select more frequently the true SARMA (1, 1) process, 
i.e., for values of λ and ρ equal to (0.8, 0.9) and (0.9, 0.8), the SARMA(1, 1) process 
is selected 75.6% and 95.9%, respectively, by AIC criterion, even for n = 100. Unlike 

Table 4   (continued)

Ν IC ρ 0.9

Model/λ − 0.9 − 0.8 −0.5 − 0.2 0.2 0.5 0.8 0.9

325 AIC SAR(1) 0 0.2 11.7 63.5 66.3 10.4 0.3 0

SMA(1) 0 0 0 0 0 0 0 0

SARMA(1, 1) 100 99.8 88.3 36.5 33.7 89.6 99.7 100

BIC SAR(1) 1 3.7 40.8 89.7 92.5 41 1 0.1

SMA(1) 0 0 0 0 0 0 0 0

SARMA(1, 1) 99 96.3 59.2 10.3 7.5 59 99 99.9

HQC SAR(1) 0.1 0.9 21.8 79.4 82.2 23 0.5 0

SMA(1) 0 0 0 0 0 0 0 0

SARMA(1, 1) 99.9 99.1 78.2 20.6 17.8 77 99.5 100

5  The term absolute value is used to include all cases. Similar results are also obtained for the negative 
values of both parameters, i.e., for values of −0.2, −0.5 and −0.9 against all other values of the other 
parameter, although are not reported here, with minor exceptions regarding the magnitude of the selec-
tion rate of the true model for small sample size.
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Table 5   Percentage of selections for all three spatial processes based on AIC, BIC and HQC information 
criteria when the true data generating model is the SARMA(1, 1) process for of λ = 0.2, 0.5 and 0.9 and 
for various values of ρ using 1000 replications

Ν IC λ 0.2

Model/ρ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 59.2 59.6 61.3 48.2 43.9 69.2 79.9 79.4
SMA(1) 0 0 5.8 45.4 34.1 5.5 0.1 0
SARMA(1, 1) 40.8 40.4 32.9 6.4 22 25.3 20 20.6

BIC SAR(1) 84 84.3 80 50.8 52.8 85.9 94.4 94.9
SMA(1) 0 0.1 11.6 48.9 41.6 5.8 0.2 0
SARMA(1, 1) 16 15.6 8.4 0.3 5.6 8.3 5.4 5.1

HQC SAR(1) 70.7 70.7 71.5 50.3 48.3 78.3 88 89.4
SMA(1) 0 0 8.4 48.1 38.9 5.7 0.2 0
SARMA(1, 1) 29.3 29.3 20.1 1.6 12.8 16 11.8 10.6

400 AIC SAR(1) 22 23.8 29.4 33.9 37.4 59.2 66.9 63.1
SMA(1) 0 0 0 23.4 15.5 0 0 0
SARMA(1, 1) 78 76.2 70.6 42.7 47.1 40.8 33.1 36.9

BIC SAR(1) 62.3 64.6 70.8 56.9 62.1 89.4 92.8 91.3
SMA(1) 0 0 0.1 40.3 25.2 0.1 0 0
SARMA(1, 1) 37.7 35.4 29.1 2.8 12.7 10.5 7.2 8.7

HQC SAR(1) 39.5 42.1 47.5 47.9 53.4 76.8 82 79.4
SMA(1) 0 0 0 34.4 21 0 0 0
SARMA(1, 1) 60.5 57.9 52.5 17.7 25.6 23.2 18 20.6

325 AIC SAR(1) 44.3 45.4 49 47 43.1 65.8 69.9 66.3
SMA(1) 0 0 0.6 39.1 22.1 0.7 0 0
SARMA(1, 1) 55.7 54.6 50.4 13.9 34.8 33.5 30.1 33.7

BIC SAR(1) 81.4 82.5 84.6 55.5 63.5 90.8 93.2 92.5
SMA(1) 0 0 3 44.2 28.6 0.7 0 0
SARMA(1, 1) 18.6 17.5 12.4 0.3 7.9 8.5 6.8 7.5

HQC SAR(1) 63.2 65 68 54.2 55.4 80.7 84.8 82.2
SMA(1) 0 0 1.2 43.5 25.6 0.7 0 0
SARMA(1, 1) 36.8 35 30.8 2.3 19 18.6 15.2 17.8

Ν IC λ 0.5

Model/ρ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 6.4 7.3 9.8 12 6.4 33.4 54.3 56
SMA(1) 0 0 5.7 63 60.8 7.9 0.3 0
SARMA(1, 1) 93.6 92.7 84.5 25 32.8 58.7 45.4 44

BIC SAR(1) 19.7 20.4 27.8 19.1 7.7 51.9 77.7 81.1
SMA(1) 0 0 16.4 77.6 80.7 13.8 0.3 0.1
SARMA(1, 1) 80.3 79.6 55.8 3.3 11.6 34.3 22 18.8

HQC SAR(1) 10.5 11.8 15.6 15.4 7.3 42.8 64.6 68.2
SMA(1) 0 0 9.8 71.5 71.5 10.6 0.3 0.1
SARMA(1, 1) 89.5 88.2 74.6 13.1 21.2 46.6 35.1 31.7
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Table 5   (continued)

Ν IC λ 0.5

Model/ρ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

400 AIC SAR(1) 0 0 0 0.3 0.3 3.8 17.9 17.4

SMA(1) 0 0 0 24.7 31.9 0 0 0

SARMA(1, 1) 100 100 100 75 67.8 96.2 82.1 82.6

BIC SAR(1) 0 0.1 0.5 1.2 0.4 21.2 50.9 51.2

SMA(1) 0 0 0 61.1 72.4 0.3 0 0

SARMA(1, 1) 100 99.9 99.5 37.7 27.2 78.5 49.1 48.8

HQC SAR(1) 0 0 0.2 0.4 0.4 10 31.1 31.1

SMA(1) 0 0 0 39.6 51.7 0.2 0 0

SARMA(1, 1) 100 100 99.8 60 47.9 89.8 68.9 68.9
325 AIC SAR(1) 0.2 0.3 1 1.9 0.8 7.9 14.4 10.4

SMA(1) 0 0 0 37.7 41.5 0 0 0
SARMA(1, 1) 99.8 99.7 99 60.4 57.7 92.1 85.6 89.6

BIC SAR(1) 3 3.6 6.9 8.2 0.9 33.8 45.3 41
SMA(1) 0 0 1.7 72.7 75.6 0.3 0 0
SARMA(1, 1) 97 96.4 91.4 19.1 23.5 65.9 54.7 59

HQC SAR(1) 1.3 1.3 2.1 3.7 0.8 16.5 28.5 23
SMA(1) 0 0 0.5 53.6 56.7 0.1 0 0
SARMA(1, 1) 98.7 98.7 97.4 42.7 42.5 83.4 71.5 77

Ν IC λ 0.9

Model/ρ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

100 AIC SAR(1) 0 0 0 0 0 0.1 3 9.7
SMA(1) 0 0 2.7 56.3 56.1 10.7 1.1 0.1
SARMA(1, 1) 100 100 97.3 43.7 43.9 89.2 95.9 90.2

BIC SAR(1) 0 0 0 0 0 0.1 7.9 22.6
SMA(1) 0 0 8.6 80.6 81 29.6 4.4 0.4
SARMA(1, 1) 100 100 91.4 19.4 19 70.3 87.7 77

HQC SAR(1) 0 0 0 0 0 0.1 4.4 14.3
SMA(1) 0 0 5 68.7 69 17.8 1.9 0.3
SARMA(1, 1) 100 100 95 31.3 31 82.1 93.7 85.4

400 AIC SAR(1) 0 0 0 0 0 0 0 0.1
SMA(1) 0 0 0 15.9 19.8 0 0 0
SARMA(1, 1) 100 100 100 84.1 80.2 100 100 99.9

BIC SAR(1) 0 0 0 0 0 0 0.1 0.6
SMA(1) 0 0 0 48.9 59.1 0.3 0 0
SARMA(1, 1) 100 100 100 51.1 40.9 99.7 99.9 99.4

HQC SAR(1) 0 0 0 0 0 0 0 0.3
SMA(1) 0 0 0 28.2 36.6 0 0 0
SARMA(1, 1) 100 100 100 71.8 63.4 100 100 99.7
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the previous two cases, the corrected AIC criterion selects less frequently the true 
SARMA(1, 1) process than the AIC criterion only for small sample sizes; i.e., for 
n = 100 and for values of ρ and λ equal to (0.2, 0.8) and (0.9, −0.5), the SARMA(1, 
1) process is selected by AICc 36.2% and 66.2%, respectively, as opposed to the 
37.8% and 68% selection rates by AIC reported in Table 4, and similar results can be 
found for all other values of λ and ρ. For large sample sizes, both criteria select the 
true model at the same rate.

It should be stated though that the whole simulation process is conducted even for 
identical values of both parameters ρ and λ due to the fact that the weights matrices 
�1 and �2 are different, excluding in that sense the presence of a common spa-
tial root. If both weights matrices were exactly the same, the SARMA(1, 1) process 
would have been simply a spatial white noise process for all identical values of ρ and 
λ, causing serious issues in the whole Monte Carlo analysis. Lastly, similar conclu-
sions can be found for the special geographical structure that was used to construct 
the weights matrices, indicating the behavior of the selection of all information cri-
teria for values smaller than −1 for both parameters; it was similar to the extreme 
absolute values of both parameters and did not deliver any additional information to 
the overall analysis, as already has been recognized.

4 � Concluding remarks

The objective of this study was to investigate the behavior of the three most fre-
quently used information criteria, AIC, BIC and HQC, for model selection among 
competitive models for spatial data, using a Monte Carlo analysis. For this purpose, 
three spatial processes, the SAR(1), the SMA(1) and the SARMA(1, 1) processes, 
are generated either by using a hypothetical geographical structure based on regular 
grids or by using a real geographical structure based on a map of the administrative 

Table 5   (continued)

Ν IC λ 0.9

Model/ρ − 0.9 − 0.8 − 0.5 − 0.2 0.2 0.5 0.8 0.9

325 AIC SAR(1) 0 0 0 0 0 0 0 0

SMA(1) 0 0 0 2.6 6.1 0 0 0

SARMA(1, 1) 100 100 100 97.4 93.9 100 100 100

BIC SAR(1) 0 0 0 0 0 0 0 0.1

SMA(1) 0 0 0 17.8 27.7 0.1 0 0

SARMA(1, 1) 100 100 100 82.2 72.3 99.9 100 99.9

HQC SAR(1) 0 0 0 0 0 0 0 0

SMA(1) 0 0 0 8 14.1 0 0 0

SARMA(1, 1) 100 100 100 92 85.9 100 100 100
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units of Greece. For the autoregressive part, the weight matrix is constructed with a 
rook definition for the theoretical case of both grids and with the four closest neigh-
bor definitions for the real case, whereas for the moving average part the weight 
matrix is constructed with a queen definition for the theoretical case of both grids 
and with the eight closest neighbor definitions for the real case. The three spatial 
models are estimated next, based on the predefined weights matrices, using the 
nlminb function in R that maximizes the log-likelihood function to obtain the cor-
responding values of all three information criteria. The best fitted model is selected 
by the minimum value of any of the three used information criteria.

Simulation results showed that the behavior of these criteria is not the same. BIC 
performs better for selecting models with small number of parameters, whereas AIC 
works better for large models, findings that coincide with the overall knowledge 
of the performance of these criteria. On the other hand, the HQC criterion always 
comes second in order among the three criteria either right after BIC for small mod-
els or right after AIC for large models. However, the selection mechanism of the 
true generating process contains a large volume of ambiguity, especially when the 
sample size is small and/or when the values of both parameters are also small, indi-
cating that all three criteria have difficulty in successfully recognizing the true gen-
erating process. Things are even more complicated for spatial analysis.

First, one may argue that the results are sensitive to the construction of the 
weights matrices, although two different types of structures are employed for the 
theoretical part in this simulation process. The truth is that in spatial analysis, spatial 
dependence is defined exogenously for every model with a variety of neighborhood 
criteria, indicating that these matrices are not uniquely constructed. Moreover, the 
application of the same spatial neighborhood definition to different spatial structures 
can lead to completely dissimilar spatial weights matrices. For this purpose, this 
study considered additionally a real geographical structure, i.e., the spatial structure 
of Greece, which has a lot of geographical peculiarities resulting in quite asymmet-
ric spatial weights matrices, either as an effort to alternatively support the simulated 
results or as an effort to minimize the validity of such an argument. It turns out 
that the behavior of all information criteria is not affected by the construction of 
these matrices since the same selection rate is obtained regardless of the geographi-
cal structures that were used either on the theoretical basis of regular grids or on the 
practical basis of a real geographical structure, as it is expresses through the patterns 
of a map.

The concept of properly defining the SARMA(1, 1) process is another important 
element in spatial analysis, which is highly related to the construction of the weights 
matrices �1 and �2 . Typically, the SARMA(1, 1) process must be defined with 
different spatial weights matrices for its two components, so that issues concerning 
common spatial roots will not theoretically appear in the analysis, as it was carefully 
imposed in this applied simulation process. However, the estimation of this process 
can be executed even with identical weights matrices, but not with the same or near 
the same values of the autoregressive and moving average parameters. The question 
though remains unclear as how these weights matrices are viewed as different, since 
dissimilarity is a subjective and ambiguous concept. The truth is that spatial weights 
matrices are sparse matrices that only a small number of their elements are different 
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from zero, regardless of how the dependence is defined. The construction of the sec-
ond weight matrix, i.e., the matrix that corresponds to the moving average part of 
the SARMA(1, 1) process, by an alternative method reassures that the two weights 
matrices are typically different, but not practically. The �2 matrix is constructed 
in such a way that leads to a more dense matrix than the �1 matrix, since it has 
some more elements different than zero. Therefore, it is hard to tell whether these 
two matrices are different, knowing that both matrices are sparse matrices and hence 
it may be difficult to evaluate the performance of these information criteria under 
these circumstances.

Another way tο distinguish processes is to calculate the Frobenius distance 
between the covariance matrices of two processes. The Frobenius distance measures 
the distance between two matrices, and it is defined as:

where A = {aij} and B = {bij} are square matrices having the same dimensions. 
Clearly, when the value of F(A, B) is close to zero, the matrices A and B are very 
similar and identical in the case where F(A, B) = 0. Hence, the larger the value of the 
Frobenius distance, the more different the matrices are. The covariance matrices for 
the SAR(1), SMA(1) and SARMA(1, 1) processes are defined, respectively, as:

and since σ2 is the same for all processes, it can be ignored. Table 6 presents the 
Frobenius distance for cases that needed extra attention, i.e., for cases of common 
values for the two parameters, where the distinction between spatial processes 
is even more difficult. As can be seen from Table  6, it is easier to distinguish a 
SAR(1) process from a SMA(1) or a SARMA(1, 1) process than a SMA(1) from a 
SARMA(1, 1), where the value of the Frobenius distance increases as sample size 
increases and/or as the absolute value of both parameters increases.

Lastly and more importantly, the estimation procedure is another issue that needs 
special attention. It is unknown whether the estimated values of the spatial coef-
ficients have been influenced by the very small lower limits of their feasible range 
intervals, resulting from the queen and the nearest neighbors spatial dependence 
definitions and/or by the maximization algorithm that the R statistical package uses 
through the nlminb function. Perhaps, an alternative estimation procedure may pro-
duce different results concerning the selection rates of all information criteria, espe-
cially for small sample sizes.
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Information criteria are by far the best statistical tools for selecting and/or for 
evaluating models for any type of quantitative analysis. Their role is to guide the 
analyst in discovering the true underlying generating mechanism of any phenom-
enon based on a given dataset. However, it turns out that these criteria occasion-
ally fail to select the true model, especially when the sample does not convey strong 
qualitative and quantitative evidence of the true population behavior of any vari-
able. In this case, all criteria most probably will select the next closest behavior, but 
not the right one, as it was presented and analyzed in this study. For small sample 
sizes and for small absolute values of the autoregressive and/or the moving average 
parameters, the selection rate of the true model was not large enough, whereas in the 
contrary case the selection rate was so high that the true model was selected in sev-
eral cases even with certainty.

Table 6   Frobenius distance 
between covariance matrices 
of the following processes, A: 
SAR(1), Β: SMA(1) and C: 
SARMA(1, 1)

ρ λ F (A, B) F (A, C) F (B, C)

100 0.2 0.2 3.629 3.633 0.171
0.5 0.5 11.889 11.897 0.374
0.9 0.9 151.882 151.839 1.081
0.2 − 0.2 1.299 1.319 0.213
0.5 − 0.5 5.307 5.379 0.705
0.9 − 0.9 142.808 143.196 3.677

− 0.2 0.2 1.799 1.807 0.174
− 0.5 0.5 8.061 8.076 0.415
− 0.9 0.9 148.388 148.417 1.121

400 0.2 0.2 6.945 6.948 0.215
0.5 0.5 22.582 22.588 0.458
0.9 0.9 260.553 260.507 1.381
0.2 − 0.2 2.593 2.609 0.274
0.5 − 0.5 10.158 10.221 0.912
0.9 − 0.9 243.283 243.643 4.682

− 0.2 0.2 3.546 3.552 0.218
− 0.5 0.5 15.474 15.485 0.504
− 0.9 0.9 254.066 254.076 1.275

325 0.2 0.2 5.961 6.140 1.369
0.5 0.5 21.413 22.080 4.017
0.9 0.9 459.219 464.737 21.609
0.2 − 0.2 2.340 2.736 1.382
0.5 − 0.5 11.477 12.751 4.488
0.9 − 0.9 445.544 457.854 28.885

− 0.2 0.2 2.229 2.602 1.319
− 0.5 0.5 6.823 7.872 3.628
− 0.9 0.9 20.554 22.968 8.312
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