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Abstract
R&D collaboration networks enable rapid access to global sources of knowledge, 
especially in strongly knowledge-based and technology-driven industries. However, 
technological idiosyncrasies require a refined picture, in particular, when explaining 
the interplay between geographical and relational effects driving the constitution and 
dynamics of R&D collaboration networks. We employ a spatial interaction model-
ling approach to estimate how geographical separation and network structural effects 
influence technology-specific R&D collaborations between European regions. The 
results underline both the significance of geographical barriers and network struc-
tural effects and confirm that specific network connectivity is able to compensate for 
geographical barriers—throughout all technologies investigated, although the effects 
differ in magnitude. However, when two regions are dissimilar in their network cen-
trality, the potential to reduce negative geographical effects is relatively lower.

JEL Classification O30 · R10 · C10

1 Introduction

Collaborative Research and Development (R&D) activities between firms, universi-
ties and research organizations are generally recognized to constitute an essential 
element for the successful generation of innovation. The notion of R&D collabo-
ration networks has come into fairly wide use for characterizing such collabora-
tive research endeavours and has become a fascinating research domain in mani-
fold aspects (see Scherngell 2013 for an overview). With knowledge creation being 
inevitably linked to innovation (Popadiuk and Choo 2006, among others), such 
R&D collaboration networks are considered to play an essential role from a regional 
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perspective, moderating and structuring knowledge creation and diffusion processes 
within and across regions (Wanzenböck et al. 2014).

Recently, scholars started combining the relational and the geographical perspec-
tive, acknowledging the interrelation between space and networks in the creation of 
knowledge (Glückler et al. 2017). In this context, not only the general importance of 
networks is stressed, but also the role of different network structures and topologies. 
On an organizational level, it is well recognized in the literature that the position of 
single nodes, e.g. representing firms, and the network structure as a whole have sign-
ficant impact on the creation of new knowledge and its diffusion (e.g. Ahuja 2000; 
Zaheer and Bell 2005; Giuliani 2007), also from a spatial perspective understanding 
regions as network nodes (e.g. Whittington et al. 2009; Maggioni and Uberti 2011). 
Studies on the geography of R&D collaboration networks, focusing on the identifi-
cation and estimation of determinants affecting structures and dynamics, are often 
accomplished at the regional level of analysis (see Scherngell and Barber 2009; 
Hoekman et al. 2010; Scherngell and Lata 2013; Lata et al. 2015; Morescalchi et al. 
2015; Bergé 2017; Marek et al. 2017, among others). However, these works capture 
R&D collaboration networks, and accordingly the underlying R&D activities in a 
quite aggregated manner, neglecting technology-specific peculiarities of knowledge 
creation and interactions, such as knowledge properties, and different modes of (col-
laborative) knowledge creation.

Reviewing the theoretical and empirical literature on R&D collaboration net-
works over the past two decades, we find an emphasis in the debate on how geo-
graphical characteristics affect their dynamics, and on the role of relational drivers, 
also referred to as network structural effects. These two groups of determinants have 
been often discussed under the notion of local buzz (spatial proximity) versus global 
pipelines (region-external network relations) in R&D collaboration (see, e.g. Bathelt 
et al. 2004). While there are a number of studies that separately address geographi-
cal or network structural factors when analysing cross-region R&D collaboration 
networks (see Scherngell 2019 for an overview), there are only very few and usually 
geographically and/or technologically quite limited studies addressing both factors 
in an integrated modelling framework (see, e.g. Broekel and Boschma 2012, Broekel 
and Hartog 2013 or Bergé 2017).

This study intends to address this research gap by shifting attention to the dif-
fering role of geographical versus relational effects when explaining the constitu-
tion and dynamics of R&D collaboration networks. We attempt this in one inte-
grated modelling framework and for a larger geographical area, while at the same 
time accounting for technological idiosyncrasies. Accordingly, the objective is to 
estimate determinants of technology-specific R&D collaboration networks, shift-
ing particular attention—as in previous works—to geographical effects, such as 
geographical distance or country borders, but also to network structural, i.e. rela-
tional, effects, such as central positioning, influencing the collaboration probabil-
ity between two regions. To estimate these effects, we employ a negative binomial 
spatial interaction modelling approach at the regional level, accounting for spatial 
autocorrelation of the interactions. The R&D collaboration network under consid-
eration is a network of organizations that collaborate in projects funded by the EU 
framework programme (FP). This network is partitioned into different technological 
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domains and aggregated from the organizational to the regional level, using a set 
of 505 European metropolitan and remaining non-metropolitan regions. The tech-
nological disaggregation is attained by assigning collaborative projects to specific 
relevant technologies.

In the latter context, we use the so-called Key Enabling Technologies (KETs), 
considered by the EU as specifically relevant in the global innovation competition. 
We make use of semantic techniques developed in an EU-funded research project 
to assign data items to these technologies, and by this, go beyond standard classi-
fication systems that are not able to capture these technologies. With our focus on 
networks of KETs, we propose—in contrast to previous research—a finer-grained 
and policy-relevant perspective when identifying determinants of R&D collabora-
tion networks.

The study departs from related previous research in at least three major aspects: 
first, and most importantly, we include—additionally to geographical effects—net-
work structural effects as a major additional set of determinants, while previous 
research mainly focused on spatial and technological barriers for R&D collaboration 
networks. Such network structural effects, e.g. the central positioning of regions in 
the network, are assumed to play a crucial role for overall dynamics (see Wanzen-
böck et  al. 2014), but also on the probability for establishing additional network 
links between region pairs (Barthélemy 2011). Second, we introduce technological 
heterogeneities in our investigation of determinants affecting structures and dynam-
ics of R&D collaboration networks, going beyond existing works that remain at an 
aggregated level of technological fields (see Morescalchi et  al. 2015 for an over-
view). Third, we introduce an innovative set of regions, and distinguish—in contrast 
to previous research—between metropolitan and non-metropolitan regions in our 
regional system. This enables to disentangle urbanization effects from other effects 
(e.g. geographical proximity or country borders) in a more robust way.

The remainder of the study is organized as follows. The following section reviews 
the main elements of the theoretical and empirical debate on determinants of R&D 
collaboration networks, specifically highlighting the relevance of the focus on geo-
graphical and relational characteristics in different technologies. Section  3 shifts 
specific attention to the role of technological heterogeneities in such networks that 
have been largely neglected so far in the empirical literature. Section 4 describes the 
spatial interaction approach used to identify determinants of collaboration, followed 
by Sect.  5 that sets out the empirical setting. Section  6 discusses the estimation 
results, before Sect. 7 closes with a summary and some ideas for future research.

2  The theoretical and empirical debate on determinants of R&D 
networks

The investigation of R&D collaboration networks has attracted much attention in 
the recent past. In regional science, this stems from the wide agreement that both 
spatial and network dimensions are crucial for moderating and structuring knowl-
edge creation and diffusion processes within and across regions (see, e.g. Autant-
Bernard et al. 2007; Bathelt and Glückler 2003). Recently, this research interest is 
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mainly motivated by the seminal work by Bathelt and Glückler (2003) suggesting a 
‘relational turn’ in economic geography, highlighting the interrelation between net-
works, geography and knowledge (Bathelt and Glückler 2003; Glückler et al. 2017). 
From the angle of ‘proximity’, various contributions acknowledge the reinforcing 
role of non-spatial proximity dimensions, such as organizational, institutional, social 
and cognitive factors, for networks of knowledge creation and innovation (e.g. Kirat 
and Lung 1999; Boschma 2005; Torre and Rallet 2005; Mattes 2012).

This theoretical debate has paved the way for the increasing empirical interest in 
the analysis of R&D collaboration networks, also driven by new large-scale data-
sets on collaborative R&D and the advancement of methodological instruments, 
e.g. in spatial interaction modelling (see Scherngell 2019 for an overview). Mean-
while, there exists a large and diverse body of the empirical literature on determi-
nants of R&D collaboration networks in different technological fields and different 
geographical areas. Despite their differences, spatial proximity turns out to be an 
important factor for the constitution of R&D collaboration in all these studies, also 
in times of increasing globalization and new information and communication tech-
nologies (see, e.g. Scherngell and Barber 2009; Lata et al. 2015; Marek et al. 2017). 
This is usually explained by the specific characteristics of the knowledge elaborated 
on in such collaborations, considering that more complex knowledge requires the 
exchange of more tacit knowledge elements. Accordingly, face-to-face interaction 
in inter-organizational learning processes makes spatial proximity (still) a crucial 
factor in establishing and maintaining R&D network links (Rallet and Torre 1998, 
Storper and Venables 2004).1 Given the high costs for transmitting uncodified, tacit 
knowledge in geographical space, complex knowledge is more immobile in geo-
graphical space, and accordingly, network effects may become more important for 
such fields to overcome geographical barriers. In contrast, with more explicit (codi-
fied) knowledge elements being involved in the knowledge creation process, e.g. in 
very science-based and open technological fields (e.g. nanotechnology or biotech-
nology), the spatial scale of the collaboration may increase pointing to a less impor-
tant role of geographical space as driver for network dynamics.

However, apart from being geographically close to create and exchange com-
plex and tacit knowledge, being part of a same professional community—such as 
a research network—may facilitate knowledge creation and transfer; i.e. ‘organiza-
tional proximity’ (Kirat and Lung 1999; Boschma 2005) or ‘organized proximity’ 
(Torre and Rallet 2005). This type of relational proximity is characterized by com-
mon knowledge and knowledge bases (e.g. same scientific community) and by inter-
acting actors that enable interaction and accelerate knowledge creation (Boschma 
2005; Torre and Rallet 2005). The EU framework programmes (FP), for instance, 
feature such kind of ‘organized proximity’, where firms, universities and research 
organizations located in various European regions collaborate in all kinds of topics 
aiming for excellence throughout the European Research Area (ERA) (see Breschi 

1 In the recent literature, differing spatial and collaboration network structures across different technolo-
gies are often related to the complexity of knowledge creation in different technological fields (see Flem-
ing and Sorensen 2001, Balland and Rigby 2017).
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and Cusmano 2004, followed by many others). Moreover, fostering inter-regional 
collaboration by means of funding opportunities, such as the EU FPs, have facili-
tated long-distance collaborations (Scherngell and Lata 2013), highlighting the 
potential of networks as an organizational arrangement to overcome geographical 
barriers.

In this vein, a region’s position in global R&D networks has been increasingly 
considered as important in recent years, in particular, for regions with less local 
knowledge endowments and R&D capabilities (Wanzenböck and Piribauer 2018). 
This has shifted attention to the conditioning role of networks, i.e. relational effects, 
moderating and structuring collaboration, in comparison with geographical ones 
(Glückler et al. 2017).

Inspired from network science, we can derive relevant arguments in this context. 
A first key aspect concerns the accessibility to new knowledge, referring to the posi-
tion of regions in networks and hence, their network embeddedness in terms of the 
number of collaboration links.2 However, not only the quantity of a region’s col-
laboration arrangements matters, but also their quality indicating, on the one hand, 
access to reliable information itself, and, on the other hand, linkages to other part-
nering organizations holding reliable information themselves (e.g. Uzzi and Lancas-
ter 2003). A second key aspect stresses that regions may more likely increase col-
laborations to other regions showing similar network attributes, e.g. in terms of their 
number and quality of collaboration links. In social network analysis, this is usually 
referred to as homophily, i.e. social actors are more likely to interlink when they 
have similar attributes (McPherson et al. 2001). From a regional network perspec-
tive, such mechanisms may come into play when considering the amount of critical 
R&D infrastructure of regions. Global R&D players are usually located in large and 
advanced regions, such as metropolitan regions, and may be more likely to collabo-
rate with R&D actors of similar size and impact, located themselves in metropolitan 
regions. Similarly, the opposite may occur with small R&D actors located in less 
advanced regions.

The importance of relational or network structural effects on R&D collaborations 
has been partly addressed in only a few empirical studies up to now, such as for 
social proximity (Autant-Bernard et al. 2007), institutional proximity (Ponds et al. 
2007), network proximity (Bergé 2017), as well as relational dependence (Maggioni 
et al. 2007). Moreover, there are only very few and geographically and/or techno-
logically limited studies addressing both geographical and network structural fac-
tors in one framework, e.g. the study of Broekel and Boschma (2012) for the Dutch 
aviation industry, Broekel and Hartog (2013) for Germany or Bergé (2017) for the 
field of Chemistry in Europe. For the case of publicly funded R&D collaboration, 
such as the EU FP, this would be of specific interest given the policy interest in 

2 Studies on the effect of an actor’s embeddedness in a knowledge network on its innovative perfor-
mance are manifold and exist for different industries such as biotechnology and chemicals (Salman and 
Saives 2005; Gilsing et  al. 2008). Driven by the debate on ‘local buzz’ and ‘global pipelines’ as two 
forms of interactive knowledge creation (Bathelt et al. 2004), the spatial dimension of the actor’s embed-
dedness in networks of knowledge creation gained attraction in regional science.
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fostering collaboration across geographical distances by manifesting sustainable net-
work links. Against the background of these theoretical and empirical debates, we 
pose a first set of hypotheses:

Hypothesis 1a Network structural effects drive collaboration patterns in publicly 
funded cross-region R&D collaboration networks.

Hypothesis 1b Network connectivity compensates for geographical barriers in the 
constitution of publicly funded cross-region R&D collaboration networks.

Hence, we assume that network channels are able to reduce hampering effects on 
cross-region R&D collaboration probabilities stemming from geographical barriers 
(e.g. distance). In a similar vein, studies by, e.g. Bell and Zaheer (2007), Glückler 
(2006) and Hansen and Løvås (2004), find evidence to support this hypothesis for 
the case of knowledge transfer, flow and spillovers.

3  Technological heterogeneities in R&D collaboration networks

While technological heterogeneities in terms of differences in knowledge bases and 
knowledge creation processes have been subjected to a long-lasting debate among 
evolutionary scholars (Nelson and Winter 1982; Pavitt 1984; Breschi et  al. 2000; 
Malerba 2002), they have been rarely addressed in the context of R&D collaboration 
networks, in particular, in empirical terms. Conceptually, the role of differing knowl-
edge domains, originally referred to as technological regimes3—has been stressed to 
explain differences across sectors in patterns of innovation and, accordingly, can be 
considered as highly relevant for R&D collaboration networks as major input for 
innovation. Malerba (2002) identifies three key dimensions of knowledge related 
to the notion of technological regimes: degree of accessibility (i.e. opportunities of 
gaining knowledge, e.g. by means of cross-regional network links), sources of tech-
nological opportunity, and cumulativeness of knowledge (i.e. the degree by which 
the generation of new knowledge builds upon current knowledge). Each dimension 
is assumed to differ among sectors and technologies due to specific properties of 
the knowledge base, which is determined by differences in technological knowledge 
itself, involving varying degrees of specificity, tacitness, complementarity and inde-
pendence (Winter 1987).

We assume that such heterogeneities in terms of regional knowledge bases, 
knowledge types and attributes relate to differing structural properties of R&D 

3 The term ‘technological regime’ originates in the work by Nelson and Winter (1982) and characterizes 
the knowledge environment in which organizations within the same industry are argued to be subject to 
same technological and knowledge conditions, such as the degree of accessibility, the sources of techno-
logical opportunities, the cumulativeness of knowledge (Freeman 1982; Malerba and Orsenigo 2000) and 
the nature of knowledge (e.g. specificity, tacitness, complexity; Winter 1987).
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collaboration networks, as well as varying underlying mechanisms that drive their 
constitution and dynamics. This motivates our third hypothesis:

Hypothesis 2a Technological R&D collaboration networks differ with respect to 
their estimated network and geographical effects.

Existing empirical studies investigating differences across technologies have a 
rather limited geographical and sectoral coverage, not allowing for a systematic and 
comprehensive interpretation of determinants of R&D collaboration (e.g. Broekel 
and Graf 2012 for the case of ten German technologies), also disregarding techno-
logical heterogeneities that may influence the relevance and spatial scale of R&D 
collaboration (see Ponds et al. 2007; Martin and Moodysson 2013; Tödtling et al. 
2006; Trippl et al. 2009).

However, the pure observation of heterogeneities does not give an explanation 
on why they exist. Considerations on the manifold nature of knowledge and differ-
ent knowledge bases may provide useful anchor points in this context. For instance, 
Asheim and Coenen (2005) emphasize the existence of two types of knowledge 
bases: analytical and synthetic, each linked to a different technological environ-
ment; whereas, in technologies with analytical knowledge bases scientific knowl-
edge is predominant, a synthetic knowledge base alludes to industrial settings where 
innovation often occurs through the application and/or new combination of existing 
knowledge, such as engineering-oriented fields (Asheim and Coenen 2005). Moreo-
ver, Pavitt (1984) categorizes sectors according to their sources of technology used, 
the institutional sources and nature of the technology produced, as well as the char-
acteristics of innovating firms (e.g. size, principal activity). Thereof, Pavitt (1984) 
derives four types of sectors: supply-dominated (e.g. clothing, furniture), scale-
intensive (e.g. food, cement), specialized supplier (e.g. engineering, software and 
instruments) and science-based producers (e.g. chemical industry, biotechnology 
and electronics). Derived from this discussion, we pose an additional hypothesis:

Hypothesis 2b Geographical effects are assumed to have stronger negative impacts 
on engineering-oriented fields, while science-oriented fields are more driven by neg-
ative network structural effects.

From an empirical perspective, the question arises which technological break-
downs are to be chosen for observing technological heterogeneities. Here, we can 
observe that, especially novel and fast-growing technologies that spur innovation 
and technological progress of countries, regions and industries have gained anew 
interest, both in academia (see, e.g. Evangelista et  al. 2018; Montresor and Quat-
raro 2017), and in the policy realm. At the European policy level, this is reflected 
by the new emphasis on so-called Key Enabling Technologies (KETs), bringing 
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technologies into focus that are considered as crucial for the development of the 
EU towards a sustainable, knowledge-based economy (EC 2009, 2012).4 These are 
Nanotechnology, Microelectronics, Photonics, Advanced Materials (AM), Advanced 
Manufacturing Technology (AMT) and Industrial Biotechnology (EC 2009).5

Despite the common specificities of KETs (by which they identify as ‘key ena-
bling’), we argue that these distinct technologies differ with respect to their geo-
graphical and network impacts on inter-regional R&D collaboration. Note in this 
context that KETs are empirically found to be strongly spatially concentrated on 
certain regions (Montresor and Quatraro 2017; Evangelista et al. 2018). Regarding 
cross-region R&D collaborations, Wanzenböck et al. (2020) observe noticeable dif-
ferences between KETs in the spatial distribution of regional network effects. While 
network effects are more spatially concentrated in the engineering-based fields (such 
as Photonics or AMT), inter-regional network linkages tend to be more equally dis-
tributed across regions in the science-based sectors (Wanzenböck et al. 2020).

With respect to the generally uneven spatial distribution of knowledge creation, 
especially in technology-specific knowledge environments, these findings strongly 
point at KET-specific differences in terms of accessibility of new and external 
knowledge determined by different degrees of spatial and network proximity across 
KETs. Moreover, regional disparities regarding the specialization in certain KETs 
suggest disparate technological opportunities as well as varying degrees of cumu-
lativeness of knowledge, resulting in differing regional innovation paths and poten-
tials for cross-sectoral and cross-regional spillovers. Considering KETs in light of 
Pavitt’s (1984) taxonomy, they can be characterized as either specialized suppliers—
generally engineering-oriented—carrying out frequent innovations often in collabo-
ration with customers, or science-based producers that develop new products and 
processes often in collaboration with universities. Hence, KETs potentially differ 
with respect to their sectoral and institutional sources of knowledge used, in particu-
lar, in terms of the degree to which new knowledge is created within the sector, or 
comes from outside, as well as to which extent intramural and extramural knowledge 
sources are used (Pavitt 1984).

Against this background, this study shifts attention to R&D collaboration net-
works in different technologies—proxied by KET fields—and focuses on the debate 
of the differing role of geographical and relational characteristics in such distinct 
technological domains that follow particular rationales and aims in knowledge crea-
tion. This is addressed with a novel dataset and for the first time in an integrated 
4 In a line of efforts towards the initiation and implementation of a coherent European Strategy for 
KETs, the European Commission set up two High Level Expert Groups (in 2010 and 2013) to advice on 
the elaboration of a KETs strategy and to ensure its successful implementation (EC 2012, 2015).
5 KETs are understood as generic technologies that are characterized by relatively rapid pervasiveness 
and growth, high knowledge and R&D intensity, and highly skilled employment (EC 2009). Due to their 
specific characteristics, R&D collaboration networks are considered of particular importance in a KET 
context in order to cope with the high demand for R&D in these technological fields and to gain rapid 
access to nationwide and global state-of-the-art knowledge. Moreover, KETs are claimed to affect the 
regional capacity of developing new technological specializations (Montresor and Quatraro 2017). Spe-
cifically, in such globally relevant technologies like KETs, R&D networks may serve as channels for 
transmitting knowledge over larger geographical distances (see, e.g. Autant-Bernard et  al. 2007) and 
hence be of particular importance for innovation and regional growth processes (Huggins and Thompson 
2014).
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modelling framework (see Sect. 4) for a larger geographical area, namely the whole 
European territory (see Sect. 5).

4  Methodological approach and model

For the estimation of spatial and network structural determinants of technology-spe-
cific R&D collaboration networks, we follow earlier research and employ a spatial 
interaction modelling approach. In general, spatial interaction models can be used to 
describe interactions (e.g. flows, collaborations) between actors distributed over some 
geographic space, whereas the interactions are a function of the attributes of the loca-
tions of origin, the attributes of the locations destination and the friction (separation) 
between the respective origin and destination. The purpose of such models is to explain 
the relationships between interaction frequencies of two spatial entities and their (rela-
tional) properties (Roy and Thill 2003). In our case, the spatial interactions under con-
sideration are R&D collaboration networks between regions. The general form of the 
model can be written as

where �ij = E
(
Yij
)
 is the expected mean interaction frequency between locations i 

and j and �ij is an error about the mean (Fischer and Wang 2011). In this study, 
locations correspond to European regions, where each location is both origin and 
destination of interactions.

In general, these models comprise three types of factors to explain mean interaction 
frequencies between spatial locations i and j : (1) origin-specific factors characterizing 
the ability of the origins to generate R&D network links, (2) destination-specific factors 
indicating the attractiveness of destinations and (3) separation factors that represent the 
way different forms of separation between origins and destinations constrain or impede 
the interaction, most basically geographical distance (LeSage and Fischer 2016). 
Hence, mean interaction frequencies between origin i and destination j are modelled by

where Oi and Dj are the origin-specific and destination-specific factors, respectively, 
and Sij denotes a multivariate function of separation between locations i and j.

While there are different functional forms to specify origin-, destination- and separa-
tion functions (see Fischer and Wang 2011), studies investigating R&D networks usu-
ally employ univariate (i.e. with only one variable) power functional forms for origin 
and destination functions and multivariate (i.e. with a number of separation variables) 
exponential functional forms for the separation function. We follow these lines and 
define

(1)Yij = �ij + �ij with i, j = 1,… ,N

(2)�ij = OiDjSij with i, j = 1,… ,N

(3)Oi = O
(
oi, �1

)
= o

�1
i

(4)Dj = D
(
dj, �2

)
= d

�2
j
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Here, oi and dj are measured in terms of variables controlling for the mass in the 
origin and the destination, respectively. In context of R&D networks, these are often 
captured by the number of firms or researching organizations in a region. Accord-
ingly, �1 and �2 are scalar parameters to be estimated, so that the product of the func-
tions OiDj can be simply interpreted as the number of cross-region R&D collabo-
rations which are possible. Core of the spatial interaction model is the separation 
function as defined by Eq. (5), with K (k = 1, …, K) separation measures to be esti-
mated that will show the relative strengths of the separation measures and βk denot-
ing the respective kth estimate for separation measure k.

The model applied in this study takes the specific form of a spatially filtered, 
negative binomial spatial interaction model (see Scherngell and Lata 2013 in a simi-
lar context).6 The main motivation for this is given by the true integer nature and 
distributional assumptions on the dependent variable, namely cross-region R&D 
collaborations. Further, the proposed model specification accounts for the spatial 
dependence of the data used (participation in European Framework Programme 
(FP) projects) in the empirical application, as well as for a high degree of variation 
(overdispersion) and a large amount of zero counts. Hence, it is assumed that the 
dependent variable Yij follows a negative binomial distribution with expected values 
as stated in (2).

In comparison with the standard Poisson specification that assumes equidisper-
sion (i.e. conditional mean equals the conditional variance), the negative binomial 
model explicitly corrects for overdispersion,7 by adding a dispersion parameter � . 
Hence, the negative binomial spatial interaction model takes the form (Long and 
Freese 2006)

where �ij = E
[
yij
|
||
Oi,Dj, Sij

]
= exp

[
Oi

(
�1
)
Dj

(
�2
)
Sij(�)

]
 and �  denotes the gamma 

function with a model parameter � accounting for overdispersion in predictors (see 
Cameron and Trivedi 1998 for a more detailed derivation).

(5)Sij = exp

[
K∑

k=1

�ks
(k)

ij

]

(6)Pr
(
Yij = yij

|
||
�ij, �

)
=

�
(
yij + �

)

�
(
yij + 1

)
� (�)

(
�

� + �ij

)�( �ij

� + �ij

)yij

6 Although the data used have excess zeroes, we did not opt for a zero-inflated version of the negative 
binomial model, since we argue that each region possibly has the chance to engage in a collaboration (no 
structural zeroes).
7 Not accounting for overdispersion would result in incorrect standard errors, leading to possibly wrong 
significances of parameters (Cameron and Trivedi 1998).
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To take the spatial dependence of flows into account, spatial filtering using eigen-
vectors (ESF) is employed8 (see ‘Appendix 1’ for details on ESF). In this study, six 
separate—one for each KET—regression models are estimated via the spatially 
filtered negative binomial spatial interaction model. We include the first ten eigen-
vectors from the set of � of eigenvectors with MI∕MImax larger than 0.25 (see, e.g. 
Scherngell and Lata 2013), where MI denotes the Moran’s I value and MImax its 
maximum value, as additional explanatory variables in the model (see, e.g. Fischer 
and Wang (2011) for details).

Recalling the negative binomial specification of the model in (6), the final empiri-
cal model to be estimated is specified by setting

where Eq denotes the selected subset of eigenvectors expanded by means of the 
Kronecker product associated with the origin variable, and Er the respective eigen-
vectors for the destination variable; �q and �r are the corresponding coefficients. 
Explanatory variables enter the regression in logged form (except the dummy vari-
ables). Since the assumption of the dependent variable—the R&D interactions 
between region i and j—being independent and normally distributed does not hold, 
the parameters of the model are estimated by means of Maximum Likelihood (ML) 
estimation (see Cameron and Trivedi 1998 for estimation details).

5  Data and variables

The main interest of this study is to estimate determinants of technology-specific 
R&D collaboration networks, with a special focus on spatial separation and net-
work structural effects. The geographical coverage comprises the current 27 EU 
member states (excluding Malta and Cyprus) plus UK, Switzerland and Norway, 
corresponding to a set of 505 regions. Going beyond previous research, we distin-
guish 270 metropolitan regions as well as 235 remaining non-metropolitan regions, 
whereas metropolitan regions are NUTS 3 regions or a combination thereof inte-
grating neighbouring urban areas to one spatial entity,9 the remaining non-metro-
politan regions are either original NUTS 2 regions, or adapted NUTS 2 regions with 

(7)�
ij
= exp(�0 + �1 ln

(
oi
)
+ �2 ln

(
dj
)
+

K∑

k=1

�ks
(k)

ij
+

Q∑

q=1

�qEq +

R∑

r=1

�rEr + �ij

8 In the context of spatial interactions, spatial autocorrelation of flows is understood as correlation 
between R&D collaboration flows from the same origin or destination, to neighbouring origins or desti-
nations, respectively. Not accounting for spatial autocorrelation leads, similar to overdispersion, to incor-
rect inferences and hence wrong significances (Chun 2008).
9 Metropolitan regions represent all agglomerations of at least 250,000 inhabitants, whereas each 
agglomeration is represented by at least one NUTS 3 region. If in an adjacent NUTS 3 region more than 
50% of the population also lives within this agglomeration, it is included in the metropolitan region. This 
is based on the 2013 NUTS version and the 2010 Geostat population grid defined by Eurostat.
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respective NUTS 3 regions—belonging to a metropolitan region—removed (see 
Fig. 1 in ‘Appendix 2’ for map of metropolitan regions).10

5.1  Dependent variable

As dependent variable EU-funded KET R&D collaboration links are used (see 
Table B1 in ‘Appendix 2’ for some descriptive statistics). Data are extracted from 
the EUPRO database11 comprising systematic information on collaborative research 
projects of FP1-FP7 as well as Horizon 2020 (until 2016), including information on 
respective participating organizations, e.g. name, type and their geographical loca-
tion in the form of organization addresses (see Heller-Schuh et al. 2015 for details). 
Clearly, projects carried out under the EU FPs constitute a specific type of R&D 
collaboration network, that is subject to certain governance rules (e.g. each project 
must have partners from at least two different countries). However, these rules are 
by far less relevant for the formation of collaboration than their behaviour that is 
driven by strategic, technological, geographical, cultural and institutional conditions 
(see Scherngell and Barber 2009).

To construct the dependent variable, we consider the 7th FP and H2020 with a 
time horizon of 2007-2016. For each KET, a technology-specific symmetric regional 
collaboration matrix is constructed, where the elements indicate the number of joint 
projects.12 This matrix is then transformed into a vector with rows representing all 
possible combinations of links between the regions; this results in a vector of length 
n2-by-1 containing the inter- and intra-regional collaboration activities of all region 
pairs. Figure  2 in ‘Appendix  2’ illustrates the spatial distribution of the networks 
revealing the Paris region as dominating hub in all networks, showing the character-
istic star-shaped backbone structure. Nevertheless, the networks differ with respect 
to density, variance in number of collaborations, spatial scales and importance of 
certain regions (e.g. London in the case of Nanotechnology and Biotechnology; see 
Table 3 in ‘Appendix 2’).

5.2  Independent variables

As described in the previous section, the independent variables comprise three types: 
origin-, destination- and separation variables. The origin variable oi and the destina-
tion variable dj are solely specified as the number of organizations participating in 

10 Although the NUTS-2 level perspective is widely used in the previous related empirical literature (e.g. 
Scherngell and Barber 2009; Hoekman et al. 2012), we opt for metropolitan regions as units of analysis. 
Metropolitan regions are a quite recently introduced classification on a European level based on agglom-
eration (EC 2008; Dijkstra 2009), which by definition is an urban core including the surrounding catch-
ment area. Hence, this classification corrects for distortions created by, for example, the NUTS classifica-
tion that separates these two geographical spaces in most cases.
11 The EUPRO database is maintained by AIT Austrian Institute of Technology and is accessible via 
RISIS (risis2.eu). It has been advanced within RISIS, in particular, in terms of geolocalization, standardi-
zation and integration with other datasets.
12 The number of collaborations between regions results from the aggregate of collaborations (full 
count) between the participating organizations located within these regions.
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joint EU-funded FP projects in region i and j in a distinct KET field. Empirically, 
these variables represent the potential of regions to engage in collaborative R&D 
activities. Statistically, they control for the different sizes of the regions (see Fig. 3 
in ‘Appendix 2’ for spatial distribution). For the separation variables, we distinguish 
between (1) spatial separation variables and (2) network structural separation vari-
ables (see ‘Appendix 2’ for Table 4 with descriptive statistics and Table 5 providing 
correlation measures between explanatory variables).

Clearly, the focus of this study lies on the separation variables capturing the fric-
tion between two regions assumed to influence their collaboration intensity. With 
respect to our research question, we shift attention to geographical versus relational, 
i.e. networks structural separation variables:

• As variables accounting for geographical separation effects, first, the geographi-
cal distance s(1)

ij
 , measured as the great circle distance, indicating the shortest dis-

tance between two regions i and j , second, s(2)
ij

 a dummy variable indicating the 
presence of a common national border of regions (set to one, if two regions are 
located in different countries, zero otherwise), and third, s(3)

ij
 a dummy variable 

indicating links between two metropolitan regions (set to one, if link between 
two metropolitan regions, zero otherwise), are included in the model.

• As network structural separation effects, first, the gap in degree centralities s(4)
ij

 
and second, s(5)

ij
 the gap in the hub score between the two regions i and j , are 

included.13 Whereas the degree centrality simply measures the number of collab-
oration links of a region, the hub score (Kleinberg’s authority centrality14) is 
defined as the principal eigenvector of A ∗ t(A) , where A denotes the adjacency 
matrix of the KET-specific R&D network and hence indicates whether a region 
maintains KET-specific collaboration links and is at the same time linked to 
other regions that themselves are well-connected to access KET-specific knowl-
edge. Together, the two variables account for differences in the quantity of col-
laboration links, as well as difference in the quality of these interactions.

We refrain from including a measure for technological separation, such as a tech-
nological distance which has been included in previous works to isolate geographi-
cal from technological effects since the units of analysis are distinct technological 
fields, with fairly homogenous subclasses.

5.3  Assignment of data items to KETs

The meaningful delimitation of KETs is essential for this study. However, KETs are 
usually cross-cutting technological domains and are not pre-defined categories in the 
data. Thus, we employ the classification approach developed in the EU-funded pro-
ject KNOWMAK that provides a publicly available ontology for KETs, comprising 

13 We refrain taking other centrality concepts here that are e.g. not defined for weighted graphs 
(betweenness) and/or fragmented ones (closeness).
14 Equals the authority score for undirected graphs (see Kleinberg 1999).
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a hierarchical system of topical classes for each KET that are each characterized 
by a set of weighted keywords. First, using natural language processing techniques, 
the data items, i.e. FP projects, are assigned to these topical classes. The underly-
ing fundament of the assignment is an advanced ontology of the KET knowledge 
domains that describes the substantive contents of each KET by sets of topics and 
subtopics that are characterized by hundreds of keywords (Maynard et al. 2017). The 
population of the ontology with meaningful keywords is of crucial importance for a 
proper assignment of projects to the specific KETs. Maynard et al. (2017) employ a 
solution with multiple layers of keyword extraction from policy and other relevant 
documents on KETs and a mixture of automated techniques interspersed with expert 
knowledge at key junctures.15

Second, projects are tagged and then mapped to specific KET subtopics which 
are aggregated to the six main KETs to extract the KET-specific collaboration net-
works or the analysis at hand. The mapping of projects to a KET is based on a sim-
ilarity score between the project description and the specific keyword sets of the 
subtopics belonging to this specific KET. The similarity score depends basically on 
the overlap in keywords from the ontology and the text of the project description, 
whereas the keywords are weighted by their representativeness for a specific topic 
using pointwise mutual information (PMI) procedures (see Blei 2012). Note that 
assignment of projects is subjected to a series of robustness and sensitivity analyses 
(including manual checking of individual cases) to guarantee a sufficiently meaning-
ful and robust result (see Maynard et al. 2017 for details on the assignment proce-
dure).16 This development has led to a public standard where different knowledge 
creation activities are mapped to KETs and used to produce indicators on regional 
knowledge creation in Europe, including the number of regional FP participations 
(accessible and reproducible under knowmak.eu).

6  Estimation results

Table  1 displays the estimation results of the spatial interaction models. The first 
column reports the ML estimates for a basic spatial interaction model (model 1), 
including the origin and destination variables as well as the geographical separation 
measures: geographical distance, country border effect and the metropolitan region; 
the second column comprises the results for the full model (model 2) expanding 
the purely spatial model by including two network structural separation measures. 
Estimating the two models separately allows us to test our hypotheses (see Sects. 2, 
3), since we can observe directly the changes in the spatial effects, when accounting 
for network structural effects. Each of the two model specifications was executed for 

15 Different natural language processing (NLP) techniques are used to refine sets of keywords and 
explore interrelations between them (e.g. two generic keywords are marked as stop-words, and combina-
tions of keywords and multi-term keywords are constructed that are specifically relevant for a topic to get 
a better discrimination (Maynard et al. 2017).
16 Details on the semantic approach and also the technical tools are given at knowmak.eu.
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all six KETs to allow the comparison between the effect sizes of the determinants of 
technology-specific R&D collaboration networks. For all models, the significance of 
the �-parameter suggests the preference of a negative binomial model over the Pois-
son specification without heterogeneity. Moreover, for all models, a likelihood ratio 
test shows the preference of the spatially filtered negative binomial model against 
the non-filtered version. Note that we aggregate over the whole time period (i.e. 
summing up FP7 and H2020) due to the extremely high number of zeros challeng-
ing a reasonable estimation.

In our discussion, we shift explicit attention to the separation variables given our 
focus on geographical versus network structural effects. The origin and destination 
variables that just control for the mass in the origin and the destination region are 
significant and higher than one (see Table 1), i.e. the number of organizations active 
in a KET in a region naturally increases the likelihood for R&D collaboration in this 
KET with other regions.

Turning to the results of the separation effects for model (1), it can be seen that 
the geographical distance between two regions has a negative effect on the expected 
collaboration frequency between these two regions for all KETs—as indicated by 
the negative and significant estimates; this result coincides with findings in previ-
ous studies (Scherngell and Barber 2009; Scherngell and Lata 2013). Whereas the 
effects are the highest (the most negative) for Photonics for a coefficient of −0.25 
this equals to a change of −22% given by its exponential,17 closely followed by 
Nanotechnology (with a factor change of 0.78; i.e. a change of −22%). The effects 
for Microelectronics, Advanced Materials and AMT are the smallest—all three 
within a small range of change of −13 to −14%. The coefficients for the country 
border effects are also significantly negative for all KETs, suggesting that a national 
border between any two regions decreases the expected collaboration frequency for 
participating organizations located in these regions.

This is a somewhat sobering outcome in a European integration and policy con-
text. While country border effects seem to diminish in networks of the FP as a whole 
(Scherngell and Lata 2013), in KETs—that are considered as the most important 
technological domains for economic competitiveness—they are still a significant 
barrier for collaboration. Here, the negative effects are the lowest for Nanotechnol-
ogy and Photonics, while Microelectronics shows the highest negative effect. For 
region pairs located in different countries, the expected number of collaborations is 
hypothetically decreased by −22% in the case of Microelectronics.

The estimates for the metropolitan region dummy are positive and significant for 
all KETs (except Advanced Materials). This implies that two metropolitan regions 
‘increase’ the expected number of collaborations of their organizations by +0.7% in 
the field of Microelectronics that exhibits the smallest effect and +23% in Nanotech-
nology with the largest effect (compared to links between non-metropolitan regions 
and links between metropolitan and non-metropolitan regions).

Foremost, we can distinguish two groups of KETs with respect to their geograph-
ical effects: (1) Nanotechnology and Photonics and (2) Microelectronics, Advanced 

17 A change of one kilometre in geographical distance results in an expected count decrease by a factor 
of exp (−0.250) = 0.779 which implies a change of −22% (see Long and Freese 2006).
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Materials and AMT that each share common characteristics but are complementary 
to each other in terms of the importance of geographical effects. Whereas the geo-
graphical distance is the most restrictive force for Nanotechnology and Photonics 
for inter-regional collaboration and the country border shows the weakest effect 
(across all KETs), in the case of Microelectronics and AMT, this relation is reversed, 
showing a strong impact of the country border effect and the weakest effect of geo-
graphical distance. Hence, R&D collaborations in Nanotechnology and Photonics 
are much more localized but still inter-regional. This may be related to the resource 
and infrastructure intensive character of these technological fields, with many coun-
tries having only one scientific centre, which are therefore ‘forced’ to collaborate 
across countries (or even at a global scale). In contrast, Microelectronics and AMT, 
on the one hand, are relatively global in their collaboration behaviour, but on the 
other hand, are to a larger extent negatively affected by country borders. Moreover, 
they are to a lesser extent confined to collaboration between metropolitan regions as 
evidenced by the relatively lower estimate for the metropolitan region dummy.

Model (2) adds the network structural separation variables, enabling us to infer on 
our main research question, namely whether network structural effects are at stake at 
all and whether they are more important than geographical ones, able to compensate 
for geographical barriers under certain network structural conditions (hypothesis 1). 
We find a significantly negative impact of the gap in degree centralities between two 
regions on their expected collaboration frequency—in all KETs. That is, the number 
of collaborations is expected to be higher between similar regions in terms of the 
quantity of existing collaboration links. This is regardless of the actual number of 
collaboration links unless they are similar, i.e. two regions with many links but also 
two regions with each only few links.

In terms of KET-specific differences, for the gap in degree centralities, i.e. the 
quantity of the links, we find some notable differences: the highest negative effect 
is found for AMT with a change of −24% and Microelectronics, whereas Advanced 
Materials exhibit the smallest effect (change of −0.6%).

The effects of the gap in hub score point in the same direction, being negative and 
significant for all KETs (except Photonics), i.e. regions with a similar hub position 
in the networks tend to be linked to regions in similar central positions, indicating 
also the difference in the quality of the links matters. In Microelectronics, the hub 
score effect is by far highest, suggesting a distinguished authority- and hub-struc-
tured network for this KET. In other words, the collaboration probability between 
two regions decreases when their difference in terms of quantity (degree) and qual-
ity (hub score) of links increases, i.e. hubs are more likely to connect with other 
hubs than to connect with peripheral regions, which is described as homophily from 
a network science perspective. Interestingly, in the case of Photonics the coefficient 
of the gap in hub score is significantly positive, indicating the presence of a ‘hub 
and spoke’ structure, where outlying regions are connected to a central hub-region, 
described as preferential attachment in a context of social networks.

Reviewing both network structural effects—the gap in degree and the gap in 
hub score—they both point towards the affirmative role of similarity of two regions 
(regarding quantity and quality of research links) for the number of R&D collabo-
rations between them. This is what Torre and Rallet (2005) refer to as the ‘logic 
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of similarity’ of organized proximity. Although this conception originally refers to 
the organizational level, it may also be applied to the regional level. In context of 
our results, this could be interpreted insofar as regions that are similar in terms of 
research infrastructure, types of researching organizations, technological profiles, 
etc. share same frameworks and systems of representation, which facilitate the abil-
ity for organizations located in these regions to interact. This holds true for research-
intensive regions with large numbers of organizations, but also for more peripheral 
regions.

Interestingly, including the additional network structural separation variables does 
not change the interpretation of the coefficients for the variables already included in 
model (1) in terms of significance and direction; however, the effects of geographi-
cal distance and the metropolitan region dummy moderately decrease in magnitude 
when adding these variables, i.e. these spatial effects may partly be a proxy for the 
other effects reflected by them; hence, not accounting for network structural vari-
ables leads to an overestimation of the geographical separation.

However, in the case of the country border effects, this relation is reversed result-
ing in higher coefficients, meaning that accounting for network structural measures 
country borders have an increasingly hindering effect on the expected emergence of 
R&D collaborations. This finding shows that, when searching for similar partners 
in terms of quantity and quality of their collaborations (small gap in degree central-
ity and hub score), national partners are more likely to be chosen, i.e. the country 
border gains significance. This is especially the case for the large amount of small- 
and medium-sized organizations with a mediocre amount of network links, in con-
trary to large technology hubs and industry clusters in need for equivalent partners 
to engage in cross-regional R&D activities.

Strikingly, considering the changes in the geographical effects, when accounting 
for relational effects in model (2), we again find similarities for the KETs Microelec-
tronics, AMT and partly Advanced Materials as they show the largest differences, 
indicating fairly strong proxy effects between geographical and relational effects. 
Both geographical distance and the country border effect change in opposite direc-
tions, increasing the impact of country border and decreasing the negative effect of 
geographical distance. Hence, within-country collaborations gain even more impor-
tance when looking for similar partners in terms of their embeddedness and con-
nectivity. However, at the same time the probability for long-distance collaborations 
increases as well.

Resuming these results in context of our hypotheses, we conclude that hypoth-
esis 1a and hypothesis 1b can be supported, i.e. network structural effects are indeed 
highly relevant for the description of R&D collaboration networks, and that geo-
graphical effects change when accounting for such network structural effects. This 
indicates—to a certain extent—a proxy structure between these separation meas-
ures. A region’s position in global R&D collaboration networks, as promoted by the 
EU FPs, is of tremendous importance to overcome geographical barriers such as the 
spatial distance. Moreover, we can observe that similar regions in terms of their net-
work centrality (both degree and hub score) show a higher probability for collabora-
tion. This indicates that the substitution effect of networks for geographical barriers 
is moderated by the similarity in the network centrality between two regions. When 
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two regions are dissimilar in their network centrality, the potential to reduce nega-
tive geographical effects is relatively lower.

Turning to the second set of hypotheses, we find that geographical and relational 
effects—though at stake for all technologies under consideration—are found to vary 
in magnitude across them, confirming hypothesis 2a. Specifically, R&D collabora-
tions have more of a localized character in Nanotechnology and Photonics and are 
relatively global in Microelectronics and AMT. In terms of relational effects, espe-
cially Microelectronics stands out with a distinguished authority- and hub-structured 
network, whereas on the contrary, findings for Photonics indicate a ‘hub and spoke’ 
structured network. With respect to hypothesis 2b, we cannot—at least with our 
focus on six KETs in this study—confirm our assumption that geographical effects 
have a stronger negative impact in engineering-oriented fields, whereas network 
structural effects are more important for science-oriented fields. In fact, Advanced 
Materials and AMT—both being characterized as more engineering-oriented—are 
relatively less influenced by the negative effect of geographical distance. Moreover, 
the two science-oriented fields Microelectronics, as well as Biotechnology are rela-
tively strongly hampered by country borders. Both findings contradict hypothesis 
2b. However, looking at the network structural effects, we indeed find that Micro-
electronics is considerably driven by the negative effects of network structural 
effects but still, engineering-oriented fields, such as Advanced Materials and AMT 
are found to be highly affected as well. This makes it especially difficult for regions 
to link to hubs in terms of networks structural characteristics in these technologies.

7  Concluding remarks

The investigation of the spatial dynamics of R&D collaboration networks has 
become one of the most important research domains in regional science, accounting 
for their essential influence for successfully generating new knowledge, and accord-
ingly, innovation. In the recent past, attention has been shifted to get more compre-
hensive and statistically robust insights into R&D collaboration network dynamics 
by systematically identifying and estimating determinants and drivers of real-world 
observed network structures. The number of empirical works embedded in this 
research vein has faced an upsurge over the past ten years, related to methodological 
advancements, but more importantly to the recent establishment of large-scale data-
bases enabling to trace such networks in space and time, covering increasingly large 
geographical areas and time periods.18

Empirical studies investigating determinants of R&D collaboration networks—
mostly done at the regional level of analysis—have so far brought the interesting 
results (see Scherngell 2019 for an overview), pointing to the still important role 
of geographical barriers (geographical distance and/or country borders). However, 
these studies did not look at spatial and network structural dependencies, highlight-
ing the role of a region’s network embeddedness. Moreover, they did not yet dig into 

18 E.g. in form of the RISIS infrastructure (see risis2.eu).
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technological differences that may be prevalent across these results. Such technolog-
ical heterogeneities are assumed to play a major role, given the different knowledge 
bases and knowledge creation regimes underlying different technological fields, and 
accordingly, different collaboration behaviours.

This study has addressed this research gap, aiming to identify spatial, as well as 
network structural determinants of technology-specific R&D collaboration networks 
across a set of European regions. We have employed a spatially filtered negative bino-
mial spatial interaction model to estimate a set of determinants, specifically focusing on 
spatial effects, and—in contrast to previous works—on network structural effects. By 
technology-specific networks, we refer to collaborative R&D projects of the EU frame-
work programme (FP) observed in six Key Enabling Technologies (KETs), giving rise 
to six cross-region European R&D networks in different relevant technologies. In our 
empirical strategy, we have used the EUPRO database on EU-FP projects that contains 
an assignment of projects to a specific KET based on semantic technologies (see May-
nard et al. 2017). The spatial interaction models are applied to each KET separately and 
aggregated for FP7 and H2020 for a system of 505 European metropolitan and remain-
ing non-metropolitan regions, relating the cross-region collaboration intensity to a set of 
exogenous variables, in particular, spatial and network structural separation variables.

The results are highly interesting, both in context of the previous research and 
from a European policy perspective. In general, geographical barriers, including 
geographical distance and country borders, are a significant hurdle for the likelihood 
to establish network links across regions in the six KETs. While the negative effect 
of geographical distance is not surprising, the significant country border effects are 
somewhat sobering in a policy context. Negative country border effects have dimin-
ished when looking at the FP as a whole (see Scherngell and Lata 2013) but are back 
at stake when looking at important technological fields, such as the KETs.

Specifically, we can distinguish two groups of KETs, each sharing common char-
acteristics in terms of their geographical effects: (1) Nanotechnology and Photonics, 
and (2) Microelectronics, Advanced Materials and AMT. They appear complemen-
tary in terms of the impact of geographical barriers on R&D collaborations; whereas 
R&D collaborations of the first pair are strongly restricted by geographical distance 
with only a small impact of country border effects, the latter pair is characterized by 
national collaborations but at the same time driven by long-distance collaborations.

In the light of our hypotheses, the results confirm that network structural effects 
turned out to be indeed an important additional determinant in explaining the consti-
tution of publicly funded technology-specific cross-region R&D collaboration net-
works. In this sense, the results underline that network effects are able to compen-
sate for geographical barriers—throughout all technologies investigated, although 
the effects differ in magnitude. However, the results also point to some logic of 
similarity, i.e. regions of similar network embeddedness are more likely to collabo-
rate than regions with a high gap in their network embeddedness. A similar effect 
is observable for the regions’ connectivity in terms of their hub score. Thus, two 
regions that are dissimilar in their network centrality have limited potential to reduce 
negative geographical effects. Accordingly, lagging regions in terms of network cen-
trality face statistically significant barriers to attach to more prominent regions in the 
network.
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Additionally, we indeed can observe significant differences between the KETs 
under consideration, not in terms of direction and significance of the effects, but in 
terms of their relative importance. Advanced Materials, AMT and Microelectronics 
seem to be less affected by geographical barriers than Nanotechnology and Photon-
ics. For the latter, network structural effects seem to be of relatively lower impor-
tance, i.e. these KETs may be more open to non-conventional network partners than 
in other KETs. Hence, the assumption of engineering-oriented technological fields 
being more affected by geographical effects, whereas science-oriented fields are 
more driven by network structural effects, is not supported by the findings.

From a policy perspective, the findings are of high interest with respect to the 
interplay between geographical and relational effects and their relative importance 
for the different KETs, which requires tailored policy measures; specifically, the 
potential of networks to reduce geographical barriers is of great interest, encourag-
ing further policies, in particular, for lagging regions, supporting the participation in 
networks. However, in light of the differing configuration of the effects across KETs, 
some differing policy conclusions could be considered across them. On the one hand, 
we identify KETs with relatively high geographical barriers (Nanotechnology and 
Photonics) hindering R&D collaborations, pointing towards the existence of regional 
technological clusters that require cluster-oriented policy measures to strengthen 
regional research infrastructure and accelerate regional knowledge creation. How-
ever, with relational effects being of general importance for R&D collaborations—as 
suggested by the findings—policymakers may aim at providing incentives for organi-
zations within such clusters to establish new national and supra-national R&D col-
laboration links. This enables knowledge exchange and diffusion among the clusters, 
enhancing the regional knowledge base. On the other hand, for KETs that exhibit 
relatively lower geographical barriers (Microelectronics, Advanced Materials and 
AMT) for R&D collaborations, policymakers may rather focus on establishing strong 
and sustainable inter-regional R&D collaboration networks, rather than creating new 
network links. This entails providing incentives for organizations to collaborate with 
partners from geographically peripheral and less embedded regions, since the find-
ings of this study suggest that large differences in number and quality of network 
links are considerable barriers for R&D collaborations between regions, which needs 
to be actively addressed by European policymakers.

Finally, some ideas for a future research agenda come to mind. First, the results 
presented in this study are static, mainly relating to the problem of the high number 
of zeros when going to a panel with annual observations, leading to severe estimation 
issues. However, advancement to a dynamic perspective to look at changes of the 
estimates over time is crucial and needs specific consideration in the future. Second, 
looking at other forms of technology-specific R&D networks should complement the 
results of this study that clearly focuses on a specific form of policy induced net-
works. Third, investigating the underlying micro-dynamics of collaboration—e.g. by 
utilizing the effect estimates from this study in a simulation approach—may provide 
better understanding of the results presented here, in particular as what concerns the 
differing determinants and their magnitude in different technological fields.
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Appendix 1: Eigenvector spatial filtering (ESF)

Eigenvector spatial filtering (ESF) is based on the mathematical relationship between 
the Moran’s I, as a measure for spatial autocorrelation, and spatial weight matrices. Fol-
lowing Griffith and Chun (2014), the purpose is to obtain a set of synthetic proxy vari-
ables by extracting them as eigenvectors from a standard spatial matrix W (see, e.g. Fis-
cher and Wang (2011) on construction of spatial weight matrices) and then add these 
vectors as control variables to the regression model. This set of variables is obtained 
from the transformed spatial weight matrix

where I is an N-by-N identity matrix, � is an N-by-1 vector of ones and �′ is its trans-
pose. The decomposition generates N eigenvectors En =

(
E1,E2,… ,EN

)
 and their 

associated N eigenvalues � =
(
�1, �2,… , �N

)
 . As shown by Tiefelsdorf and Boots 

(1995), all obtained eigenvalues relate to distinct Moran’s I values. Whereas the first 
eigenvector E1 measures the maximum global spatial autocorrelation, the second 
eigenvector E2 measures the maximum residual spatial autocorrelation after extracting 
the first, and so on. Generally, only a set of � eigenvectors with MI∕MImax larger than 
0.25 is selected as additional control variables, where MI denotes the Moran’s I value 
[see, e.g. Fischer and Wang (2011) for details] and MImax its maximum value, respec-
tively (Fischer and Wang 2011). To apply the eigenvectors within the spatial interac-
tion framework, it is necessary to expand them by means of the Kronecker product, 
which yields En ⊗ 𝜄 in the case of the destination, and 𝜄 ⊗ En for the origin vectors.

Appendix 2: Descriptive statistics

See Tables 2, 3, 4 and 5; Figs. 1, 2, 3.

(8)W � =
(
I − ���

1

N

)
W
(
I − ���

1

N

)

Table 2  Descriptive statistics on R&D collaborations in six KETs

# Denotes ‘number’, Nano Nanotechnology, Micro Microelectronics, AM Advanced Materials, AMT 
Advanced Manufacturing Technologies, Ind. Biotech. Industrial Biotechnology

Nano Micro Photonics AM AMT Biotech

# All links 255,025 255,025 255,025 255,025 255,025 255,025
# Positive links 38,822 16,480 35,092 11,451 24,785 46,229
% Zero links 84.78 93.54 86.24 95.51 90.28 81.87
# Intra-regional collaborations 2774 1820 2464 323 1076 3534
# Inter-regional collaborations 77,245 23,940 64,506 10,364 38,678 109,329
# Organizations 5189 1820 4559 1298 2363 5912
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Table 3  R&D collaboration network characteristics of six KETs

Nano Nanotechnology, Micro Microelectronics, AM Advanced Materials, AMT Advanced Manufacturing 
Technologies, Ind. Biotech Industrial Biotechnology

Nano Micro Photonics AM AMT Biotech

Number of edges 19,510 8278 17,754 5709 12,467 23,295
Number of vertices 453 333 449 341 382 463
Density 0.19 0.15 0.18 0.10 0.17 0.22
Degree centralization 0.66 0.69 0.68 0.57 0.58 0.65
Mean degree 86.16 49.72 79.08 33.48 65.27 100.63
Maximum degree 384 278 383 227 285 403
Betweenness centralization 0.05 0.10 0.06 0.10 0.05 0.04
Transitivity 0.49 0.43 0.47 0.35 0.53 0.52

Table 4  Descriptive statistics of regression variables

Nano Nanotechnology, Micro Microelectronics, AM Advanced Materials, AMT Advanced Manufacturing 
Technologies, Ind. Biotech Industrial Biotechnology

Nano Micro Photonics AM AMT Biotech

Number of R&D collaborations (dependent variable)
Minimum 0 0 0 0 0 0
Mean 0.62 0.19 0.52 0.08 0.31 0.87
Median 0 0 0 0 0 0
Maximum 485 276 552 42 186 619
Origin/destination
Minimum 0 0 0 0 0 0
Mean 10.51 3.79 9.25 2.62 4.80 11.90
Median 5 1 4 1 2 5
Maximum 204 116 201 49 101 222
Geographical distance
Minimum 0 0 0 0 0 0
Mean 1090.1 1090.1 1090.1 1090.1 1090.1 1090.1
Median 1007.7 1007.7 1007.7 1007.7 1007.7 1007.7
Maximum 3942.8 3942.8 3942.8 3942.8 3942.8 3942.8
Gap degree centralities
Minimum 0 0 0 0 0 0
Mean 81.72 43 74.6 29.67 60.62 92.16
Median 61 28 55 18 43 73
Maximum 382 278 379 228 285 401
Gap in hub score
Minimum 0 0 0 0 0 0
Mean 0.040 0.030 0.033 0.051 0.048 0.045
Median 0.013 0.009 0.011 0.020 0.016 0.014
Maximum 1 1 1 1 1 1
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Fig. 1  Metropolitan and non-metropolitan regions
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Fig. 2  Spatial R&D networks of Key Enabling Technologies (2007–2016)
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Fig. 3  Spatial distribution of organizations in Key Enabling Technologies (2007–2016)
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