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Abstract
This paper presents a methodological procedure to evaluate the influence of spatial 
proximity on evolution of cities to detect regional differences in their spatiotemporal 
dynamics. The six-step method based on a set of statistical methods can be com-
puted with a new R package: estdaR. The first step consists of the usual characteriza-
tion of the cross-sectional distribution of the urban areas by means of nonparametric 
estimations of density functions for a set of significant years. In the second and third 
steps, the growth process is modeled as a first-order stationary Markov chain to eval-
uate the effect of global and local spatial autocorrelation on the transition probabili-
ties with a set of indices based on the spatial version of the standard Markov chain. 
The fourth, fifth, and sixth steps perform in-depth analysis to detect the existence 
and interaction of spatial regimes in the movement direction and ranking mobility of 
urban distribution. We apply this novel strategy for the period 1930–2002 to analyze 
the entire Chilean urban system—not only the Central Zone, in which most of the 
population and economic activities are concentrated, but also other urban zones in 
the country.
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1  Introduction

From an ecological point of view, individual cities are conceived as locationally 
separate from neighboring cities because they do not compete for territory. Hence, 
in terms of the consumption of space, cities would be largely independent of one 
another, with no constraint based on the development of a neighboring city (Parr 
2012). Nevertheless, in urban subsystems with cities experiencing increasing popu-
lation and expansion, competition for space increases, producing city concentration 
and economies of scale (Ye and Xie 2012). In fact, the formation of cities is closely 
related to Christaller’s central places theory, which posits a functional relationship 
between the population of a central place and its complementary area (Mutlu 1986).

Hence, the urbanization process cannot be considered as spatially homogenous. 
It is closely related to economic development since urbanization occurs as countries 
shift from rural-agricultural activity to urban-industrial activity (Davis and Hender-
son 2003). Factors such as geography (Henderson et al. 2001), factor endowments 
(Venables 2005), spatial proximity among human settlements (Ioannides and Over-
man 2004), and public policies (Desmet and Henderson 2015) affect the evolution of 
urban systems. They may generate either regionally concentrated urban settlements 
(Antrop 2004) or polycentric urban poles (Paci and Usai 2008) as a consequence of 
spatial interaction processes in population growth.

In Latin American countries, including Chile, population and economic activities 
are especially concentrated in the capital city and its corresponding metropolitan area 
(Rodríguez 2007), leading in many cases to overconcentration of the population and 
economic activity in this area. People in Chile’s provinces are fond of saying, ‘God is 
everywhere, but his office is in Santiago.’ In fact, the literature tends to focus on this 
megalopolis, forgetting the rest of the country.1 With the exception of Escolano Utrilla 
et al. (2007), who analyze the entire group of Chilean cities, studies on this topic focus 
on urban dynamics of either the Metropolitan Region of Santiago (Rodríguez et  al. 
2009) or other individual cities (e.g., Bustos Validiva 2013; Escolano Utrilla and Ortiz 
Véliz 2004; Santiago et  al. 2016). To the extent of our knowledge, no research has 
quantified the effect of space on Chilean urban dynamics over the last century.

This paper seeks to propose a methodology to identify spatiotemporal patterns in 
the evolution of cities and establish the influence of spatial proximity by assembling 
a set of six spatial statistical approaches. With the exception of the kernel density 
functions and the standard Markov chain, these methods have been applied primar-
ily to study the evolution of spatial systems for crime and income distributions. In 
the urban literature, in particular, the spatial Markov chain (SMC) method has been 
used to analyze the historical development of Spanish cities (Le Gallo and Chasco 
2008) and of Phoenix, Arizona (Kane et  al. 2014), but no applications have been 
found for the other methods proposed.

This strategy is a six-step procedure based on a set of statistical methods that 
can be computed with a new R package, estdaR, which has been developed by the 

1  This phenomenon is also common in other Latin American countries with highly centralized govern-
ments exerting greater control over resources (Willis et al. 1999).
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authors and is available under a GPL-2 license from the site https​://githu​b.com/
amval​lone/estda​R.2 We employ the procedure to detect different trends and spatial 
clusters in the development of Chilean cities over the period 1930–2002, focusing 
specifically on how spatial proximity affects relative sizes and rankings. We seek to 
know to what extent certain urban processes, such as urban sprawl and population 
convergence, are homogeneous across the entire Chilean city system or whether a 
city’s population grows faster or slower depending on its neighbors’ growth speed.

To this end, we first analyze the cross-sectional distribution of urban population 
by means of standard statistical analysis and nonparametric estimations of density 
functions for a series of years, a method proposed by Quah (1996) and followed 
by many other authors (e.g., Xu and Zhu 2009; Xiufang et al. 2015). Second, the 
growth process is modeled as a first-order stationary Markov chain. Third, the role 
of geographical space in the transition probabilities of population growth is evalu-
ated with a set of methods based on a spatial version of the standard Markov chain 
(Rey 2001). Fourth, we perform an in-depth analysis to detect local patterns in the 
joint transition of a city and its neighbors in the Chilean urban system. On the one 
hand, we use the LISA transition matrix (Rey and Janikas 2006), based on the Local 
Moran statistic proposed by Anselin (1995); on the other, we capture the co-move-
ment3 directions of cities and neighbors across the Moran scatterplot quadrants with 
the directional LISA (Rey et  al. 2011) approach. Fifth, we study the existence of 
spatial regime differences in the ranking mobility of the Chilean urban distribution 
using the Global Indicators of Mobility Association (GIMA) (Rey 2016). Finally, we 
determine the ranking decomposition (Rey 2004) as a cohesion measure that detects 
synchronic rank movements among spatial regimes. To study Chilean urban dynam-
ics, we selected the sample of contemporary cities and functional market areas from 
Chile’s decennial censuses of 1930, 1940, 1952, 1960, 1970, 1982, 1992, and 2002.

The paper is organized as follows. In Sect.  2, we develop the methodology. In 
Sect.  3, we present the database and the main results obtained with this method 
for the Chilean urban system. The paper ends with a concluding section and the 
references.

2 � The method

We propose a modeling strategy that improves knowledge of urban systems by eval-
uating the influence of spatial proximity among human settlements on cities’ evolu-
tion to detect regional differences and interactions in their spatiotemporal dynamics. 
The strategy, the six-step method represented in Fig. 1, will be explained in the fol-
lowing subsections.

2  estdaR must be installed in the R console: devtools::install_github("amvallone/estdaR").
3  Throughout this paper, the terms “movement” and “mobility” refer to movements across the popula-
tion distribution, as is common in the social inequality literature (Kang and Rey 2019). In this context, 
population mobility could thus be viewed as a re-ranking phenomenon in which cities switch population 
positions. Mobility could also be viewed as occurring, however, whenever cities move away from their 
previous city size levels. The former is termed absolute mobility and the latter relative mobility.

https://github.com/amvallone/estdaR
https://github.com/amvallone/estdaR
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2.1 � Exploratory analysis of city‑size distribution

Typical spatiotemporal exploratory data analysis does not permit inferences about 
patterns in the intertemporal evolution of the full cross-sectional distribution of cit-
ies in terms of size relative to the rest of the urban system. Such analyses also fail 
to take into account spatial interdependence between regions (Quah 1996). One 
traditional exploratory measure of urban convergence is the σ-convergence, which 
indicates a reduction of dispersion within city-size cross-sectional distribution over 
time. It is an interesting simple method concerned only with spread dispersion (sec-
ond moment) of the population distribution. σ-convergence determines the dynam-
ics of approximation between urban populations in a specific period by computing 
the standard deviation or coefficient of variation of relative log city population (Wu 
and He 2017). As stated above, since dispersion indicators provide no information 
about behavior of the overall population distribution, alternative concepts of conver-
gence must be used.

We thus follow a strand of the literature that estimates nonparametric kernel den-
sity of urban population distributions for different periods. These density plots may 
be interpreted as the continuous equivalent of a histogram in which the number of 
intervals has been set to infinity and then to the continuum (Le Gallo 2004). We 
consider relative size distributions by normalizing the log of population size for each 
decade, divided by the log average size. Specifically, they are used to examine rela-
tive city-size distribution at present and the way this distribution has changed since a 

Fig. 1   Methodological procedure for evaluating urban spatiotemporal dynamics
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starting period to analyze its characteristics of mono- or multimodality. An increase 
or progressive concentration of the central probability mass of urban distributions in 
time can be interpreted as evidence of population convergence, while secondary dis-
tribution modes correspond to clubs of regional cities converging to a higher/lower 
population mean.

2.2 � Analysis of city‑size distributional mobility in urban dynamics using Markov 
chains

The density functions enable characterization of the evolution of the global popula-
tion distribution, but they provide no information about the movements of the cities 
within this distribution over the course of the study period. That is, they do not say 
whether the right tail of the initial year distribution contains the same cities as the 
right tail in the final year distribution. One way to answer these questions is to track 
the evolution of each city’s relative size over time by estimating transition probabil-
ity matrices associated with Markov chains.

In this context, a Markov chain consists of a set of discrete states or discretization 
of the population distribution: S = {s1, s2,…, sr}. As the population is a continu-
ous variable, we must first discretize the continuous state-space of this variable, for 
example, by quantiles. This method describes a process that starts in one of these 
states (year) and moves successively from one state to another. Each move is called 
a step. If a city is currently in state si, then it moves to state sj at the next step with 
a probability denoted by pij, which is called transition probability. If a city remains 
in the state it was in initially, this occurs with probability pii (Grinstead and Snell 
1997).

The transition probabilities can be arranged in a square array called a transition 
matrix, P, such that the values in a specific row (e.g., the first) represent the prob-
abilities that a city in a specific quantile i will move to this first quantile. The prob-
ability maximum likelihood estimator is defined as:

where ni,j,t is the number of times a sample chain started in state i in period t and 
transitioned to state j in the next period (Rey 2015).

Since improper discretization of a continuous variable could have the undesired 
effect of removing the Markov property and producing very misleading results (due 
to a certain degree of arbitrariness), discretization methods must satisfy two con-
ditions. First, the initial classes should include a similar number of observations. 
Second, this discretization must perform best in the first-order test for Markovian 
property. As stated in Bickenbach and Bode (2003), the Markov property requires 
the transition probabilities, pij, to be of order 1, that is, to be dependent at the begin-
ning of state t–1 (serially autocorrelated or order 1) and independent of states at 
the beginning of previous periods t − 2, t − 3,… If the chain is of a higher order, 
the transition matrix will be misspecified because it will contain only part of the 

(1)p̂i,j =

∑
t ni,j,t

∑
t

∑
j ni,j,t
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information necessary to describe the true evolution of the population distribution. 
There are two first-order tests, the likelihood ratio (LR) and Pearson asymptotic Chi-
square test statistics of n − 1 degrees of freedom for n the city sample. They test the 
null hypothesis of the absence of serial autocorrelation against first-order autocor-
relation. Hence, the best discretization method is the one that maximizes these tests 
from a group of alternative methods.

Finally, it is also important to compute the ergodic, steady-state, or limit dis-
tribution that can be interpreted as the city-size distribution in the long-run equi-
librium. This function is used to assess the form of convergence in a distribution. 
A concentration of the frequencies of the ergodic distribution in a certain state or 
class implies convergence (if in the middle class, convergence to the mean). Con-
centration of the frequencies in some of the classes—that is, a multimodal limit 
distribution—can be interpreted as a tendency toward stratification into different 
convergence clubs. Finally, the dispersion of this distribution among all classes is 
interpreted as divergence.

2.3 � The role of spatial dependence in city‑size distributional mobility using 
spatial Markov chains

Spatial data have special properties and must be analyzed differently from non-spa-
tial ones. Previous methods have not explicitly taken into account this spatial dimen-
sion of urban growth. In effect, population growth may spread around neighbor-
ing areas in a metropolization process or it may experience a chronic depopulation 
evolution, corresponding both situations to positive spatial autocorrelation,4 that is, 
the presence of urban growth interactive processes of agglomeration or dispersion, 
respectively. On its part, negative spatial autocorrelation implies a systematic dis-
persed polarization of large cities in a country (Paci and Usai 2008).

Markov chain analysis enables integration of spatial dependence of the data by 
estimating the spatial Markov transition matrix or SMC (Rey 2001).5 This method 
reports the probability of a particular transition conditioned by the populations of 
the city’s neighbors in the preceding period. As noted in Rey (2015), for a quintile 
discretization of the population distribution, the maximum likelihood estimator of 
transition probabilities is:

where n(l)i,j,t is the number of times a sample chain with a spatial lag in quintile l 
started in state i in period t and transitioned to state j in the next period.

(2)p̂(l)i,j =

∑
t n(l)i,j,t

∑
t

∑
j n(l)i,j,t

4  Spatial autocorrelation and spatial dependence are used as interchangeable terms, though in strong 
sense, the first is a specific type of the second.
5  Spatial Markov chains have also been applied in other contexts, such as employment of disabled people 
(Agovino 2014), pro-environmental behavior (Agovino et  al. 2016) and quality of life (Delmelle et  al. 
2016).
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In the SMC, the transition dynamics are divided across cities with spatial lags in 
the different classes at the preceding year. Hence, for a quintile discretization of the 
transition matrix, we compute five transition probability matrices: l(1) is the chain 
corresponding to the spatial lags of population values located at the lowest quintile 
of this distribution and l(5) the chain of spatially lagged population values in the 
upper quintile. Computing the spatial lags requires a spatial weight matrix (‘W’) 
to capture the potential spatial interaction among cities in the urban system. It is an 
n × n matrix, for n the total number of cities, with the main diagonal elements (wii) 
set to zero by definition and the rest of the nonzero cells (wij) capturing the degree 
of spatial dependence among observations i, j. There is a rich variety of ways to 
specify the structure of these weights (Anselin and Rey 2014).

To contrast the influence of space on the transition and the homogeneity across 
lagged classes, we compute two statistics: Pearson’s Q test and the likelihood ratio 
(LR) test (Rey et al. 2016), both distributed as an asymptotic Chi-square. These sta-
tistics test the null hypothesis that the initial transition probabilities of the cities in 
the population distribution are spatially independent, that is, that they are not influ-
enced by the values of their corresponding surrounding cities (spatial lag).

2.4 � Analysis of the co‑evolution of cities and spatial neighbors using LISA 
methods

The SMC provides insight into the role of spatial neighbor cities at the beginning 
of the transition, but it cannot analyze the joint evolution of cities and neighbors in 
the urban system dynamics. To analyze these issues, we use two different methods: 
the LISA Markov Chain (Rey and Janikas 2006) and the directional LISA (Rey et al. 
2011).

2.4.1 � Local indicator of spatial association (LISA) Markov chain

The LISA transition matrix (Rey and Janikas 2006) is based on the local Moran sta-
tistic proposed by Anselin (1995) to identify local clusters and spatial outliers. The 
LISA Markov chain computes the joint transition of a city and its neighbors in the 
distribution by measuring their movements across the four quadrants of the Moran 
scatterplot. Conventionally, the upper-right quadrant and the lower-left quadrant 
correspond to positive spatial autocorrelation (similar values at neighboring loca-
tions) and are referred to, respectively, as high–high (HH) and low–low (LL) spatial 
autocorrelation. The lower-right and upper-left quadrants, in contrast, correspond to 
negative spatial autocorrelation (dissimilar values at neighboring locations), referred 
to, respectively, as high–low (HL) and low–high (LH) spatial autocorrelation.

The states of the LISA Markov chains are the four quadrants of the Moran scat-
terplot in a given period. In each period, a city can be classified into four mutu-
ally exclusive categories HH, LH, LL, and HL where, for example, HL indicates 
a city above the system average for that period while its neighbors’ mean size is 
below the average. From period to period, a city’s position in the Moran scatterplot 
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may change among the quadrants, with 16 possible transitions. A formal test for 
co-movement dependence—based on (Rey et al. 2012)—can also be performed by 
decomposing the LISA Markov chain into a pair of chains, one for the city and the 
other for the neighbors. Each chain has two states: H and L. The statistics follow an 
asymptotic �2 distribution, where the null hypothesis is the independence of the two 
chains (Rey 2015).

2.4.2 � Directional LISA

The LISA Markov method computes the probability that cities and spatial neighbors 
will move from the Moran scatterplot states, but it is not possible to observe this 
evolution on a diagram. One way of capturing the co-movements of cities and neigh-
bors graphically across the Moran scatterplot is the directional LISA approach (Rey 
et  al. 2011). This method visualizes these co-movements by means of the origin-
standardized movement vector, obtained by comparing two Moran scatterplots cor-
responding to two different periods of time, for example, the first and last period of 
analysis.

This technique is very appropriate to test for different dynamics between spatial 
regimes or urban subsystems, as Gregory and Patuelli (2015) do for the German 
regions. To obtain a clearer view of the movement patterns’ heterogeneity, rose dia-
grams are also very helpful (Rey et  al. 2011; Gutiérrez and Rey 2013). The rose 
plot, based on circular statistics, is a circular histogram that shows the frequency of 
moves across different directions based on angular notation.

Rose diagrams are also used to represent the directional LISA inference results 
graphically.6 The null hypothesis is that the distribution of the vectors across the 
segments reflects independence in the movements of the focal unit and its spatial 
lag. Inference is based on random spatial permutations under the null hypothesis, 
and it is necessary to identify the statistically significant values of directional LISA 
arrows and rose graph sectors.

2.5 � Computation of spatial regime disparities in the co‑evolution of cities 
and neighbors using GIMA

Rey (2016) proposes the Global Index of Mobility Association (GIMA), whose 
antecedent is the Kendall’s spatial � (Rey 2004). This indicator, which is based on 
the rank correlation coefficient (Kendall 1962), enables measurement of disparities 
or inequalities in city size using concordance or discordance of the ranks of this 
variable in two periods of time �

(
yt, yt+1

)
 , as follows:

6  A rose diagram is a circular chart to display data that contain direction and magnitude variables. They 
normally comprises of 8 or 16 radiating spokes, which represent degrees of a circle or compass points 
North, East, South, West and their intermediate directions. Each direction axis has values increasing out-
wards and similar to pie charts, the data are divided into proportional slices or sectors. The arc length of 
each slice is proportional to the quantity it represents.
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where c is the number of concordant pairs, d the number of discordant pairs, and 
n the city sample size. The � index ranges from 0 (perfect discordance) to 1 (per-
fect concordance). From this expression, we can build the GIMA mobility index as 
follows:

M varies from 0 to 1, where 1 implies full ranking mobility and 0 complete stability 
of the ranking. As this statistic yields a single value for the amount of rank mobility 
in the entire population distribution over two points in time, it is considered a global 
indicator.

It is thus possible to decompose the � index to capture the effect of space in the 
ranking changes as follows7:

where 𝜑 =
i�Wi

i�(W+W̄)i
 , with i a unit vector of order (n × 1), W a spatial weights matrix 

containing the neighboring relationships, and W̄ = ii� −W − In×n a matrix capturing 
the non-neighboring relationships.

Equation (5) presents the spatial � index of concordant and discordant rank pairs 
as a  decomposition of two � indexes: one for pairs of neighboring cities and the 
other for pairs of non-neighboring cities. This procedure enables us to identify the 
different correlation patterns between neighboring and non-neighboring cities. Dif-
ferent ranking patterns may be inferred based on random spatial permutations of the 
attributes to develop a distribution for �W under the null hypothesis of spatial homo-
geneity in the correlation patterns (Rey 2016).

As with Kendall’s � , it is possible to construct a spatial mobility index as follows:

Equation (6) also allows for additive decomposition of overall mobility, which gives 
the option of comparing different levels of mobility between neighboring and non-
neighboring cities, as follows:

It is possible to partition the cities into regimes, which can be used to operationalize 
neighbors using the so-called block weights (Anselin and Rey 2014, p. 37) such that 
wij = 1 if R(i) = R(j), otherwise wij = 0, where i, j are cities and R the regimes.

(3)�
(
yt, yt+1

)
=

c − d
n(n−1)

2

(4)M =
�
(
yt, yt+1

)
− 1

−2

(5)𝜏
(
yt, yt+1

)
= 𝜑𝜏W

(
yt, yt+1

)
+ (1 − 𝜑)𝜏W̄

(
yt, yt+1

)

(6)MW =
�W

(
yt, yt+1

)
− 1

−2

(7)M = 𝜑MW + (1 − 𝜑)MW̄

7  Rey (2016) presents the full mathematical decomposition of this index.
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2.6 � Rank decomposition of city size by spatial regimes

The rank decomposition index Θt1−t0
 (Rey 2004) is defined as the sum of rank changes, 

from period t0 to t1 , within a regime over the sum of the overall rank changes. Formally, 
if we set �i,t as the position in the ranking of city i in period t and assume the existence 
of R spatial regimes, the rank decomposition index Θ is calculated as follows:

The denominator of this measure is the sum of the absolute rank changes over the 
period.

For a sequence of time periods, θ measures the extent to which rank changes for a 
variable measured over n locations are in the same direction within mutually exclusive 
and exhaustive partitions (regimes) of the n locations. The cohesion index will take the 
value 0 in the case of complete absence of cohesion (i.e., when all changes in the rank-
ing occur only inside the same regime). At the other end, Θ will take the value 1 when 
all movements in the ranking are 100% ‘cohesive’ within the regimes. In this case, all 
cities from one spatial regime will be increasing their ranks at the expense of cities 
belonging to another regime.

In this context, cohesion can be understood as a process of migration between 
regimes, such that the size of cities in one regime increases (ascending in the ranking) 
at the expense of the size of cities in the other regimes, which decline in the ranking. 
Full cohesion thus implies a perfect population transfer between regimes.

Although Θ is a nonparametric test, it is possible to construct an inferential process 
based on random spatial permutations under the null hypothesis of spatial homogeneity 
(Rey 2004). One drawback of this index, however, is that it cannot provide information 
about the direction of the migration flow, which must be derived from alternative infor-
mation sources.

3 � Application on city growth in Chile

How to define cities and their consistency over time is a question that arises often in 
the literature. Some authors use the official statistics, based on the authorities’ defi-
nition of city boundaries (Soo 2014; Lanaspa et al. 2003). Since these statistics may 
not coincide with the economically meaningful definition of city, however, other 
authors estimate metro areas to cover the local labor market of a core city, accom-
modating changes in geographic definitions over time (Henderson 2005; Schmid-
heiny and Suedekum 2015, among others).

To explore the spatiotemporal dynamics of Chilean cities from 1930 to 2002, 
we need a data set with urban areas defined consistently over this period. Evolu-
tion of the population distribution is analyzed using the Census data over the eight 

(8)Θt1−t0
=

∑
R

���
∑

i∈R �i,t1 − �i,t0
�
��

∑
i

��
�
�i,t1 − �i,t0

��
�
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decades under consideration: 1930, 1940, 1952, 1960, 1970, 1982, 1992, and 2002.8 
The data on population are extracted from the Chilean Office for Statistics (INE) 
databank.

In the first place, we use the official definition proposed by the Chilean Office 
for Statistics (Instituto Nacional de Estadísticas 2005), which defines a ‘city’ as any 
urban entity with more than 5000 inhabitants.9 This definition is consistent with 
the definition of city as a continuously built-up area, different from the so-called 
large city, which represents the metropolitan area (Parr 2012). This sample of cit-
ies, which are located in all regions of the country, has the advantage of includ-
ing a sufficient number of urban entities for the estimations and tests required by 
the methodology, some of which are based on asymptotic assumptions (Hamilton 
1994). Since what was a group of different middle-size cities in the past may now 
be part of a large city, however, there is a risk of overestimating the spatial effects 
of autocorrelation and heterogeneity (spatial regimes). For this reason, we also use 
the Labor Market Areas (LMAs) recently defined by Casado-Díaz et al. (2017) as 
a robustness check for the influence of spatial proximity on relative city sizes and 
regimes.

Based on the official definition, we identified 184 Chilean cities in the 2002 Cen-
sus that existed in the 1930 Census10 to study their evolution during the eight peri-
ods considered (more than 70 years). These present-day cities are located through-
out the Chilean territory. The LMAs are a group of 62 functional regions, built with 
an evolutionary computational method, as a sum of municipalities, to capture the 
extent of commuting fields of residents. Due to the frequent changes experienced by 
the municipalities in their boundaries during the period 1930–2002 (Rowe 2017), 
the LMAs of this panel were approximated as aggregations of the official cities. 
A summary of cities and LMAs is presented in Fig. 2, and the full list is given in 
‘Appendix 1.’ 

Next, we present the results obtained by applying the modeling strategy to the 
Chilean urban system.

8  Despite the existence of previous censuses, we choose 1930 as the first period of analysis because the 
Southern city of Aysen was founded in 1928. We include Aysen in the sample because cities are scarce 
and sparsely disseminated in the far South of Chile. We excluded information from the 2012 Chilean 
census due to significant methodological problems. The new 2017 census data on entities are not yet 
available. For more information, see Instituto Nacional de Estadísticas (2014).
9  The Republic of Chile is politically divided into regions, provinces, “comunas” (municipalities) and 
censal districts. Each municipality contains different “entities”: cities, towns, villages, and hamlets, 
among others.
10  There are 10 cities registered in the 2002 Census but not in the 1930 Census: Alto Hospicio (Region 
I), Estación Zaldivar (Region II), El Salvador (Region III), El Quisco (Region V), Quirihue (Region 
VIII), Padre de las Casas and Labranza (Region IX), Panguipulli and Los Muermos (Region X), and 
Padre Hurtado (Metropolitan Region). To homogenize the panel database, we added the population of 
these new cities to their corresponding originals. For example, since Alto Hospicio became independent 
of Iquique before the 2002 Census, the population of the former was added to that of the latter.
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3.1 � Exploratory analysis of the evolution of the Chilean urban system

Figure  3 shows the coefficient of variation, which is more robust than the stand-
ard deviation, to measure the σ-convergence or dispersion in the Chilean cities and 
LMAs, as well as the kernel distributions in 1930, 1952, 1970, and 2002. These 
periods correspond to the start and end-points of the period plus two other impor-
tant events in Chilean history. The first is the decade of the 1950s, when the Import 
Substitution Industrialization (ISI) protectionist policy was implemented. The sec-
ond is the 1970s, a decade of tremendous changes: Pinochet’s accession to power, 
abandonment of the ISI model, and growth of the tertiary sector to the detriment of 
industry, which was progressively concentrating in Santiago (Henríquez et al. 2006).

The results for the σ-convergence charts show that the coefficient of variation fol-
lows an almost persistent decline trend in the period, whether for cities or LMAs. 
This provides initial evidence of urban convergence in the overall Chilean urban sys-
tem. The kernel density functions for the four periods selected enable us to examine 
the relative population distributions of cities and LMAs in 1930 and the way these 
distributions changed over time until 2002. On the horizontal axis, the value 1 indi-
cates average city/LMA size in Chile, 1.5 a value 50% higher than this average, and 
so on. Compared with 1930, more cities/LMAs reported values below the Chilean 
average in 2002, and there is evidence for bimodality at the end of the period, with a 
second small mode situated at around 50% of the average.

Fig. 2   Cities and Labor Market Areas (LMAs) by Chilean regions and spatial regimes
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These results may reflect a general convergence process in the Chilean urban pop-
ulation, as already shown by the σ-convergence measures. We also find, however, a 
divergent group of regions with an urban size well above average, converging toward 
a higher population level than the other regions. This is a group of the 16 largest cit-
ies in the country, 11 of which belong to the ‘Central Zone’ of Chile. This zone was 
defined by the Chilean Economic Development Agency (CORFO) in 1950 and con-
tains five regions: Valparaíso, Metropolitan Region, O’Higgins, Maule, and Biobío 
(‘Appendix 2’). In this natural area, we find an urban subsystem composed of a net-
work of well-integrated and communicated cities of Spanish foundation, with linear 
integration and very high population growth (Olave 2005).

The Central Zone can be considered as a spatial regime that divides the country 
into two other regimes: the regions to the north (Arica and Parinacota, Tarapacá, 
Antofagasta, Atacama, and Coquimbo) and the regions to the south (Araucanía, Los 
Ríos, Los Lagos, Aysén, and Magallanes). The Northern regime is characterized 

Fig. 3   Coefficient of variation (left) and kernel log-densities (right) of city and LMA populations in 
Chile, 1930–2002



434	 A. Vallone, C. Chasco 

1 3

by the existence of a sparser collection of cities, some of which were built by the 
Spanish conquerors as a linear terrestrial corridor connecting Santiago with Lima. 
These cities owe their economic development to their rich saltpeter, nitrate, and cop-
per mines (Geisse 1977). The regions in the Southern regime are characterized by 
having being separated—for centuries—from the rest of the country because of the 
Mapuche insurrection. These zones have a rich variety of natural resources and great 
vegetal, animal, and fishing wealth. The cities and LMAs located in this regime are 
connected with each other and with the center primarily by the Austral Highway, 
with the exception of the Magallanes region, which has terrestrial communication 
through Argentina only.

Figure 4 represents the kernel distributions of these three regimes for cities and 
LMAs. Some interesting results to highlight concern the evolution of the central cit-
ies, which follow a pattern similar to that of the national group, in contrast to the 
rest of the country’s urban system. First, in the three urban groups, the central mass 
of distributions increases more or less significantly in 1970, peaking in the 2002 
distribution. This progressive concentration of probability mass can be interpreted 
as evidence of population convergence, consistent with the evolution of many other 
developed and developing countries (e.g., Anderson and Ge 2005 in China or Nitsch 
2001 in some European countries).

The convergence trend seems to be more acute in the Southern city group, 
although not uniformly so, due to an observed second mode starting in 1952 that 
corresponds to a club of regional cities converging to a higher population mean. The 
convergence trend is due to an increase in the size of mid-size cities, such as Puerto 
Varas and Coihaique, which have grown at greater rates than large cities (Henríquez 
et al. 2006). The pattern of diversification of this urban subsystem registered by this 
outcome is due, however, to higher population growth in the main regional cities of 
this regime (Temuco, Puerto Montt, Osorno, and Punta Arenas), which experienced 
agglomeration economies and population concentration.

Cities in the Northern regime have a changing bimodal shape over the period. 
In 1930, a main mode of city clubs was converging to a higher population mean, 
with a second mode of cities converging to a lower population mean. This situation 
changes from 1952 to 2002, when the main mode represents most of the cities of 
this cluster converging to the mean population value of this regime, with a second 
mode of larger cities converging to a higher population value. We thus find a club of 
larger cities at the beginning of the period—mainly in region II (Tocopila, Chuqui-
camata, María Elena, Taltal), which decreases gradually in population until 2002—, 
to which the smaller-sized club catches up. These results could demonstrate the 
dominance of some consolidated largest regional cities (Antogasta and La Serena, 
in this case) over the urban subsystem distribution, a phenomenon also observable in 
some European countries (Nitsch 2001).

As a robustness check, we also represent the kernel density functions of the 
LMAs, which exhibit a shape similar to that of their city counterparts, with the 
exception of the Northern regimen, probably due to a very small sample size (only 
11 functional areas). These results show that the convergence trend observed for the 
full set of Chilean cities is mainly determined by the central regime cities, which 
experienced periurban growth conditioned by the urban core of Santiago (Puertas 
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et al. 2014). The cities in the Northern and Southern regimes remain more or less 
polarized in two groups of diverging cities, however.

3.2 � Analysis of city‑size distributional mobility in the Chilean urban system

In order to estimate the transition matrix for the Chilean cities in the study period, 
we discretize the population variable using quintiles because they satisfy two 

Fig. 4   Kernel log-densities of city (a) and LMA (b) populations in Chile by spatial regimes, 1930–2002
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conditions. First, the initial classes include a similar number of observations (a total 
of 296 cities per quintile, with the exception of 3 quintiles with 288 cities); second, 
the discretization performs best in the first-order test for Markovian property from a 
set of alternative discretization methods (quartiles, sextiles and natural breaks). For 
the group of Chilean cities, the test values corresponding to the quintile discretiza-
tion are �2

26
= 35.76 , p value = 0.04 and = 34.16 , p value = 0.10 and for the LMAs, 

they are �2

18
= 39.54 , p value = 0.00 and LR = 32.75 , p value = 0.02.

Table  1 shows the results of the first-order probability matrix transition of the 
Chilean cities and LMAs. To aid in interpretation, the probabilities over 0.1 (before 
rounding) have been highlighted in the matrices. These outcomes yield three 
remarkable observations. First, as in many other social science phenomena, like 
income inequality analysis, path dependence plays an important role in dynamics 
with very low inter-class mobility, since the main diagonal of both matrices has the 
highest probability value for all states. Second, the mobility of the system occurs in 
small and medium-size cities. On the one hand, small and small-to-medium cities 
are more likely to move upwards in the distribution. 

For example, during the decades from 1930 to 2002, the majority of small cities 
with population in the first quantile (84.6%) remained in that size class at the end of 
each decade, while 1.3% moved up one class by the end of the decade. On the other 
hand, the medium and medium-to-large cities were more likely to move downwards. 
This was the case of cities with population values in the third quintile, which had 
an estimated probability of 0.170 to move to the second quintile. Third, the last row 
of Table 1 shows the ergodic or steady-state distribution ( � ) tending to a uniform 
distribution, demonstrating the presence of urban divergence. Detailed examination 
shows that the largest values of this distribution are located in the extreme quintiles, 
possible evidence of a slight tendency toward stratification into two convergence 
clubs—small versus large cities or LMAs—more or less consistent with the results 
for the kernel functions shown in Fig. 3.

Table 1   Markov probability matrices

Note: In italics, the ergodic distribution values and in bold, probabilities equal or greater 0.05

Cities LMAs

State Q1 Q2 Q3 Q4 Q5 State Q1 Q2 Q3 Q4 Q5

Q1 0.846 0.127 0.023 0.004 0.000 Q1 0.912 0.088 0.000 0.000 0.000
Q2 0.139 0.687 0.170 0.004 0.000 Q2 0.095 0.821 0.071 0.012 0.000
Q3 0.012 0.191 0.698 0.099 0.000 Q3 0.000 0.083 0.881 0.036 0.000
Q4 0.004 0.000 0.100 0.826 0.070 Q4 0.000 0.000 0.048 0.881 0.071
Q5 0.000 0.000 0.000 0.070 0.931 Q5 0.000 0.000 0.000 0.066 0.934
π 0.201 0.201 0.196 0.201 0.201 π 0.210 0.194 0.194 0.194 0.210
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3.3 � The role of spatial dependence in Chilean city‑size distributional mobility

As shown previously, the urbanization process cannot be considered as spatially 
homogenous because it is closely related to economic development. Population 
tends to locate in the largest cities producing city concentration and economies of 
scale. To shed light on this issue, we analyze the influence of spatial proximity in 
terms of city-size intra-distributional mobility. The estimation of SMC transition 
matrices makes this evaluation possible for Chilean urban dynamics. We first built 
the chain’s spatial lags, l(1) to l(5), for which we tested several definitions of the 
spatial weight matrix. We finally selected an inverse distance weights matrix, which 
is the impedance function of the gravity model, since distance is a key factor in city 
growth and spatial pattern of city sizes (Ioannides and Overman 2004).11 Table 2 
reports the five transition probability matrices corresponding to the spatial lag of 
city size and LMAs divided by quintiles.

Spatial independence in the distributional transitions has been contrasted with the 
Q statistic and the LR test, which take the following values: for the set of Chilean cit-
ies,�2

52
= 70.131 , p value = 0.048 and LR = 70.938 , p value = 0.024; for the LMAs, 

�2

36
= 36.470 , p value = 0.447 and LR = 40.47 , p value = 0.280. These results enable 

us to reject the null hypothesis of spatial homogeneity behavior for the Chilean cit-
ies. The nonsignificant values of these tests for the LMAs must be interpreted with 
caution, however, due to the asymptotic nature of the statistical inference.

We might infer a predominance of path dependence, independently of lag size, 
since the main diagonal probability matrix always assumes the major probability 
value for either cities or LMAs. Specifically, for the set of Chilean cities, the results 
in Table  2 provide clear evidence that the probability of an upward or downward 
move for a city in the population distribution will differ depending on its urban area 

Table 2   Spatial Markov chain matrices for the Chilean cities and LMAs

11  As a robustness check, similar results were obtained with other spatial weight specifications, such 
as driving distance and other neighborhood measures. Complete computations are available from the 
authors upon request.
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context. For example, the probability that a middle city (Q3) will move up to the 
next quintile (Q4) in the hierarchy is 11.8% when its spatial lag (in the preceding 
decade) contained on average a population of small cities (Q1), versus 19.4% prob-
ability when it contained on average a population of big cities (Q5). Conversely, 
the probability that a small-to-middle-sized city (Q2) will lose population, moving 
down to the first quintile in the hierarchy, is 17.8% when its spatial lag (in the pre-
ceding decade) contained on average a population of small cities (Q1), versus only 
7.1% (more than two times lower) when it contained on average a population of 
big cities (Q5). In most cases, cities tend to move up or down in the population 
hierarchy when their corresponding city neighbors are on average larger or smaller, 
respectively, which would be evidence of the existence of positive spatial autocor-
relation in urban population growth. In other words, the bigger Chilean cities are 
likely to agglomerate and promote growth in their neighborhood while the smaller 
peripheral ones suffer in general from endemic shrinking processes, inducing grow-
ing inequalities among cities in Chile.

The results are similar but less significant for the set of LMAs, particularly when 
their corresponding neighbors are in the intermediate quintiles of the population dis-
tribution (Q2–Q4). For example, the probability that a middle-sized LMA (Q3) will 
lose population, moving down to the second quintile in the hierarchy, is 25% when 
its spatial lag (in the preceding decade) contained on average a population of small 
LMAs, but only 4.3% when it contained on average a population of large LMAs. 
The effect of spatial dependence in LMAs population growth may reveal a certain 
degree of labor market interdependence in Chile. This phenomenon is promoted by 
the cooperation in economic, administrative and cultural functions, and the absence 
of barriers to factor mobility and trade, in a way that a perturbation in one LMA’s 
economy is felt in its neighboring LMAs (Hoàng 2013; Rozenblat and Pumain 2018).

In addition, there is an absorbing state in the l(5) of the largest LMAs’ spatial 
neighbors, in the large LMA quintile. That is, distributional movements in the group 
of large LMAs are practically null independently when they were surrounded (in the 
preceding decade) by large neighboring LMAs, respectively. This absorbing state 
situation also takes place in large cities neighbored by small ones. That is, the small-
est and largest cities and LMAs are not affected, in terms of population size, by 
neighbor cities’ size.

Finally, the ergodic or steady-state distributions, π, for neighboring cities of small 
and small-to-medium size, l(1)–l(3), are left-skewed distributions. This means that hav-
ing small-to-medium-size cities nearby increases the probability that a city will shrink 
and become a smaller town in the long run. The l(4) steady-state distribution corre-
sponding to the medium-large neighboring cities tends to a uniform distribution, as 
in the non-spatial case, but the l(5) chain of the largest neighboring cities has a right-
skewed distribution, implying a long-term concentration process. The results for the 
LMAs are quite similar. Hence, the highest probability that a city/LMA will become 
a metropolis occurs when it has very large neighboring cities/LMAs. These outcomes 
confirm the existence of general urban agglomeration economies in Chile, as recently 
observed by Soto and Paredes (2016). Hence, there is a process of positive spatial auto-
correlation in urban population, which tends to increase when they are surrounded by 
larger cities and LMAs, while they lose size when they are neighbored by smaller towns 
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or LMAs. Spatial dependence may exist due to suburbanization processes (a population 
shift from central urban areas into suburbs), or urban shrinkage and counter-urbaniza-
tion (a population loss by emigration in a relative short period of time).

3.4 � Analysis of the co‑evolution of the Chilean cities and their spatial neighbors

Table 3 presents the estimated probabilities for the joint transition of a city and its 
neighbors in the population distribution, that is, the LISA Markov chain correspond-
ing to the Chilean cities and LMAs. For example, the 0.838 value corresponding to 
the transition HH–HH (first cell) means that the probability that a large city with 
large neighbors (HH) will remain in this state is 83.8%.

The test of independence of the two chains yields �2

9
= 31, 225.42 with p < 0.001 

(for the city set) and �2

9
= 498.88 with p < 0.001 (for the LMAs), allowing us to 

reject the null hypothesis and demonstrating co-dependence of the movement of 
a city and its neighbor cities. As in the previous cases, movements are more fre-
quent within quadrants than between them, providing new evidence of high persis-
tence in the system. Apart from the main diagonal, the most frequent movements 
are from the states HH–LH and from states HH to HL. First, the evolution from 
HH state (larger cities surrounded, on average, by larger cities) to LH (smaller cities 
surrounded, on average, by larger cities) may be interpreted as an urban shrinkage 
phenomenon, which is a quick population loss in response to deindustrialization or 
counter-urbanization processes, with people migrating massively to the city cores 
or rural areas, respectively. Second, movements from states HH progressing to HL 
could be evidence of population concentration processes (Sayas 2006). The steady-
state distribution ( � ) shows higher probability values for LH and LL and lower val-
ues for HL and HH, indicating that only a few large cities (H state) and many small 
ones (L state) will exist in the long run. The results are not very significant for the 
LMAs, probably due to the problem of a small sample.

The Chilean urban system thus exhibits a clear and persistent pattern of agglomeration 
economies. The increase in the size of the intermediate cities found in the density plot dem-
onstrates a regional concentration process. Population concentration thus occurs not only 
in the MR of Santiago, but also in the main important cities at regional level. This find-
ing aligns with evidence for Latin American Countries such as Mexico (Pimentel 2000) 

Table 3   LISA transition matrices of Chilean city and LMA population, 1930–2002

Note: In italics, the ergodic distribution values and in bold, probabilities equal or greater 0.05

Cities LMAs

State HH LH LL HL State HH LH LL HL

HH 0.838 0.103 0.000 0.059 HH 0.957 0.000 0.044 0.000
LH 0.023 0.959 0.016 0.002 LH 0.000 0.991 0.000 0.009
LL 0.000 0.027 0.970 0.003 LL 0.006 0.025 0.969 0.000
HL 0.043 0.000 0.057 0.901 HL 0.000 0.105 0.000 0.895
π 0.083 0.461 0.384 0.072 π 0.000 0.919 0.000 0.082
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and Brazil (Baeninger 1997), where regional growth trends spread beyond large metro-
politan areas but usually maintain a high degree of demographic concentration in large and 
medium-sized cities, especially in large metropolitan areas (Da Cunha 2003, 2013).

Additionally, the directional LISA approach provides a visual summary of the move-
ments across the LISA Markov chain. This technique is also useful for identifying differ-
ences in the co-evolution of cities and neighbors across urban subsystems or spatial regimes, 
as is the case in Chile with the North, Central, and South urban subsystems. Figure 5 rep-
resents the standardized Directional LISA of these three Chilean urban spatial regimes. The 
movement vectors reflect relative changes in the LISA Markov chain between the first and 
last period of analysis (1930 and 2002, respectively). We have standardized the moves such 

Fig. 5   Standardized directional LISA and rose diagrams of Chilean cities and LMAs by spatial regimes, 
1930–2002
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that all arrows depart from the coordinate origin of the Moran scatterplot. For example, 
movements to the ‘Southwest’ part of the scatterplot indicate reduction in a city’s size con-
current with reduction in its neighbors’ size. Similarly, movements to the Northeast repre-
sent an increase in the size of both the city and its neighbors during the period.

To obtain a clearer view of the movement patterns, we build two rose diagrams, 
one representing the statistically significant co-movements of the directional LISA. 
The rose diagrams are divided into eight classes to visualize the usual HH, LH, LL 
and HL Moran scatterplot quadrants and the intermediate directions (e.g., a location in 
the 0°-to-45° corresponds to cities with higher population growth than its correspond-
ing neighbors). We compute these graphs for the Chilean cities and LMAs by spatial 
regimes. Analysis of the inference rose diagram for the cities shows that only move-
ments in the Northeast and Southeast areas of the Moran scatterplot are significant at 
1% (Fig. 5a). If we consider this area only, the most frequent movement in the Center 
regime (green) is the 0°-to-90° direction in the scatterplot, indicating great growth in 
the different cities and their neighbors from 1930 to 2002—a clear process of popula-
tion concentration in this regime. The same occurs in the Southern regime (red), though 
with much less intensity. The Northern regime’s most significant movement occurs in 
the 225°-to-360° direction in the scatterplot, meaning that Northern cities experienced 
a predominant joint reduction in size with their neighbors (blue). This change could 
indicate urban migration from this regime to the others, mainly the Central Zone.

In the case of the LMAs, depicted in Fig. 5b, the only areas significant at 5% in the 
rose graph occur in the 0°-to-45° and 90°-to-135° directions in the Moran scatterplot. In 
these two areas, the only significant movements are in the Central regime, in the 0°-to-45° 
direction of the scatterplot, showing greater growth in the different LMAs than in their 
neighbors. This finding is consistent with the agglomeration forces already detected in the 
city group, though in this case the degree of spatial dependence is much less important. 
Hence, spatial dependence acts only significantly in the Center regime for the LMAs, in 
the same direction though with less intensity than for the city group, as shown previously.

3.5 � Computation of spatial regime disparities in the co‑evolution of the Chilean 
cities

We use the GIMA to measure the existence of disparities or inequalities in Chilean 
city-size from 1930 to 2002. Table 4 reports mobility and � index decomposition, 
with their corresponding p values,12 for the Chilean cities and LMAs in order to 
detect differences in behavior between the spatial regimes, using a regime weight 
matrix in the computation.

In the case of the cities, only two periods, 1952–1960 and 1970–1982, show sta-
tistically significant spatial indexes, as does the last period for the group of LMAs. 
This result demonstrates differences in ranking mobility in space that coincide with 
structural change in the 1970s in Chile. During this period, ranking mobility between 
neighboring regimes (MW) was higher than mobility between non-neighboring 

12  In this paper, p values are computed with a 1000-replication process.



442	 A. Vallone, C. Chasco 

1 3

regimes (MnoW). Due to Chile’s peculiar geography and the location of the spatial 
regimes, the neighboring regimes are North-Center and South-Center, and the non-
neighboring regimes North–South.

This result implies less concordant movement of cities in the interaction between 
the Northern and Central regimes and between the Southern and Central ones, with 
respect to the interaction between the Northern and Southern regimes. A change in 
the rank of the cities in the Northern and Southern regimes relative to the Central 
regime is thus more likely to occur from the peripheral regimes to the Central regime. 
The asynchronous evolution of the cities in the peripheral regimes with respect to the 
Central regime is consistent with the reinforcement of the Chilean Central Zone due 
to abandonment of the ISI policy and trade liberalization. In effect, these changes in 
the national policy generated a strong migration trend from rural areas in the North-
ern and Southern regimes to intermediate and large cities in the Center, with produc-
tion structures based on comparative advantage goods (Geisse 1977; Geisse and Val-
divia 1978; Escolano Utrilla et al. 2007). They produced strong agglomeration forces 
around the Metropolitan Region of Santiago and the rest of the Central Zone.

3.6 � Analysis of the cohesion among the Chilean urban spatial regimes

Table 5 reports the rank decomposition index Θt1−t0
 and its p value. As in the previ-

ous method, we used the three Chilean urban regimes for cities and LMAs. During 
the periods 1930–1940 and 1982–1992 (1970–2002, for the group of LMAs), the Θ 
index is statistically significant and takes the highest values, which implies a high 
degree of ‘cohesion’ within the spatial regimes.

In this context, cohesion implies a stronger migration process among regimes. 
One drawback of this index, however, is that it cannot provide information about 
the direction of the migration flow. As stated before, specific events in Chile’s his-
tory suggest that the Central Zone was the main beneficiary of this transfer. In the 
period 1930–1940, the devastating consequences of the Great Depression produced 
bankruptcy, unemployment and rural–urban migration in Chile that benefited Central 
Zone growth (Geisse 1977; Geisse and Valdivia 1978; De Mattos 1999; Rodríguez 
and Rowe 2018). From the 1980s onward, the Central Zone underwent a selective 

Table 4   Spatial Kendall indexes for Chilean city and LMAs population 1930–2002

Note: Subscripts ‘W’ and ‘noW’ indicate the neighboring and non-neighboring spatial regimes. In bold, 
periods showing significant spatial indexes

Period Cities LMAs

MW MnoW τW τnoW p value MW MnoW τW τnoW p value

1930–1940 0.069 0.076 0.862 0.848 0.130 0.032 0.041 0.934 0.916 0.247
1940–1952 0.079 0.080 0.842 0.841 0.446 0.044 0.057 0.911 0.885 0.180
1952–1960 0.074 0.067 0.851 0.867 0.043 0.034 0.057 0.931 0.884 0.040
1960–1970 0.063 0.069 0.874 0.862 0.127 0.027 0.037 0.945 0.924 0.202
1970–1982 0.061 0.053 0.878 0.894 0.019 0.017 0.035 0.965 0.929 0.028
1982–1992 0.053 0.054 0.894 0.892 0.394 0.018 0.025 0.962 0.949 0.266
1992–2002 0.056 0.055 0.888 0.889 0.445 0.018 0.028 0.962 0.943 0.173
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agglomeration process based on higher income and better amenities, which attracted 
migrants with high human capital to its cities and LMAs (Cambiaso et al. 2001).

4 � Conclusion

In this paper, we use a set of novel tools to enable evaluation of the influence of 
spatial proximity among human settlements on the evolution of the cities to detect 
regional differences and interactions in their spatiotemporal dynamics. Some of the 
statistical techniques employed in this paper have not previously applied to urban 
studies and are revealed to be very useful for detecting spatial dependence and spa-
tial regimes in the evolution of an urban system. Intelligent combination of these 
tools, which can be computed with estdaR (an R package), detects different trends 
and spatial clusters in the development of Chilean cities over the period 1930–2002, 
focusing specifically on how spatial proximity affects relative sizes and rankings.

We have organized this procedure as a six-step method. The first step consists 
of the usual characterization of the cross-sectional distribution of the urban areas 
by means of standard statistical analysis and nonparametric estimations of density 
functions for a set of significant years. In the second and third steps, the growth 
process is modeled as a first-order stationary Markov chain to evaluate the effect of 
global and local spatial autocorrelation on the transition probabilities with a set of 
indices based on the spatial version of the standard Markov chain. The fourth, fifth, 
and sixth steps perform in-depth analysis to detect the existence and interaction of 
spatial regimes in the movement direction and ranking mobility of urban distribu-
tion. We use the LISA transition matrix and the directional LISA approach to cap-
ture the co-movement directions of cities and neighbors across the Moran scatterplot 
quadrants. We also study the existence of spatial regime differences in the ranking 
mobility of the Chilean urban distribution using the GIMA. Finally, we determine 
the ranking decomposition of city size by spatial regimes.

Application of this method to the Chilean cities and LMAs generates some interest-
ing conclusions. First, initial exploratory data analysis shows three spatial regime clus-
ters defined by the Northern Zone (regions I–IV and XV), Central Zone (regions V 
to VIII and the Metropolitan Region) and Southern Zone (regions IX–XII and XIV). 
These results reflect a general convergence process in the Chilean urban population at 

Table 5   Rank decomposition 
index Θ for Chilean urban 
population 1930–2002

Note: In bold, periods showing significant spatial indexes

Period θ p value Period θ p value

1930–1940 0.508 0.007 1930–1940 0.264 0.045
1940–1952 0.321 0.159 1940–1952 0.163 0.201
1952–1960 0.415 0.110 1952–1960 0.169 0.218
1960–1970 0.269 0.297 1960–1970 0.130 0.382
1970–1982 0.068 0.145 1970–1982 0.326 0.004
1982–1992 0.555 0.004 1982–1992 0.301 0.007
1992–2002 0.102 0.271 1992–2002 0.213 0.049
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a national level, which is mainly determined by the cities of the Central Zone, which 
experienced periurban growth starting in 1970, conditioned by the urban core of San-
tiago. Additionally, the significant socioeconomic transformations in this regime oper-
ating in Chile during this period promoted the emergence of intermediate cities, par-
ticularly associated with the exploitation of natural resources (Escolano Utrilla 2012).

The cities in the Northern and Southern regimes remain more or less polarized in 
two groups of diverging cities, however, with a club of consolidated larger regional 
cities experiencing agglomeration economies and population concentration. The 
long-run viability of these regional capitals—in terms of their efficiency, workabil-
ity, and livability—will depend on policymaking infrastructures capable of carrying 
out corrective intervention and regulation programs (Scott 2008).

Analysis of city-size distributional mobility demonstrates the important role played 
by path dependence in urban dynamics with very low inter-class mobility. Inter-class 
mobility of the urban system is concentrated in medium-size cities. Small and small-to-
medium-size cities have a higher propensity to grow, moving upwards in the distribu-
tion, whereas medium and medium-to-large cities are more likely to lose population and 
move downwards, confirming the overall convergence trend of Chilean cities. Detailed 
examination shows evidence of a tendency toward stratification, however, due to the 
practical immobility—inside the population distribution—of the smallest and larges cit-
ies, which is consistent with the results for the kernel functions shown in Fig. 3.

The estimation of the spatial Markov and LISA Markov matrices enables us to con-
clude that the probability a city will grow increases with its neighbors’ size, while 
large cities surrounded by smaller towns hardly experience any change in population. 
Spatial proximity thus matters in the urban system, usually by promoting a clear and 
persistent pattern of agglomeration economies, as is common in Latin American and 
in other less-advanced countries (Duranton 2016). The increase in the size of the inter-
mediate cities found in the density plot demonstrates a regional concentration process. 
Population concentration thus occurs not only in the Central Zone, but also in the main 
important cities at regional level, which have been the main reservoirs of migration 
flows from peripheral rural areas and foreign migrants since 1970 until now.

In its urban policy, Chile must recognize three different city clubs: the Central 
cluster, dominated by the city of Santiago; and the other regional Northern and 
Southern cities, which share their own characteristics and dynamics. A more bal-
anced regional urban system in the Northern and Southern regimes, growing at the 
expense of the nearby rural areas, will coexist with a highly concentrated Central 
regime, in which Santiago’s population spills over into its satellites, moving toward 
(still distant) future convergence.

Funding  The funding was provided by Ministerio de Economía, Industria y Competitividad, Gobierno de 
España (Grand No. ECO2015-65758-P).
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Table 6   List of the Chilean cities and labor market areas (LMAs) used in this paper

Regime Region Labor market area City

North XV Arica and Parinacota Arica Arica
I Tarapacá Iquique Iquique

Pozo Almonte
II Antofagasta Antofagasta Antofagasta

Mejillones
Taltal

Calama Calama
Chuquicamata

Tocopilla María Elena
Tocopilla

III Atacama Copiapo Caldera
Copiapó
Tierra Amarilla

Chanaral Chañaral
Diego de Almagro

Vallenar Huasco
Vallenar

IV Coquimbo La Serena Andacollo
Coquimbo
La Serena
Vicuña

Illapel Illapel
Los Vilos
Salamanca

Ovalle Combarbalá
El Palqui
Monte Patria
Ovalle

Center V Valparaíso Valparaiso Casablanca
Concón
Limache
Olmué
Placilla de Peñuelas
Quilpué
Quintero
Valparaíso
Ventanas
Viña del Mar
Villa Alemana

La Ligua La Ligua
Cabildo Cabildo
Quillota El Melón
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Table 6   (continued)

Regime Region Labor market area City

Hijuelas
La Calera
La Cruz
Nogales
Quillota

San Antonio Algarrobo
Cartagena
San Antonio

Los Andes Catemu
Los Andes
Llaillay
Putaendo
Rinconada
San Esteban
San Felipe
Santa María

RM metropolitan region Santiago Alto Jahuel
Bajo de San Agustín
Batuco
Buin
Colina
Curacaví
El Monte
Hospital
Isla de Maipo
La Islita
Lampa
Maipú
Paine
Peñaflor
Puente Alto
Quilicura
San Bernardo
San José de Maipo
Santiago
Talagante
Tiltil

Melipilla Melipilla
O’ Higgins Rancagua Codegua

Doñihue
Graneros
Gultro
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Table 6   (continued)

Regime Region Labor market area City

Lo Miranda
Machalí
Quinta de Tilcoco
Rancagua
Requínoa
San Francisco de Mostazal

Las Cabras Las Cabras
Peumo

Pichidegua Rengo
San Vicente de Tagua Tagua

Pichilemu Pichilemu
San Fernando Chimbarongo

San Fernando
La Estrella Peralillo
Lolol Nancagua

Santa Cruz
VII Maule Talca San Clemente

Talca Talca
Constitucion Constitución
Curepto Hualañé
Cauquenes Cauquenes
Río Claro Curicó
Río Claro Molina
Río Claro Teno
Linares Linares
Linares Longaví
Parral Parral
San Javier San Javier
San Javier Villa Alegre

VIII Biobío Concepción Concepción
Coronel
Hualqui
Lota
Penco
Santa Juana
Talcahuano
Tomé

Lebu Arauco
Curanilahue
Lebu
Los Alamos

Cañete Cañete
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Table 6   (continued)

Regime Region Labor market area City

Los Angeles La Laja
Los Ángeles
Mulchén
Nacimiento
Santa Bárbara

Yumbel Bulnes
Cabrero
Coihueco
Chillán
Monte Águila
Quillón
San Carlos
Yumbel

Cobquecura Coelemu
Quirihue

Tucapel Huépil
Yungay

South IX Araucanía Temuco Cunco
Freire
Gorbea
Lautaro
Nueva Imperial
Pitrufquén
Temuco

Carahue Carahue
Curarrehue Loncoche

Pucón
Villarrica

Angol Angol
Collipulli
Renaico

Curacautín Curacautín
Galvarino Purén

Traiguén
Ercilla Victoria

XIV Los Ríos Curaco de Velez Paillaco
Valdivia Los Lagos

Valdivia
Lanco Lanco

San José de la Mariquina
X Los Lagos Puerto Montt Calbuco

Fresia
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Appendix 2

See Fig. 6.

Table 6   (continued)

Regime Region Labor market area City

Llanquihue
Puerto Montt
Puerto Varas

Castro Castro
Ancud Ancud
Quellon Quellón
Osorno Osorno

Río Negro
Frutillar Frutillar

Purranque
Chaitén Chaitén
Futrono Futrono

La Unión
Rio Bueno

XI Aysén Coihaique Coihaique
Puerto Aysén

XII Magallanes Punta Arenas Punta Arenas
Natales Puerto Natales
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Fig. 6   Spatial regimes of urban subsystems in Chile
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