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Abstract Empirical analysis of regional convergence is normally based on data col-
lected at a geographical scale corresponding to states or large regions (NUTS-2 or
NUTS-3 for the case of Europe). However, it could be more realistic to consider that
the dynamics generating economic growth take place at a smaller spatial scale. Poten-
tial heterogeneity across local areas might be not correctly quantified if the analysis
is made at an aggregated geographical scale, which produces the so-called modifiable
areal unit problem (MAUP). The objective of this paper is to explore to which extent
MAUP has an effect on convergence analysis, in particular in the empirical estima-
tion of β-convergence equations. First, we show how aggregation of spatial data can
generate a problem of bias in the OLS estimator of β-convergence equations from
cross-sectional data, as well as inflating its variance. Second, by means of a numer-
ical simulation, we quantify the effect of geographical aggregation on the estimates
of β-convergence. Our experiment is based on real spatial structures of aggregated
and disaggregated data for different countries, and it numerically illustrates how a
modification in the spatial scale has a significant effect on this type of studies.

JEL Classification R11 · R12

1 Introduction

The study of convergence in GDP per capita, or similar variables, among territories
has been one of the central issues in the literature on economic growth and regional
economics. This interest is logical from the point of view of the design of economic
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policy as well as in the arena of economic theory discussion, because it is fundamental
to find empirical evidence about where and under what conditions it is possible to
observe processes of economic convergence or divergence. For example, identifying
patterns of divergence or very slow convergence among European territories would
provide the empirical evidence to support active and expensive territorial cohesion
policies, such as the European Union Cohesion Policy, which is now the most expen-
sive policy in the EU budget. From an academic point of view, the measurement of
convergence processes in different scenarios implies finding an empirical evidence
for the hypothesis of decreasing returns while divergence means the rejection of this
hypothesis giving evidence in line with endogenous growth models or the framework
of urban and regional economics.

There are different ways of studying convergence among territories, but the so-
called σ and, especially, β-convergence are the approaches most commonly applied.
σ -Convergence is perhaps the simplest approach. It basically quantifies the dispersion
of income per capita or a similar variable in different moments along time: if the
standard deviation of the variable of interest decreases along time, this is considered
as an indication of convergence. This kind of analysis is usually conducted as an
exploratory or preliminary analysis in the study of convergence. The seminal paper
of Baumol (1986) introduced the concept of β-convergence: the relation between the
growth rate of a particular economic variable during a period of time with the initial
level of that variable in a set of territories—countries or regions. The literature on the
econometrics for estimating β-convergence has been growing in the last few years.
Islam (2003) orMagrini (2004) present surveys of this literature classifying the studies
of β-convergence into different types of approaches: (1) panel data, (2) time series,
(3) club convergence and (4) spatial dependence.

In general, the literature on β-convergence does not pay much attention to the level
of spatial disaggregation on which the data are observable. This could be partially
explained by a practical reason: the lack of information at a detailed spatial scale
for many economies. For instance, in the case of European countries information on
value added or income is normally available only at the scale of NUTS-2 or NUTS-3
administrative regions, which are constructed as the aggregation of a range of smaller
areas of different characteristics. Additionally, a more theoretical reason justified that
the role of the spatial scale of the data was neglected: the neoclassical framework
on which the initial models were built on did not consider this issue as important.
Oppositely, alternative approaches for modelling economic growth explicitly consider
the role played by variables at a local level, where agglomeration economies and
other centripetal forces have an effect at a sub-regional level. As a consequence, the
aggregation of spatially disaggregated data into larger regions could cast some doubts
on the empirical evidence found in convergence studies based on spatially aggregated
data if regions are characterized by a high degree of sub-regional heterogeneity.

This paper studies the consequences of aggregation of spatial data in convergence
analysis. More specifically, we aim at quantifying the effect of neglecting small-scale
processes derived from estimating β-convergence equations based on spatially aggre-
gated data. Our research bases on previous studies that have already called the attention
to the effect of the aggregation, like in the work by Theil (1954) for the general case
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on linear regression models or, more recently, by Arbia and Petrarca (2011) for the
case of spatially dependent data.

The paper is structured as follows. Section 2 reviews the literature on economic
growth, particularly on how the spatial scale plays a role on this literature. Section 3
derives the properties of ordinary least squares (OLS) estimators of β-convergence
equations from cross-sectional data, and Sect. 4 quantifies this effect by means of
numerical simulations applied to different structures of spatial data. Finally, Sect. 5
closes the paper with some remarks and potential future research lines and possible
econometric solutions for the empirical analysis.

2 The relevance of the spatial scale in the regional convergence analysis

The neoclassical economic growth theories aremainly based on the role of the decreas-
ing returns in the different production factors. Solow’s model (1956) concludes that, in
the long run, all territories will converge to the same level of GDPpc, provided that we
have taken into account the relevant factors of an economy and that there exist decreas-
ing returns in the production factors. This model also predicts that there is a constant
growth of GDPpc in the steady state, which is equal to the technological growth. The
β-convergence translates this theoretical framework into a simple empirical equation:
the relation between the growth rate of a particular economic variable during a period
with the initial level of that variable in a set of territories. When another regressor
is considered it is absolute β-convergence, whereas if other explanatory variable is
included, it refers to a conditional β-convergence analysis. This estimation framework
allows for testing if poorer areas grow faster or not than the richer ones. If the parame-
ter β is estimated with a negative sign, this indicates that lower levels of income per
capita produce higher growth rates, leading to a process of convergence in the long run.
A positive estimate of β would reveal a process of divergence. Under this approach,
the spatial scale is not relevant because the logic of decreasing returns operates in the
same way in all spatial scales.

Alternative approaches in the literature on economic growth, however, pointed out
again the relevance of the spatial scale in the empirical analysis by taking into account
the presence of local processes of endogenous growth, as well as the relevance of the
spatial scale and agglomeration economies. For instance, Myrdal (1957), Boudeville
and Montefiore (1968) or Dixon and Thirlwall (1975), among others, highlight the
importance of cumulative processes in rich territories due to the movements of capital
and workers, which makes them even more attractive while the opposite situation hap-
pens to poor places. Romer (1990) developed the model of endogenous technological
change, which was later extended by Mankiw et al. (1992) considering human capital
as a relevant factor. These models argue that endogenous growth takes place mainly
at the local level. Additionally, a vast body of literature also pays attention to the
role of the scale—economies of scale—and agglomerations—economies of agglom-
erations, starting from the contributions by Marshall (1920). The gains derived from
large-scale production and from positive externalities associated with size lead to the
concentration of economic activity in central locations fromwhere the largest possible
market is accessible. Additionally, more recent literature also stresses the positive link
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between productivity and the presence of a diversified, highly qualified and versatile
labour pool in large cities (Duranton and Puga 2000; Glaeser 1994, 1998; or Quigley
1998). In line with all this literature, it is possible to identify central and peripheral
areas within regions, which is one of the essential concepts in the New Economic
Geography (NEG) models (Krugman 1991; Krugman and Venables 1995 and Fujita
and Krugman 1995). According to this literature: (1) there are incentives to largely
concentrate the production in central areas; and (2) the intra-regional and inter-country
processes of specialization and trade reinforce the processes of concentration and, in
consequence, of divergence. Under a NEG approach, cities and metropolis—local
areas—are in the centre of the analysis, drawing the attention to cities as the missing
link between the macroeconomic theories of growth and the spatial empirical analysis.

Summarily, approaches such as the classical regional economics or theNEGmodels
have a more local-based perspective than their neoclassical counterparts, which pays
no attention to spatial aggregation.

Besides the theoretical discussion on the appropriate spatial scale, from the per-
spective of the empirical estimation of β-convergence equations, the role played by the
spatial scale on which models are estimated is equally interesting if the conclusions
of the empirical analysis could partially depend on this scale. This issue is generally
denominated as a modifiable areal unit problem (MAUP), and its consequences have
been explored since the 1930s (see Gehlke and Biehl 1934), and later explained in
detail by Openshaw and Taylor (1979) or Openshaw (1983). Basically, one of the
effects of the MAUP—the so-called scale effect—refers to the aggregation bias that
emerges if data are aggregated into larger units—for example, cities to regions.1

The study of the effect of data aggregation on the estimation of empirical models
has a relative long tradition in economics. For instance, Theil (1954) already stud-
ied these effects for the case of linear regression models. More recently, Arbia and
Petrarca (2011) explored the effects of aggregation in a scenario of special depen-
dence in the data.2 However, the estimation of β-convergence equations has some
particularities that make the issue of data aggregation specially interesting. First, the
literature generally focuses on the effects of data aggregation in linearmodels,while the
usual functional forms applied for β-convergence equations are nonlinear. Moreover,
the study of processes of convergence normally distinguishes between convergence
between countries or between regions. While the definition of “country” is univocal,
the definition of “region” is a more unclear concept—as argued previously—and sev-
eral alternatives for grouping basic spatial units could be used to construct aggregated
regions. This makes the empirical study of regional convergence to be at least partially
conditioned by the particular configuration of regions on which the study is based.

To illustrate the role played by the spatial scale for regional convergence, a simple
estimation of an absolute β-convergence equation has been made for the case of
the European Union. Annual data on GDP per capita in Purchasing Power Standard
(PPS) have been taken at the scale of NUTS-3 regions, and absolute β-convergence

1 Additionally, the zoning effect refers to the shape of the spatial units and the problem that a modification
of their shape can also change any empirical result. However, in this paper we just pay attention to the
problem of aggregation.
2 Also see Rey and Montouri (1999) and Janikas and Rey (2005).
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Table 1 β-Convergence equation for the EU-28 (2000–2011) for different spatial scales

NUT-1 NUT-2 NUT-3

βa −0.31*** −0.26*** −0.23***

Constant 3.36*** 2.85*** 2.52***

λb (%) 3.37 2.74 2.38

R2 57.72 44.82 36.44

N 98 272 1305

*** Estimates significantly different from zero at 1%
a Source: Eurostat REGIO database, ESA-1995. Parameter obtained from the estimation of a unconditional
β-convergence equation like Eq. (1)
b The speed of convergence (λ) is obtained from the following expression: λ = −ln(1+β)

T 100, being T the
number of years

equations were estimated for different definitions of regions, namely NUTS-1, NUTS-
2 and NUTS-3. The dependent variable is the growth rate of GDP per capita between
200 and 2011 to be regressed on the (log of) GDP per capita in 2000. A summary of
the results is reported in Table 1.

Results in Table 1 show how the estimate of the β parameter at the scale of large
NUTS-1 regions is remarkably higher than if the equations were estimated at the
scale of NUTS-2 or NUTS-3 regions. Paying attention not only to the estimates of β

parameters, but to the speed of convergence, it ranges between 2.38 (NUTS-3) and
3.38% (NUTS-1) again depending on the specific definition of region applied. As a
consequence, the time required to reduce the regional differences in the EU to one
half of their initial levels—the so-called half-life, would be of around 20 years if the
regions are defined as NUTS-1 units but approximately 30 if they were as NUTS-3.

This type of issues on regional convergence analysis has deserved some attention
in previous empirical literature. Miller and Genc (2005), for example, estimated β-
convergence equations under several possible spatial divisions for the US aggregating
data available at county level, finding only a very minor effect of the scale on their
results. More recently, Resende (2011) based on data collected at several spatial scales
for the case of Brazil finding that their results were heavily conditioned by the specific
criterion used to form regions: by using data grouped by Brazilian states he estimated
a significant and negative β parameter, but the conclusion was the opposite when the
β-convergence equationswere estimated at amunicipal scale. Evenwhen these studies
are interesting, they are limited to specific cases and particular periods of time, which
limits the possibilities of drawing any general conclusions from them. The next section
studies analytically the estimation of β-convergence equations and the properties of a
least squares estimator of equations from spatially disaggregated and aggregated data.

3 The effect of the aggregation on the OLS estimation of β-convergence
equations with cross-sectional data

The literature studying the empirics of estimating of β-convergence equations started
with the cross-sectional analyses of Baumol (1986), Barro (1991), Barro and Sala i
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Martin (1991) or Mankiw et al. (1992), to later accommodate estimators capable to
exploit panel-data structures as proposed by Islam (1995) or Lee et al. (1997).3

While panel-data estimators are the type of estimation strategymost commonly fol-
lowed by far in the context of analysing country data, in the context of regional analysis
is not uncommon to base the estimation of β-convergence equations on cross-sectional
data due to information availability (see, e.g., Azzoni 2001, for Brazil; Rodríguez-Pose
and Sánchez-Reaza 2002, for Mexico; Cuadrado 2001, for Europe; or Raiser 1998,
for China). This section studies the properties of a traditional ordinary least squares
(OLS) estimator of β-convergence equations based on a cross section of data.

Let us assume an economy that is divided into different spatial units that are created
according to several criteria for geographical aggregation. More specifically, suppose
that the economy is divided into i = 1, . . . , n basic spatial units—municipalities
or cities—that are aggregated into j = 1, . . . ,m(m < n) groups—regions. In line
with the ideas of New Economic Geography and endogenous growth theories, we
assume that the process of income generation takes place at the basic spatial scale of
n units. This section studies the effects on the conclusions of convergence analysis
depending on the scale at which the outcome data are observable: directly observable
at the original scale (n local places) or at the aggregated scale (m regions). If the
conclusions about the coefficient depend on the level of aggregation, this will be a
signal that a potential MAUP is somehow “contaminating” our analysis.

Our starting point will be the formulation developed in Arbia and Petrarca (2011)
for the case of cross-sectional data in a linear regression model that are generated
at a given spatial level, but then observed at a more aggregate scale. The following
equation describes the model to be estimated at a disaggregated scale with n spatial
units:

y = Xβ + u (1)

where y is the (n × 1) vector with the dependent variable, X is a (n × K ) matrix
with the K regressors considered in the equation, β is the (K × 1) vector with the
parameters to be estimated and u is the typical (n × 1) disturbance, which is assumed
to distribute normally around zero with a constant variance σ 2. If the data of the n
units are aggregated at a higher geographical scale with m locations, the new data set
is defined by:

y∗ = Gy (2)

X∗ = GX (3)

u∗ = Gu (4)

Being G the aggregation matrix with dimensions (m × n), including elements like:

G =

⎡
⎢⎢⎣
g11 . . . g1r1 . . . 0 . . . 0
0 . . . 0 g21 . . . g2r2 0 . . . 0

· · · · · ·
0 . . . 0 · · · gm1 . . . gmrm

⎤
⎥⎥⎦ (5)

3 For a recent review of advanced estimation strategies, see Elhorst et al. (2010).
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where each row indicates that the original data are aggregated—grouped—into m
different locations, being the number of original spatial units differently aggregated
in each case (r1,r2, . . . , rm).

In this context, the aggregated equation is defined as:

y∗ = X∗β∗ + u∗ (6)

where

E
(
u∗) = E (Gu) = 0 (7)

Var
(
u∗) = E

(
u∗u∗′) = E

(
Guu′G′) = GG′σ 2 (8)

In their paper, Arbia and Petrarca (2011) deal with the specific case of perfect aggre-
gation where the elements of this aggregation matrix G are unitary values:

G =

⎡
⎢⎢⎣
1 . . . 1 . . . 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0

· · · · · ·
0 . . . 0 . . . 1 . . . 1

⎤
⎥⎥⎦ (9)

Being the number of ones in every row always equal to r = m/n. They show how the
OLS estimator of β∗(β̂∗

) of equation (6) is an unbiased estimator of β in the original
equation (1), being the variance of the OLS estimator in the aggregated equation (6)
bigger than the original variance of the OLS estimator in (1):

E
(
β̂

∗) = E
([

X ′∗X∗]−1 X ′∗ y∗) = E
([

X ′G′GX
]−1 X ′G′Gy

)

= E
([

X ′X
]−1 X ′ y

)
= E

(
β̂
) = β (10)

Var
(
β̂

∗) = GG′σ 2 [
X ′G′GX

]−1
> Var

(
β̂
)

(11)

In other words, the scale effect does not represent a problem of bias, although it
generates an efficiency problem.

The β-convergence equations, however, are not characterized by this same response
to the scale effect, due to some particularities in the aggregation scheme of the depen-
dent and the independent variables and the logarithmic form of the equation. In order
to justify this claim, let us state the typical absoluteβ-convergence equations estimated
for a cross section of n spatial units as:4

ln

(
yit
yi0

)
= α + β ln (yi0) + uit ; or

ln (yit ) = α + (1 + β) ln (yi0) + ui (12)

4 A similar exercise could be done for conditional β-convergence equations just by adding more regressors
to this basic equation. We have opted for working with this simple case for the sake of simplicity, but the
main conclusions in terms of the effects of aggregation on its estimation, however, would hold.

123



480 A. D. Dapena et al.

where the growth in an economic indicator y as GDP or income, value added, etc.,
per capita between periods 0 and t in location i regressed on the logs of the initial
variable per capita (yi0) on the same location. One problem with aggregated data for
estimating equations like (12) is that the nonlinearities in the dependent and explana-
tory variables are not compatible with the equivalences between the aggregated and
disaggregated equation. More specifically, the aggregate version of the absolute β-
convergence equations equation will be:

ln

(
y∗
j t

y∗
j0

)
= α∗ + β∗ ln

(
y∗
j0

)
+ u∗

j t ; or

ln
(
y∗
j t

)
= α∗ + (1 + β∗) ln

(
y∗
j0

)
+ u∗

j t (13)

Being:

y∗
0 = Gy0 (14)

u∗ = Gu (15)

Matrix G represents the aggregation scheme for the initial values per capita, with a
typical element gi j indicating the population share of the basic spatial unit i on the
aggregated location j measured in the initial period. In contrast to the type of equations
aggregated as in (6), the dependent variable of the equation estimated with aggregate
data is given by:

ln
(
y∗
t
) = ln

(
Hyt

) �= Gyt (16)

where H is the aggregationmatrix where a typical element hi j indicates the population
share of the spatial unit i on region j measured in the final period. In general, this
matrix is not necessarily equal to G, given that the elements of H are the population
shares in the final period and the populations in each period can be different.

Note that Eq. (10) states that the expected value of the OLS estimator with aggre-

gated data is given by E
([

X ′G′GX
]−1 X ′G′Gy

)
and it is equal toβ, while a different

aggregation scheme would modify the form of the estimator being its expected value

E
([

X ′G′GX
]−1 X ′G′Hy

)
. When the elements of matrix H are larger than the ele-

ments of G, the estimator will present a positive bias, while a negative bias will be
the consequence of the elements of H being smaller than those in G. The comparison
between these two matrices can be made in terms of the Euclidean norms of their

row vectors, comparing
√
h′
j h j with

√
g′
j g j . These norms would account for the

concentration of population shares on each region j—they can be interpreted as a
Herfindahl index for the distribution of population in region j . If population in the
final period is more unequally distributed than in the initial period and, in general,√
h′
j h j ≥

√
g′
j g j this would lead to a positive bias in the estimation of β. The

opposite situation will happen when the population in the final period is more evenly
distributed within regions than in the initial period.
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Even if the aggregation criterion reflected in H was the same as the aggregation
scheme present in matrix G, an additional problem derived for the nonlinear nature
of the β-convergence equation will be present, affecting the properties of the OLS
estimation from aggregated data. Assuming a case where G = H , note that ln

(
y∗
t
) =

ln
(
Gyt

) �= Gyt . This problem is the samewith thematrix of explanatory variables X∗
(which in the case of absolute β-convergence equations corresponds to the log of the
initial levels y∗

0) given that ln
(
y∗

0

) = ln
(
Gy0

) �= G ln
(
y0

)
.5 Specifically, we could

argue that ln
(
y∗
t
) ≤ H ln

(
yt

)
and ln

(
y∗

0

) ≤ G ln
(
y0

)
basing on Jensen’s inequality.

These inequalities imply that Eqs. (10) and (11) do not hold, affecting the expected
value and the variance of the OLS estimator of an aggregate equation as (6). The
dependent variable y∗

t in the case of β-convergence equations with aggregated data
is ln

(
Hyt

)
, being the matrix of regressors X∗ given by ln (GX). The expected value

and the variance of the OLS estimator for this aggregated equation are, respectively:

E
(
β̂

∗) = E
([

X ′∗X∗]−1 X ′∗ y∗
t

)
= E

([
ln (GX)′ ln (GX)

]−1 ln (GX)′ ln
(
Hyt

))

�= E
([

X ′G′GX
]−1 X ′G′Gyt

)
�= β (17)

Var
(
β̂

∗) = Var
([

X ′∗X∗]−1 X ′∗ y∗
t

)

= Var
([
ln (GX)′ ln (GX)

]−1 ln (GX)′ ln
(
Hyt

)) ≥ σ 2 [
X ′G′GX

]−1

≥ Var
(
β̂
)

(18)

The result in (18) is equivalent to (11), indicating the augmenting effect of the aggre-
gation on the variance of the estimator. However, Eq. (17) shows how a problem of
bias emerges now as well, in contrast to the result in (10).6 The scale effect in the
estimation of the β-convergence equations leads, in summary, to estimates that can
be biased and with higher variance than in the original disaggregated equations. The
next section of the paper explores by means of a numerical simulation the empirical
implications of this problem.

4 Convergence with spatially disaggregated and aggregated data: some
numerical experiments

Once the effect of the aggregation level on the OLS estimator has been studied, it is
important to quantify its consequences when applied to the empirical analysis of β-
convergence. A numerical experiment is conducted in this section with this purpose in

5 For the sake of clarity in the exposition, in the remaining of this section we refer to the matrix of potential
regressors X included as explanatory variables in the specification of a general β-convergence equation.
Absolute β-convergence equation only considers initial values y0 in matrix X .
6 The positive or negative sign of the bias depends on the aggregation schemes represented on matrices G
and H—because of the per capita nature of the dependent and explanatory variables—and it is not straight-
forward, since their elements are influenced by the population dynamics of the spatial units aggregated into
larger regions. The issue of the logarithmic transformation adds more complexity to the study of the bias.
Details are provided in the “Appendix”.
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mind. Our experiment assumes that the data are generated at the level of i = 1, . . . , n
basic spatial units by the following equation that determines the growth in the relevant
variable as:

ẏi = α + β ln(yi0) + ui ; or

ln(yi ) = α + (1 + β) ln(yi0) + ui (19)

being yi0 the value of the relevant variable at the starting period and yi its final value.
In the experiment, we have arbitrarily set the value of the intercept α at 1.1, and
u ∼ N (0, 0.5). The idea is to compare the OLS estimates of parameter β, which is
the key element in the analysis of β-convergence, in two situations that vary on the
spatial scale on which the data are observed:

1. the reference situation or benchmark, that assumes that we have data observable at
the same scale at which they are generated, i.e., for the i = 1, . . . , n basic spatial
units

2. a case where the data are only observable at an aggregated spatial scale into j =
1, . . . ,m units. In this second scenario, we assume that we only have data on y∗

j
and y∗

j0 and from them we estimate the parameters of the equation:

ln(y∗
j ) = α + (1 + β) ln(y∗

j0) + u∗
j (20)

In order to have a numerical experiment as realistic as possible, we have taken as
reference for simulating possible structures of aggregation of spatial data the real sub-
regional and regional divisions in three different countries: namely the USA, Germany
and Chile. These three countries are taken as examples of developed economies, each
of them presenting a particular configuration in their regional divisions. For example,
the basic spatial units for the case of Chile are the comunas (n = 100) that form
the total of m = 13 administrative regions. Similarly, in Germany we can find the
basic spatial units defined by the concept of kreise (n = 393) that are aggregated
into m = 14 länders. Finally, the USA is divided into n = 3088 counties that are
aggregated forming the m = 50 states.

In order to provide with sensible values to the growth equation depicted in (20),
we have taken real data for the initial value of the variable of interest. In the cases of
the USA and Chile, we have defined yi0 as the income per capita, while in the case of
Germany—due to data availability at the desired spatial scale—it is defined asGDPper
capita. The time span on which we estimate (20) is also different for each country and
conditioned by data limitations: for the USA there is a series of income at county level
from 1969 to 2011 published by the Bureau of Economic Analysis; in Chile we have
data on income for the comunas between 1996 and 2006 available in theCasen Survey
of the Ministry of Planning; and for Germany the Destatis Statistisches Bundesamt
contains estimates of GDP for the kreise between 2000 and 2011. Additionally, data on
population are required to have indicators of income or GDP per capita.We have opted
for using real data on population as well. Note that data of population in the initial
and the final periods are required in order to aggregate spatially the per capita values
of the variable of interest. The values per capita in the initial and final periods—the
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Table 2 Summary statistics for the different scenarios

Germany (2000–2011)
393 Kreise, 14 Länders

USA (1969–2011)
3088 Counties, 50
states

Chile (1996–2006)
100 Comunas, 13
Regions

x0 23,406 3024 348,419

(GDP p.c., e 2000) (Income p.c.,
$ 1969)

(Income p.c., CLP
1996)

Initial population
(means across n
units)

191,189 64,904 89,950

Final population
(means across n
units)

189,926 100,606 107,197

explanatory anddependent variable in (20), respectively—are aggregated byweighting
the values in levels at the scale of basic spatial units by their population shares on these
periods. Summary statistics of all these variables are given in Table 2.

All these pieces of information have been used for the data generating process
described in Eq. (19). The key element on this equation is the parameter β, whose
value determines if we have a process of convergence—if negative—or divergence—
if positive. In the experiment, different scenarios have been considered depending on
the value of parameter β, setting its values ranging between −0.3 and 0.3. For each
value of the parameter and for each country, we have simulated 5,000 trials and we
have estimated the parameter by applying OLS in scenarios (1) and (2).

Table 3 summarizes the results obtained on each case, reporting the true value of
the parameter together with the average OLS estimate, the empirical variability of the
estimates—standard deviation—and a measure of deviation—mean squared error—
between the true values and the OLS estimates.

Additionally, Fig. 1 visually illustrates the results of the simulations reported in
Table 3. In these plots the x axis represents the true value of the β parameter considered
in Eq. (20). For each value of β, the mean estimate obtained in the 5000 trials using
disaggregated or aggregated data is represented in the y axis. If the results were not
biased, we would expect a 45◦ line crossing the origin of the two axes with the true
values and the estimates. 95% confidence bandwidths are also plotted, based on the
normal distribution of the estimates.

As expected, the empirical variability of the OLS estimates are substantially lower
when estimated from the n basic data points than in the case of the m aggregated
spatial units, since the sample size are smaller when working with aggregate data.
Not surprisingly, these differences are more remarkable for the case of the USA when
compared to the other two countries in the experiment, given that the ratio r = m/n
is much smaller for the USA. The loss of efficiency derived from estimating equation
(20) with m aggregated regions instead of estimating (19) with n spatial units is not
entirely produced, however, by this inflation of the variance. One substantial part can
be attributed to the bias as stated in Eq. (17). The estimates based on aggregated data
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Table 3 Results of an OLS estimation with different spatial configurations (5000 trials)

True β OLS estimates

Germany (2000–2011) USA (1969–2001) Chile (1996–2006)

n = 393 m = 14 n = 3088 m = 50 n = 100 m = 13

−0.30 −0.298 −0.360 −0.301 −0.351 −0.299 −0.398

(0.073) (0.256) (0.037) (0.142) (0.114) (0.379)

[0.005] [0.069] [0.001] [0.023] [0.013] [0.153]

−0.20 −0.202 −0.258 −0.201 −0.254 −0.199 −0.298

(0.073) (0.258) (0.037) (0.143) (0.114) (0.384)

[0.005] [0.070] [0.001] [0.023] [0.013] [0.157]

−0.10 −0.098 −0.155 −0.099 −0.157 −0.099 −0.195

(0.073) (0.259) (0.037) (0.143) (0.114) (0.389)

[0.005] [0.070] [0.001] [0.024] [0.013] [0.160]

−0.05 −0.049 −0.103 −0.051 −0.109 −0.051 −0.142

(0.073) (0.260) (0.037) (0.144) (0.114) (0.392)

[0.005] [0.071] [0.001] [0.024] [0.013] [0.162]

0.050 0.051 0.001 0.051 −0.012 0.051 −0.033

(0.073) (0.262) (0.036) (0.144) (0.114) (0.399)

[0.005] [0.071] [0.001] [0.025] [0.013] [0.166]

0.1 0.100 0.054 0.099 0.037 0.102 0.023

(0.073) (0.263) (0.037) (0.145) (0.114) (0.402)

[0.005] [0.071] [0.001] [0.025] [0.013] [0.168]

0.2 0.201 0.160 0.199 0.132 0.201 0.138

(0.073) (0.265) (0.037) (0.145) (0.114) (0.410)

[0.005] [0.072] [0.001] [0.026] [0.013] [0.172]

0.3 0.302 0.267 0.301 0.225 0.301 0.257

(0.073) (0.268) (0.036) (0.144) (0.114) (0.418)

[0.005] [0.073] [0.001] [0.026] [0.013] [0.176]

Average estimates are reported for each true value of parameter β. Empirical standard deviations are shown
in parentheses. Mean squared errors between true values and estimates are shown in brackets

present a negative bias underestimating the true value of the β parameter. The negative
bias is partially a consequence of populations generally more uniformly distributed
within each type of aggregated region (US states, German länders or Chilean regiones)
in the final period (2011 for the USA and Germany and 2006 for Chile) than in the
initial one (1969 for the USA, 2000 for Germany and 1996 for Chile).

Although the simulations have beenmade for countrieswith different characteristics
and spatial configurations, the results seem to be robust. As expected, the mean of
the OLS estimates with n data points are practically equal to the true coefficient. In
contrast, for each value of the true parameter, the regression based on aggregate regions
tends on average to estimates smaller than the real coefficient. The mean bias of the
eight values set for parameter β in the simulation is −0.051 for Germany, −0.061 for
the USA and −0.082 for Chile. In summary, the effect produced by the aggregation
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of the spatial units in our experiments negatively biases the conclusions drawn from
the OLS estimation of β-convergence equations.

5 Conclusions

The study of convergence is one of the more prolific research lines in the litera-
ture on regional economics. Conclusions derived from convergence analysis provide
the support to maintain, reduce or increment expensive policies, such as the Regional
Cohesion Policy in the EU. Different improvements have been proposed in the estima-
tion techniques applied to quantify empirically the speed of convergence or divergence
among territories. However, most of this empirical literature does not pay attention to
how relevant could be the geographical scale in which the convergence is measured,
although one of the most important differences among neoclassical theoretical equa-
tions and other alternative approaches is the spatial scale in which economic growth
is studied.

The objective of this paper is to provide an evaluation of the empirical consequences
on changes in the spatial scale in the most commonly used approach for convergence
analysis: the estimation of equations of β-convergence. The characteristics of an OLS
estimator applied to cross-sectional data—which is a relatively common situation in
empirical studies—are derived.We found that geographical aggregation produces esti-
mators with higher variance—part of it produced by the reduction in the sample size,
but also biased if comparedwith theOLS estimator based on the original disaggregated
spatial units.

To provide quantitative evidence about the effect of the spatial scale in β-
convergence analysis, we conduct numerical simulations with different spatial
configurations of real countries: Germany, USA and Chile. The results in the sim-
ulation confirm the loss of efficiency caused by the aggregation of spatial data, some
of which is due to differences in sample size, but the negative bias generated is also
significant. One important implication derived from our results is that the estimation
of β-convergence equations based on aggregated data should take into account that
an important part of the information, related with intra-regional dynamics, could be
missing.

Our results, however, do not necessarily indicate that estimates of β-convergence
equations with aggregated data are misleading or not useful: in some situations the
availability of spatially disaggregated data is very limited and some type of aggregation
is required. In addition, in economies where aggregate regions are characterized by
low levels of intraregional heterogeneity, aggregation of spatial data could be not a real
issue when dealing with convergence analysis. Our results, however, suggest that the
spatial scale on which data are taken for estimating β-convergence equations should
be carefully defined, since this specification can be partially affecting the conclusions
of the analysis.

Our analysis opens the discussion about the suitability of econometric techniques
that are not affected by MAUP problems. In this regard, multilevel estimation (see,
among others, Goldstein 1986, 2011, Hox et al. 2010), which allow for using data at
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different scales is particularly interesting if we want to identify different spatial scales
of convergence avoiding the potential bias derived from the data aggregation.

Finally, there are relevant issues not studied here thatwould require further research.
For instance, this paper studied theMAUPeffect on a simpleOLS estimatorwith cross-
sectional data. The proliferation of time series with regional data has made possible,
however, applying estimators based on a structure of panel data. The consequences
of spatial aggregation in the context of estimators applied to dynamic panels are an
important issue that should be included in the research agenda on the estimation of
β-convergence equations.

Appendix: The bias of OLS estimation in β-convergence equations from
aggregated data

Equation (17) shows how an OLS estimation of β-convergence based on aggregated
data can be affected by a problem of bias. This problem is caused by the differences
in the aggregation matrices G and H , which, respectively, affect the values of the
explanatory and dependent variables, and for the nonlinear nature of theβ-convergence
equations. We will show this basing on the basic formulation:

ln (yit ) = α + (1 + β) ln (yi0) + ui (21)

Considering vector y0, which contains the initial values included as regressor in the
β-convergence equation, Jensens’s inequality states that and ln (Gy0) ≤ G ln (y0).
Note that it is possible to rewrite this inequality as:

ln (Gy0) = ĉ0G ln (y0) (22)

where ĉ0 is a diagonal (m × m) matrix with a typical element ĉ0 j defined as:

ĉ0 j =
ln

(
g′
j y j o

)

g′
j ln

(
y jo

) ≤ 1 (23)

In (23), g′
j refers to the (row) vector of matrix G that aggregates the initial values of

yo that belong to the aggregated region j ( y jo). Similarly, concerning the aggregation
of the dependent variable, we can write:

ln
(
Hyt

) = ĉt H ln
(
yt

)
(24)

where the elements of the diagonal matrix ĉt are given by the expression:

ĉt j =
ln

(
h′
j y j t

)

h′
j ln

(
y j t

) ≤ 1 (25)
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Equation (17) can be consequently rewritten as:

E
(
β̂

∗) = E
([

y∗′
0 y∗

0
]−1 y∗′

0 y∗
t

)
= E

([
ln

(
Gy0

)′ ln
(
Gy0

)]−1
ln

(
Gy0

)′ ln
(
Hyt

))

= E

([
ln

(
y0

)′ G′ ĉ′0 ĉ0G ln
(
y0

)]−1
ln

(
y0

)′ G′ ĉ′0 ĉt H ln
(
yt

))
(26)

In a situation as the described in Arbia and Petrarca (2011), where the equation is
linear (ĉt j = ĉ0 j = 1; j = 1, . . . ,m) and the aggregation scheme is the simple sum
of spatial units (G = H) makes (26) to be equal to Eq. (10) and the OLS estimator is
unbiased. β̂

∗
will be biased, however, in situations that depart from that baseline. The

specification of a β-convergence equation as depicted in (21),with nonlinear relations
and different aggregation schemes in the dependent variable and the regressor makes
the OLS estimation biased, depending the sign of the bias on the relationship between
the matrices G, H , ĉ0 and ĉt.
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