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Abstract In this paper, the problem of determining the location and quality of new
facilities in a network market is analyzed. Customers make their choice according to
an attraction function, which is directly proportional to the facility quality level and
decreasing with respect to the distance between customers and facilities. In order to
solve the location problem, both an integer linear program and an exact algorithm are
proposed. These algorithms are embedded into a branch and bound-based algorithm for
solving the joint location–quality problem. An illustrative example where customers
present different distance perception is presented.

JEL Classification C61 · L13

1 Introduction

The problem of locating r facilities in a network where other competing facilities
already exist was formalized by Hakimi (1983) who used the denomination (r |X p)-
medianoid to call the optimal set of r points when the competitor has p facilities
located at X p. The demand was assumed to be concentrated in the set of nodes, and
the objective was to maximize the demand captured. Some node optimality results
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538 R. Suárez-Vega et al.

guarantee the existence of an optimal solution in the set of nodes for different customer
choice rules. The simplest choice rule is the binary one according to which customers
patronize the closest facility. Depending on whether goods are essential or not (inelastic
or elastic demand), consumers use all their buying power or they may not satisfy all
their demand if the conditions in which the service is provided are considered not
good enough. Static maximum capture location models have been studied by ReVelle
(1986), Benati and Laporte (1994), Dasci et al. (2002), Eiselt and Laporte (1989,
1996), Redondo et al. (2009), Serra et al. (1992), Serra and Colomé (2001), Serra and
ReVelle (1995), and Suárez-Vega et al. (2004a,b), among others.

In this paper, we study a competitive location model where demand is inelastic and
customers make a decision taking into account travel distances and certain attributes
of the facilities. The attraction felt by a customer toward a facility depends on the
distance between the customer and the facility and on the quality level of the facility.
We formulate the attraction as a function directly proportional to the quality of the
facility and inversely proportional to an increasing function of the distance between
customers and facilities. This formulation derives from the gravity model suggested
by Reilly (1929) and from the model proposed by Huff (1964) who considered the
travel distance and the facility size as the relevant elements in the decision making.
Other competitive location models using distance and facility attributes (or value
position, besides the geographic location) can be found in Drezner (1994a,b), Eiselt
and Laporte (1988a,b), Eiselt et al. (1989), Ghosh and Craig (1983), Peeters and
Plastria (1998), Plastria (1997), and Thill (1992, 1997, 2000).

The entry firm wants to find both the locations and the quality levels of the new
facilities in order to maximize profits (revenue minus costs). To solve the location
problem, we propose both an integer linear program and an exact algorithm, and their
capabilities are then analyzed. The joint location–quality problem with a binary choice
rule has been solved in the discrete space by Eiselt and Laporte (1989) and Suárez-
Vega et al. (2004b), and in the plane by Plastria and Carrizosa (2001), but to our
knowledge, the network case has not yet been solved.

The rest of the paper is organized as follows. The model is presented in Sect. 2.
Section 3 includes the solution notion and some optimality results. Some algorithms are
proposed for solving both the location and the location–quality problems. In Sect. 4,
an application of the global search algorithm for solving a hypermarket location–
size problem in Gran Canaria (Spain) is presented. Finally, Sect. 5 contains some
concluding remarks.

2 The model

Consider a market represented by a network N = N (V, E) with node set V = {vi }n
i=1

and edge set E . The demand is concentrated in the set of nodes, being w(v) ≥ 0 the
demand (or buying power) at node v. For any x, y ∈ N (V, E), d(x, y) is the distance
between x and y on the network. Given two points x and y on the edge [vi , v j ], the
closed segment [x, y] is the subset of points of [vi , v j ] between x and y, including x
and y. Denote ]x, y[= [x, y] \ {x, y}, ]x, y] = [x, y] \ {x} and [x, y[= [x, y] \ {y}.

Each facility j is characterized by its location x j and its quality level a j with
a j ∈ [L , U ] where 0 < L < U < +∞. When we say that a firm has k facilities
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Location and quality selection for new facilities 539

located at X = (x1, . . . , xk) with quality levels AX = (a1, . . . , ak), we mean that the
j th facility has quality level a j and is located at point x j , for j = 1, . . . , k. There exists
a cost function of the quality level (independent of the location), C : [L , U ] → �+

0 ,
which is continuous and increasing.

The attraction felt by customers at node v toward facility j at x j is given by

av j = a j

fv(d(v, x j ))
(1)

where fv : R
+
0 −→ R

+
0 is a continuous, strictly increasing and nonnegative function,

with f (d) = 0 if and only if d = 0. If d(v, x j ) = 0 we set av j = +∞.
Expression (1) is an extended version of the one involved in the model proposed

by Huff (1964). In the original Huff model, the quality is represented by the size of the
facility and fv is a power function of the travel time. The attraction function defined by
(1) corresponds to a gravity model. Gravity models have been used often to formulate
probabilistic choice functions in a spatial interaction context, for representing the
probability of each destination j conditioned to each origin i . A view of gravity
models and other formulations utilized in spatial interaction modelling can be found
in Fotheringhan and O’Kelly (1989), Roy and Thill (2004), and Sen and Smith (1995),
among others.

There are already p facilities operating at points X p = (x1, x2, . . . , x p) with quality
levels AX p = (a1, a2, . . . , ap). A competitor firm A plans to enter the market with
r facilities and wants to determine the locations and quality levels that maximize
the profit. Any point on the network is a candidate facility location. Firms provide
essential goods or services to customers who patronize the most attractive facility. Ties
in attraction between existing and new facilities are broken in favor of the existing ones.
If an existing facility is open at v, customers at v patronize this facility independently
of what the competitor may decide.

Suppose that firm A opens r facilities at Yr = (x p+1, x p+2, . . . , x p+r ) with quality
levels AYr = (ap+1, ap+2, . . . , ap+r ). For any v ∈ V let G(v, X p, AX p ) = max{av j :
j = 1, . . . , p} and G(v, Yr , AYr ) = max{av j : j = p + 1, . . . , p + r}. Then, firm A
captures the demand of nodes v in the set

V (Yr , AYr ) = {
v ∈ V : G(v, Yr , AYr ) > G(v, X p, AX p )

}
. (2)

Assuming that the net profit margin per unit of revenue (captured demand) is equal
to 1 for any facility, the profit obtained by firm A is

Π(Yr , AYr ) = W (Yr , AYr ) − C(AYr ) (3)

where W (Yr , AYr ) = ∑
v∈V (Yr ,AYr ) w(v) is the total demand captured by firm A and

C(AYr ) = ∑p+r
j=p+1 C(a j ) is the total cost due to the quality levels.

Firm A wants to find the locations Y ∗
r = (x∗

p+1, x∗
p+2, . . . , x∗

p+r ) and quality levels
A∗

Yr
= (a∗

p+1, a∗
p+2, . . . , a∗

p+r ) (if they exist) such that
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Fig. 1 Three nodes network

Π(Y ∗
r , A∗

Yr
) = max

Yr ∈Nr (V,E), AYr ∈[L ,U ]r Π
(
Yr , AYr

)
. (4)

We study the problem of firm A assuming that X p and Ap are given, so that possible
reactions of the firms already operating in the market or preemptive strategies are not
considered in this paper. Hereafter, Gv = G(v, X p, AX p ).

3 Solution notion

In this section, the resolution of the joint location–quality problem is analyzed. First,
the quality and the location problems are separately studied, and then a branch and
bound algorithm combining the results obtained for these situations is proposed to
solve the joint location–quality problem.

3.1 The quality problem

Given the locations Yr for the new facilities, the quality problem consists of finding
the best quality levels for those stores in order to maximize the new firm profits.
As Suárez-Vega et al. (2004b) proved, only an ε-optimal solution to the quality problem
is guaranteed to exist. This is a consequence of the discontinuity of the market share
function in the set of points Q = {a p+ j

v = Gv fv(d(v, x p+ j )) : L ≤ a p+ j
v ≤

U, v ∈ V, j = 1, . . . , r}. Then, given Yr , the quality problem is to find an ε−optimal
solution A∗

Yr
∈ [L , U ]r to the problem maxAYr ∈[L ,U ]r Π(Yr , AYr ), that is, a vector

A∗
Yr

∈ [L , U ]r such that a value δ = δ(ε) > 0 exists and if ‖AYr − A∗
Yr

‖ < δ, then
Π(Yr , AYr ) − Π(Yr , A∗

Yr
) < ε. The next example illustrates this result.

Example 1 Consider the network of Fig. 1 where X1 = v1 with a1 = 0.5. Let fv(x) =
x, ∀v ∈ V , and suppose that Y1 = v2 with quality level a2 ∈ [0.1, 1]. Firm A wants
to obtain the quality level a∗

2 , which maximizes profits.
The attraction felt by the nodes toward the existing facility is Gv1 = +∞, Gv2 =

Gv3 = 0.5. A facility at Y1 with quality level a2 captures all the demand of node
v if av2 > Gv . Then, node v1 and v2 are captured by X1 and firm A, respectively.
Firm A captures v3 if a2 > 0.5. Figure 2 shows the profit function for firm A when
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Fig. 2 Profit function of firm A

C(a2) = 0.5a2. Since the supremum is not achieved, the profit function does not have
a maximum on [0.1, 1]. In this case, an ε-optimal solution exists, i.e., a value aε close
to a2 = 0.5, such that 1.75 − Π(aε) < ε.

3.2 The location problem

A finite dominating set (FDS) for a network location problem is a finite set of points,
which contains an optimal solution (Hooker et al. 1991), and this set allows us to find
an optimal solution by solving a discrete problem. If we fix the quality levels of the
new facilities in (4), we obtain a location problem for which we can construct a FDS.

Consider AYr = (ap+1, ap+2, . . . , ap+r ) given. For any v ∈ V and a ∈ [L , U ], let

I SO A(v, a) =
{

x ∈ N (V, E) : fv(d(v, x)) = a

Gv

}

I SO A(a) =
⋃

v∈V

I SO A(v, a)

I SO A(AYr ) =
r⋃

j=1

I SO A(ap+ j ).

A point x ∈ I SO A(v, a) is named a (v, a)-isoattractive point. The notion of an
isoattractive point in our location–quality problem is analogous to the concept of an
isodistant point used by Peeters and Plastria (1998).
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Then, given X p, AX p , and AYr , if [s, t]∩ I SO A(ap+ j ) = ∅, from the continuity of
f , it follows that V ((x p+1, . . . , x p+ j , . . . , x p+r ), AYr ) is constant when x p+ j varies
along the segment [s, t]. That is to say, the market share of firm A is constant along
any edge segment without isoattractive points.

In order to construct a FDS for our location problem, we define the sets
P(ap+k), k = 1, 2, . . . , r , as follows.

For each ap+k, k ∈ {1, . . . , r}, and each edge [vi , v j ] ∈ E , consider the points
in I SO A(ap+k) ∩ [vi , v j ] = {x1

i jk, x2
i jk, . . . , x

qi jk
i jk } enumerated by increasing order

of the value of the distance to node vi . The market share of firm A in each of the
open intervals ]vi , x1

i jk[, ]xl
i jk, xl+1

i jk [, l = 1, . . . , qi jk − 1, ]xqi jk
i jk , v j [, is constant.

For each nonempty interval ]xl
i jk, xl+1

i jk [, we can choose an arbitrary point (e.g., its

midpoint) yl
i jk ∈]xl

i jk, xl+1
i jk [, with l = 0, . . . , qi jk, where x0

i jk = vi and x
qi jk+1
i jk = v j .

If vi /∈ I SO A(ap+k), set y0
i jk = vi . Analogously, if v j /∈ I SO A(ap+k), let y

qi jk
i jk =

v j . If I SO A(ap+k) ∩ [vi , v j ] = ∅ set qi jk = 0, and y0
i j = vi or y0

i j = v j . Let

Pi j (ap+k) = {yl
i jk}

qi jk
l=0. Clearly, the set Pi j (ap+k) is not necessarily unique. Then,

P(ap+k) = ⋃
i, j Pi j (ap+k) is a set of candidate points to locate a facility with quality

level ap+k .

Proposition 1 If X p, AX p , and AYr are given, then there exists an optimal solution
to problem (4), Y ∗

r

(
AYr

) = (x∗
p+1, x∗

p+2, . . . , x∗
p+r ), where x∗

p+k ∈ P(ap+k), k =
1, 2, . . . r .

Proof See Suárez-Vega et al. (2004b).

Proposition 1 is proved taking into account that the demand captured by the firm is
constant when one facility location varies on any open segment ]xl

i jk, xl+1
i jk [, being the

rest of the facility locations fixed, and that the demand captured by any isoattractive
point x is not greater than the demand captured by points on open segments incident
at x without isoattractive points.

From Proposition 1, it follows that a FDS for our location problem is B =∏r
i=1 P(ap+i ). As Pelegrín et al. (2012) proved, the number of isoattractive points,

given a quality level, is upper bounded by nm, where n and m are the network number
of nodes and edges, respectively. Then, given AYr , a vector of optimal locations can
be found in the set P

(
AYr

) = {(x p+1, x p+2, . . . , x p+r ) : x p+k ∈ P(ap+k)}, which
has, at most, (nm)r points.

Consider the network of Fig. 1. Let r = p = 1, X1 = v1, a1 = 1, and
fv(x) = x, ∀v ∈ V . Assume that the quality level of a new facility is a2 = 1. Then,
I SO A(v1, a2) = {v1}, I SO A(v2, a2) = {v1, v3}, and I SO A(v3, a2) = {v1, v2}.
Therefore, a FDS is P (a2) = {y12, y13, y23} where yi j is the midpoint of edge

[
vi , v j

]
.

In this case, point y23 is an optimal solution. In fact, every point on ]v2, v3[ is an optimal
solution to the location problem.

Next, we will define different sets and variables in order to formulate an integer
linear program for solving the location problem:

– P(ap+i ) = {xi
1, xi

2, . . . , xi
qi

} is the set of potential locations for a new facility with
quality level ap+i .

123



Location and quality selection for new facilities 543

– N i
t = { j : d(vt , xi

j ) = 0 or
ap+i

f (d(vt ,xi
j ))

> Gvt , j = 1, 2, . . . , qi } is the set of

potential locations for a new facility with quality level ap+i that are more attractive
than the existing stores for node vt .

– yi
j = 1 if a new facility with quality level ap+i is located at xi

j , and zero otherwise.
– st = 1 if the demand node vt is captured by the new firm, and zero otherwise.

Then, the location problem can be solved using the following model:

Max
n∑

t=1

w(vt )st

st :
qi∑

j=1

yi
j = 1 ∀i = 1, 2, . . . , r (5)

st ≤
r∑

i=1

∑

j∈Ni
t

yi
j ∀t = 1, 2, . . . , n (6)

st = 0 ∀vt ∈ X p (7)

yi
j ∈ {0, 1} ∀ j = 1, 2, . . . , qi ,∀i = 1, 2, ..., r

st ∈ {0, 1} ∀t = 1, 2, . . . , n (8)

The objective function represents the market captured by the new firm. Restric-
tions (5) impose that only one new facility with quality level ap+i can be
opened. Restrictions (6) imply that node vt is served by the new firm (st = 1)

only if at least one new facility is more attractive than the existing stores.
With (7), we impose that customers at nodes in X p purchase from the exist-
ing facilities. In fact, the problem structure allows relaxing restrictions (8) to
st ∈ [0, 1] and therefore reducing the number of binary variables in the model.

The rest of this section includes several useful results for solving the location
problem. These results allow a reduction in the computations in the search for an
optimal location set. Two exact algorithms in order to find an optimal solution to the
location problem for given quality levels are proposed.

Proposition 2 If X p, AX p , and AY1 = a are given, and functions fv, v ∈ V , are
strictly increasing, then any point x ∈ [vi , v j ] satisfies the relation V (x, a) ⊆
V (vi , a) ∪ V

(
v j , a

)
.

Proof If x = vi or x = v j , the result is trivial. Suppose x ∈]vi , v j [ and
v ∈ V (x, a). Since fv is strictly increasing, it follows that fv is invertible. If

v ∈ V (x, a), then a
fv(d(v,x))

> Gv , which implies f −1
v

(
a

Gv

)
> d (v, x) =

min{d (v, vi ) + d (vi , x) , d
(
v, v j

) + d
(
v j , x

)}. Then, as d (v, x) > d (v, vi ) or
d (v, x) > d

(
v, v j

)
, it follows that a

fv(d(v,vi ))
> Gv or a

fv(d(v,v j))
> Gv . There-

fore, v ∈ V (vi , a) ∪ V
(
v j , a

)
.
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Fig. 3 Algorithm to find the optimal location (r = 1 and the quality level is given)

Corollary 1 If X p, AX p , and AY1 = a are given, and functions fv are strictly
increasing, then the total demand captured by a facility at x ∈ [vi , v j ], W (x, a) =∑

v∈V (x,a) w(v) is upper bounded by W = ∑
v∈V (vi ,a)∪V (v j ,a) w (v), that is,

W (x, a) ≤
∑

v∈V (vi ,a)∪V (v j ,a)

w (v) .

Proof It carries from Proposition 2.

The algorithm described in Fig. 3 uses Corollary 1 to find the optimal location
for a new facility with a given quality level. Note that, if quality levels are fixed,
the problem of maximizing profits is equivalent to maximizing the demand captured
or market share. The optimization approach proposed uses the FDS mentioned in
Proposition 1, denoted by P(a) = {y1, y2, . . . , ys}, where yk is represented by the
vector (uk, vk, dk

u ), which indicates that yk is the point on edge [uk, vk] such that
dk

u = d(yk, uk).
Note that in Step 2, only the edges for which the upper bound for the demand

captured, W , is greater than the maximum value found until that moment are con-
sidered. The use of this bound in the algorithm allows many edges to be discarded
and consequently a reduction in the computational effort required to find the optimal
location.

Some computational experiments have been done to analyze the performance of
the proposed resolution methods. The networks on which the experiments have been
done were taken from Pelegrín et al. (2012) and were randomly generated taking the
following combinations for the number or nodes (n) and edges (m):

– n = 50, 100, 150, 200.
– m = n + n

2 , 2n, 2n + n
2 , 3n, for each n.

The length of each edge was randomly chosen within the interval [5, 188]. If an
edge was not used in any shortest path linking any pair of nodes of a network, then the
edge was removed from the network. For each combination of n and m, the location
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Table 1 Results for Algorithm 1 and LINGO in solving the location problem (average time and standard
deviation)

Nodes Edges LINGO LINGO Algorithm 1 Algorithm 1 Candidates Discard
(s) (SD) (s) (SD) (%)

50 75 0.764 0.294 0.008 0.008 378.76 68.16

50 100 1.456 0.813 0.017 0.011 780.16 60.66

50 125 1.253 0.683 0.013 0.009 678.90 81.50

50 150 3.025 1.915 0.056 0.042 1,683.86 57.50

100 150 2.834 1.525 0.040 0.024 884.76 59.52

100 200 3.511 2.143 0.059 0.039 1,082.20 61.80

100 250 5.403 3.873 0.122 0.104 1,676.10 73.04

100 300 12.062 9.954 0.511 0.334 3,619.68 41.50

150 225 7.355 4.169 0.119 0.080 1,569.08 62.32

150 300 10.364 6.381 0.144 0.104 2,193.02 70.28

150 375 23.608 17.268 0.525 0.330 4,798.56 49.84

150 450 30.340 23.005 0.396 0.389 6,177.26 71.78

200 300 15.110 10.484 0.225 0.170 2,414.44 61.42

200 400 29.067 22.565 0.397 0.372 4,486.00 69.24

200 500 34.380 26.909 0.745 0.735 5,349.00 66.50

200 600 141.959 293.460 1.011 1.089 11,070.32 78.400

for the existing facilities and their size (between 2,500 and 10,000 m2) were randomly
obtained and the number of existing facilities considered was p = n/10. Finally, for
each network, fifty different demand distributions, taking random demands between
5,000 to 10,000 were generated.

Table 1 presents a comparison between the performance of both Algorithm 1 and
the resolution of the ILP (5)–(8) using the LINGO software. For each scenario, the
location problem average times (in seconds) employed by LINGO (column three)
and Algorithm 1 (column five) are presented. Column seven shows the average of
candidates for optimal location for each scenario. As this table shows, times employed
by Algorithm 1 are, on average, 1.29 % of LINGO’s times. Only in the largest case,
with an average of 11,070.32 candidates, time employed by Algorithm 1 is over 1 s
(1.089 s) while LINGO needs an average of 141.96 s to find the solution for these cases.
The eighth column shows the percentage of edges that Algorithm 1 discarded using
the bound proposed in Corollary 1. On average, 64.59 % of the edges were discarded
using this bound, which means a significant improvement with respect to searching
for the best location for the new facility.

Consider now r ≥ 1. Suppose that X p and AX p are given, and assume that functions
fv are strictly increasing for any node v. For any (v, x, a) ∈ V × N × [L , U ] define
the covering function μ(v, x, a) as follows,

μ(v, x, a) =
{

1, if a
fv(d(v,x))

> Gv

0, otherwise,
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Fig. 4 Algorithm to find the optimal locations (r > 1 and given quality levels)

that is, μ(v, x, a) = 1 if a facility at location x with quality a covers node v, and
μ(v, x, a) = 0 otherwise. Since

V (Yr , AYr ) =
p+r⋃

k=p+1

V (xk, ak),

it follows that

W (Yr , AYr )=
p+r∑

k=p+1

W (xk, ak) −
∑

v∈
p+r⋃

k=p+1
V (xk ,ak )

w(v)
(( p+r∑

j=p+1

μ(v, x j , a j )
)
−1

)
.

The value
∑p+r

k=p+1 W (xk, ak) is an upper bound of W (Yr , AYr ), which is used to
solve the location problem in Algorithm 2 described in Fig. 4. Note that in Step 2.3,
the market share for a potential candidate Y j

r is only calculated if its upper bound is
higher than the current upper bound.

A comparison between the performance of both Algorithm 2 and the resolution
of the ILP using LINGO when two or three new facilities are located is presented
in Table 2. Computational times are presented in seconds (forth and sixth columns).
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Table 2 Results for Algorithm 2 and LINGO in solving the location problem

Nodes Edges r LINGO LINGO Algorithm 2 Algorithm 2 Candidates
(s) (SD) (s) (SD)

50 75 2 1.288 0.383 0.036 0.036 1.31E+05

50 100 2 2.582 1.106 0.108 0.124 5.44E+05

50 125 2 2.184 0.920 0.076 0.075 4.07E+05

50 150 2 5.481 2.616 0.775 1.466 2.50E+06

100 150 2 5.638 2.266 0.183 0.175 8.31E+05

100 200 2 6.807 3.045 0.190 0.112 1.24E+06

100 250 2 10.699 5.418 0.396 0.290 2.98E+06

100 300 2 24.691 14.238 2.476 3.317 1.47E+07

150 225 2 16.207 5.593 0.755 0.441 2.79E+06

150 300 2 23.061 8.513 1.313 0.766 5.49E+06

150 375 2 54.018 23.060 8.505 7.969 2.67E+07

150 450 2 69.397 30.685 14.219 13.028 4.01E+09

200 300 2 29.835 13.521 1.477 1.101 5.52E+06

200 400 2 57.444 29.305 4.978 4.749 1.88E+07

200 500 2 – – 7.463 7.506 2.66E+07

200 600 2 – – 64.655 98.187 1.13E+08

50 75 3 1.904 0.510 4.700 15.934 4.70E+07

50 100 3 3.954 1.496 62.305 269.658 3.88E+08

50 125 3 3.278 1.175 12.913 45.657 2.53E+08

50 150 3 9.140 4.211 1,690.489 5,811.622 3.86E+09

100 150 3 8.883 2.979 32.050 53.804 7.46E+08

100 200 3 10.907 4.199 32.414 34.171 1.39E+09

100 250 3 17.021 7.187 130.068 178.431 5.11E+09

100 300 3 36.397 18.899 7,433.910 25,025.460 5.12E+10

150 225 3 25.804 8.548 – – 5.05E+09

150 300 3 36.468 12.292 – – 1.43E+10

150 375 3 141.530 405.164 – – 1.66E+11

150 450 3 95.467 32.320 – – 3.30E+11

200 300 3 48.955 19.245 – – 1.49E+10

200 400 3 83.384 34.026 – – 7.25E+10

The last column presents the average number of candidates to be the solution to the
problem.

When two new facilities are located, times for Algorithm 2 are significantly less
than for LINGO. This advantage decreases when the number of candidates increases.
Computational times for LINGO vary from 36.148 to 4.881 times the computational
effort needed by Algorithm 2. Moreover, LINGO could not solve the two largest
problems with 200 nodes (500 and 600 edges), which were solved using Algorithm
2. In these cases, the average number of candidates was 2.66E+07 and 1.13E+08,
respectively.
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In the cases where three new facilities are located, LINGO presents a clear
advantage over Algorithm 2 whose computational times experimented a significant
increase, especially when the number of candidates increase. For this situation, LINGO
employed between 0.5 and 40.5 % of the computational time required by Algorithm
2. Moreover, Algorithm 2’s times for networks with more or equal to 150 nodes were
too large to take into account. Note that, LINGO also could not solve some large
problems with 150 nodes and 450 edges (10 out of 50), and with 200 nodes and 400
edges (27 out of 50). Finally, the cases with 200 nodes, and 500 and 600 edges, where
the number of potential solutions was around 109 and 1010, could not be solved either
by LINGO nor Algorithm 2.

When computational times for Algorithm 2 do not appear in Table 2, it is because
the times employed were too large. However, when times for LINGO do not appear,
it was due to technical software problems.

3.3 The location–quality problem

When the problem consists of finding both locations and quality levels for the new
facilities, due to the discontinuities of the capture function W (y, a), the maximum
of the profit function is not always attained. In this case, for problem (4), only an
ε-optimal solution (see Definition 1) can be guaranteed.

Definition 1 An ε-optimal solution to problem (4) is a pair (Y ∗
r , A∗

Yr
) ∈ Nr ×[L , U ]r ,

which satisfies that for any ε > 0 there exists δ = δ(ε) > 0 such that if (Yr , AYr ) ∈
Nr × [L , U ]r verifies ‖AYr − AY ∗

r
‖ < δ, then Π(Yr , AYr ) − Π(Y ∗

r , A∗
Yr

) < ε.

If (Y ∗
r , A∗

Yr
) is an ε-optimal solution to the location–quality problem, then

(Yr (A∗
Yr

), A∗
Yr

), where Yr (A∗
Yr

) is an optimal solution to the location problem when
AYr = A∗

Yr
is also an ε-optimal solution to the location–quality problem. For any

AYr ∈ [L , U ]r , consider the function

Π
(

AYr

) = Π
(
Yr (AYr ), AYr

) = max
Yr ∈Nr

Π
(
Yr , AYr

)
.

Function Π
(

AYr

)
is well defined, and an ε-optimal solution to the problem

max
AYr ∈[L ,U ]r Π(AYr )

is an ε-optimal solution to the location–quality problem.
For any quality vector AYr , the location vector Yr (AYr ) can be obtained by using

some of the procedures proposed in the previous section. In order to solve the location–
quality problem, we apply a branch and bound algorithm on function Π(AYr ), which
generates a sequence of partitions of D = [L , U ]r until an ε-optimal solution is found.
The proposed algorithm (Algorithm 3), described in Fig. 5, utilizes the following
results.

Proposition 3 If X p, AX p , and Yr are given, and functions fv, v ∈ V are strictly
increasing, then market share function W (AYr ) = W (Yr , AYr ) is increasing with
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Fig. 5 Algorithm to solve the location–quality problem

respect to the quality levels, that is, if A1
Yr

= (a1
p+1, . . . , a1

p+r ) and A2
Yr

=
(a2

p+1, . . . , a2
p+r )) and A1

Yr
< A2

Yr
, then W (A1

Yr
) ≤ W (A2

Yr
). Here, A1

Yr
< A2

Yr

means a1
j ≤ a2

j for any j, j = p + 1, . . . , p + r , and there exists j with a1
j < a2

j .

Proof If A1
Yr

< A2
Yr

, then max{ a1
p+ j

fv(d(v,x p+ j ))
: j = 1, 2, . . . , r} ≤ max{ a2

p+ j
fv(d(v,x p+ j ))

:
j = 1, 2, . . . , r} and, consequently, V (Yr , A1

Yr
) ⊆ V (Yr , A2

Yr
). Therefore, W (A1

Yr
) ≤

W (A2
Yr

).

Let D = D(A, A) denote the r -rectangle whose lower left vertex and upper right
vertex are the vectors A = (a1, . . . , ar ) and A = (a1, . . . , ar ), respectively. Proposi-
tion 4 provides an upper bound of Π(AYr ) = Π(Yr (AYr ), AYr ) for AYr ∈ D.

Proposition 4 If X p, AX p , are given, functions fv, v ∈ V are strictly increasing, and

the cost function C is increasing, then ∀AYr ∈ D = D(A, A) the following relation
holds:

Π(AYr ) ≤ W (Yr (A), A) − C(A).

Proof Since C is increasing, from Proposition 4, and taking into account that Yr (A)

is the optimal location when AYr = A, it follows that

Π(Yr (AYr ), AYr ) = W (Yr (AYr ), AYr ) − C(AYr ) ≤ W (Yr (AYr ), AYr ) − C(A)

≤ W (Yr (A), A) − C(A).
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Next, Algorithm 3 is described. At Step 1, the list of sets to be partitioned, L, is
initialized to the total feasible region, L = {D1}, with D1 = [L , U ]r . The global
lower bound is set to β∗

0 = −∞.
At Step 2, a set Dk ∈ L is partitioned, and lower and upper bounds of sup Π for

every set Dik in the partition are calculated. As the feasible set in the quality problem
is an r -rectangle, a partition of sets Dk into 2 r -intervals has been applied. These new
subsets are obtained by splitting each rectangle through the midpoint of the largest
sized axis. This partitioning procedure allows us to obtain some bounds of sup Π in the
regions Dik from the bounds calculated for the parent Dk . Since the demand captured
and the cost C are increasing functions of the quality levels, if Dik = D(Aik, Aik),
from Proposition 4, a local upper bound of Π in Dik is

α(Dik) = W (Yr (Aik), Aik) − C
(

Aik

)
.

To obtain the local lower bound of sup Π in Dik , the highest objective value
either in vertex Aik or Aik is selected, i.e., β(Dik) = max{Π(Aik),Π(Aik)} =
Π(Aik, Yr (Aik)), where Π(Aik) and Π(Aik) are calculated using some of the proce-
dures proposed in Sect. 3.2. At Step 3, the global lower bound is updated.

At Step 4, sets that do not need to be partitioned in the future are eliminated
from the list L. At Step 4(i), the r -intervals Dik verifying α(Dik) = β(Dik) are
eliminated because this equality implies that β(Dik) is the maximum profit in Dik and
(Yr (Aik), Aik) is an optimal solution of Π in this rectangle. Sets satisfying condition
4(ii) are not partitioned because an ε-optimal solution in Dik, (Aik, Y (Aik)) has been
found. At Step 4(iii), all sets with the local upper bound less than the global lower
bound are discarded because they do not contain an ε-optimal solution.

At Step 5, the most “promising” rectangle is chosen. We select the set Dk ∈ L with
the highest local lower bound.

The maximum error committed by the algorithm in obtaining the optimum value
of Π in Dik may be bounded as follows:

error(Dik) ≤ α(Dik) − β(Dik)

= W (Aik) − C(Aik) − max{Π(Aik),Π(Aik)} ≤ W (Aik) − C(Aik) − Π(Aik)

= W (Aik) − C(Aik) − W (Aik) + C(Aik) = C(Aik) − C(Aik),

being W (A) = W (Yr (A), A) for A ∈ [L , U ]r . Since the cost function C is continuous
and the bipartition is an exhaustive subdivision procedure, the above result guarantees
the finiteness of the algorithm (see Horst and Tuy 1993). Then, for every prefixed
ε > 0 (the maximum error allowed) and for each set Dk , there is a descendant Dik =
D(Aik, Aik) obtained by successive splits, such that ε ≤ C

(
Aik

) − C(Aik).
These techniques have also been applied to solve location problems by Suárez-Vega

et al. (2004b), Hansen et al. (1995, 1997), Redondo et al. (2009), and Plastria (1992),
among others.

Example 2 Consider the market represented in Fig. 6, where an existing facility exists
at X1 = x1, with quality level a1 = 1. If firm A wants to open two facilities and the
unique choice criterion is the travel distance, disregarding the quality level, an optimal
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Fig. 6 Network used in
Example 2

solution is Y2 = (v2, v4). In fact, every pair of locations (x2, x3) with x2 ∈ [v2, v3[
and x3 ∈]v3, v4] is an optimal solution to this location problem. The solution is quite
different if not only facility locations, but also quality levels have to be determined. In
this case, in order to reduce the cost due to the quality level, the facilities must be opened
close to demand points, moving away from X1. An ε−optimal solution to the location–
quality problem, considering that the quality levels for the new facilities must belong
to interval [0.1, 1] and taking ε = 0.001, is

(
Y ∗

2 , AY ∗
2

) = (x2, x3; 0.167, 0.351), which
is represented in Fig. 6.

4 Locating new stores in Gran Canaria

In this section, we apply Algorithm 3 to solve the problem of determining both the
location and the size (sales area) of new hypermarkets in the Spanish island of Gran
Canaria (Canarian Archipelago). Gran Canaria is 200 km from the western African
coast and 1,200 km from the Spanish mainland. The island has a surface area equal to
1,560 km2 and a population of 836,092 inhabitants (2008 Census).

In this application, the network N = N (V, E) represents the main roads of the
island. The length of the edges corresponds to the travel time, and the demand was
aggregated into the 52 districts that form the island. To determine the demand nodes,
the gravity center of the individual house locations in each district was calculated and
then it was allocated to the closest network node.

According to the Law of Regulation of Commercial Activity in the Canaries (B.O.C.
1994), a hypermarket is a large store with a minimum sales area of 2,500 m2. In 2008,
eleven hypermarkets already existed in Gran Canaria. These facilities were allocated to
the closest network vertex, which resulted in a set with seven nodes. The quality level
associated with each of these nodes was the sum of the sales areas of the hypermarkets
allocated to it. The distribution of both the demand and the existing hypermarkets
is shown in Fig. 7. Note that 59.88 % of the total population and 45.60 % of the
hypermarkets sales area are concentrated in the capital, in the northwestern part of the
island. The rest of the hypermarkets, and an important part of the demand, is distributed
on the eastern and southern areas of the island. The central and western parts of the
island are mountainous with low population densities.
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Fig. 7 The market

We solved the location–quality problem for r varying from 1 to 3. For each facility,
the quality level, a, is given by the hypermarkets’ sales area measured in thousands
of m2 with a ∈ [L , U ] = [2.5, 10].

In order to analyze the effect in the model on different customer behavior with
respect to the travel distance, for every node v, we have considered fv(d) = dλ, with
λ = 0.5, 1, 2. Of course, the higher the value of λ, the higher customers’ resistance
to making long trips to make purchases. Function fv(d) = dλ with λ > 0 is one of
the possible distance decay functions used in the class of gravity models defined by
Ti j = F(i)G( j)H(di j ), which represents the interaction between population centers
i and j separated by a distance equal to di j , and characterized by values F(i) and
G( j), respectively (Sen and Smith 1995). This decay function has been utilized often
to formulate the behavior of the customer in competitive location models (see Berman
and Krass 2002; Drezner 1994a; Drezner et al. 2002; Plastria 1997, among others).
Figure 8 shows the market allocated to each existing hypermarket for the cases with
the lowest (λ = 0.5) and the highest (λ = 2) distance penalization. When customers
present high predisposition to travel to purchase, the size of the hypermarket is the
most important factor. In this case, the two largest hypermarkets (#2 and #7) capture
74.66 % of the total market. In particular, store #2 captures demand in all the island,
including areas around other existing hypermarkets. The rest of the stores capture
only the demand of the districts where they are located because they are too small or
they are too close to the largest existing facility. When λ = 2, each facility captures
the demand around it and the larger the size, the larger the capture. If the results for
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Fig. 8 Market for the existing hypermarkets for different distance decay parameters

λ = 0.5 and λ = 2 are compared, the main difference occurs for the largest store that
loses 24.33 points of market share when the predisposition to travel decreases.

The variable cost associated with the quality level has been modelled taking into
account the suggestions of a consultant of an important chain of supermarkets that
operates in the Island. This cost is represented by a nonnegative and continuous func-
tion C(a) verifying C(0) = 0, with decreasing marginal cost for 0 ≤ a ≤ a∗ and
increasing marginal cost if a∗ < a. So, to represent this behavior, we have consid-
ered a three-order polynomial cost function, concave for a ∈ [0, a∗] and convex for
a ∈ [a∗,+∞). Point a∗ is the inflexion point of function C , where the marginal costs
change from decreasing to increasing. The cost function considered was

C(a) = 1,500

43
a3 − 28,125

43
a2 + 8,000a,

where a∗ = 6.250. This function is shown in Fig. 9. Functions with this shape are
often utilized in economic contexts (Chiang 2006).

The location–size problem was solved using Algorithm 3. To obtain the lower
bounds (in Step 2.1), Algorithm 1, Algorithm 2, or ILP can be used for solving the
corresponding location problems. We applied the branch and bound algorithm with
ε = 0.001, which guarantees a maximum error of 0.1 %, using a computer working
at 3.2 GHz. In order to obtain a more clear geographical representation for the best
locations found for each scenario, the neighboring locations have been aggregated and
represented in Fig. 10.
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Fig. 9 Size cost functions considered

Table 3 shows the results obtained for the different scenarios, considering the dif-
ferent values of the distance decay parameter, when the number of new stores varies
from one to three. For each case, the profits and market share obtained for the new
firm, and the locations and sizes for the new facilities are presented. The results show
how the behavior of the customers respect to the travel distance influence on the solu-
tion. When the willingness of customers to move to buy decreases, that is, when λ

increases, bigger hypermarkets are opened, varying sometimes the locations, leading
to an increase in market share and profit. This increase in market share is a conse-
quence not only of the bigger size of the new facility but also of the travel distance
effect on the demand captured by the existing and new stores.

For r = 1, in all cases, the best locations for the new hypermarket were sited in
the capital of the island (see Fig. 10), with a maximum distance of 1.1 km between
them, where both demand and rival stores are mostly concentrated. When customers
present the highest predisposition to travel (λ = 0.5), the new hypermarket is set at
the demand node with the highest population and where no hypermarkets exist. This
new store is set with the minimum size allowed which is sufficient to capture the
demand allocated at this node. When the predisposition to travel decreases, the new
hypermarket is located in an edge joining two demand nodes and close to an existing
store. In these cases, the new facility had to have a greater size in order to be more
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Fig. 10 Best locations for the new hypermarkets

Table 3 Results for the different values of r

r Decay λ Profits
Π(Yr , AYr )

Locations
Yr

Market
share (%)

Size (m2)
AYr

1 0.5 43,768.75 1 7.20 2,500

1 1 71,751.08 2 13.11 7,495

1 2 90,438.66 2 16.0 8,796

2 0.5 76,712.50 1, 3 13.11 2,500, 2,500

2 1 102,379.44 2, 4 18.75 7,495, 2,507

2 2 152,331.31 2, 5 28.70 8,096, 9,590

3 0.5 107,380.25 1, 3, 4 18.75 2,500, 2,500, 2,500

3 1 130,446.93 2, 4, 7 27.42 7,495, 2,507, 9,004

3 2 187,713.16 2, 5, 6 35.46 8,096, 9,590, 3,423

competitive than the existing one and capture the demand of these two demand nodes.
The average time needed to solve these problems, using Algorithm 1 for the location
problems, was 0.39 s.

The location solution for the problem when two new stores are opened consists of
adding a new store to the one obtained for the case with r = 1 (see Table 3; Fig. 10).
When λ = 0.5, the second store is located in the second highest populated demand
node with the minimum size allowed. When customers’ predisposition to travel to
buy decreases, the second hypermarket moves away more, the greater the lambda,
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Table 4 Size and market share for the facilities before and after the entry of the new firm

Facility λ = 0.5 λ = 2

Market 1 Size (NF) Market 2 Market 1 Size (NF) Market 2

E1 3.95 2,951 3.95 7.70 2, 951 7.70

E2 57.86 18,430 39.11 33.53 18,430 20.83

E3 5.73 6,750 5.73 10.75 6,750 7.43

E4 5.08 9,927 5.08 21.08 9,927 5.00

E5 5.72 5,200 5.72 5.72 5,200 5.72

E6 4.85 2,500 4.85 4.85 2,500 4.85

E7 16.80 14,459 16.80 16.37 14,459 12.93

N1 2,500 7.20 8,096 16.00

N2 2,500 5.91 9,590 12.70

N3 2,500 5.64 3,423 6.76

from the area where the existing hypermarkets are concentrated. As for one new store,
the market share of the new firm increases when customers’ willingness to travel to
buy decreases, such that the market captured when λ = 2 is higher than double that
obtained when λ = 0.5. The average time needed to solve these problems, using
Algorithm 2 for the location problems, was 17.32 s.

The solution (size and location) to the problem of locating three new hypermarkets
coincides with the result of a sequential selection procedure where a new location
is chosen in each stage (see Table 3; Fig. 10). When λ = 0.5, a third store with the
minimum size is also located in the capital but far away from the existing hypermarkets.
When the predisposition to travel decreases, the new facility is located in the most
populated area of the southeastern part of the island. As in the two previous cases,
the market share increases when the willingness to travel to buy decreases (market
share for λ = 2 is around double that for λ = 0.5). In this case, using Algorithm 2
for solving the location problem, an average of 140.5 min was needed to obtain these
results.

Observe that, in a general scenario, when λ increases, the opening of a facility
closer to the customers may be desirable or not. If the aversion to the distance increases
moderately, a facility belonging to firm A might obtain at less the same profit without
changing its location if its quality increases and the associated increase in cost is
low enough. If the aversion to the distance is too high and the quality level required to
compensate the effect of the distance is not reachable or it is too costly, the best strategy
might be to locate the facilities very close to demand points, avoiding locations with
existing facilities, thus emerging local spatial monopolies.

Table 4 shows a comparison between the market shares of the different facilities
before (Market 1) and after (Market 2) the entry of three new competing facilities.
Existing facilities are denoted as E1–E7 and the new ones are N1, N2, and N3. When
λ = 0.5, all the capture for the new facilities (18.75 % of market share) is obtained
from E2’s market, from districts pertaining to the capital, whereas the capture for
the rest of existing facilities remain equal. The new facilities are located in the most
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Table 5 Percentage error for
the different scenarios

Chosen decay
parameter

Customers’tastes Mean

λ = 0.5 λ = 1 λ = 2

r = 1

λ = 0.5 0.00 39.00 39.00 26.00

λ = 1 186.53 0.00 0.00 62.18

λ = 2 186.53 0.00 0.00 62.18

r = 2

λ = 0.5 0.00 25.07 49.64 24.90

λ = 1 109.45 0.00 32.79 47.41

λ = 2 205.47 109.64 0.00 105.04

r = 3

λ = 0.5 0.00 17.68 42.79 20.16

λ = 1 143.30 0.00 40.76 61.35

λ = 2 182.35 113.33 0.00 98.56

populated districts of the capital and set the minimum possible size for a hypermarket
in the Canaries. Their market share is exclusively taken from the demand points in the
district where they are located. If λ = 2, i.e., when customers present a high aversion
to travel to buy, the losses are shared among facilities E2 and E4 (principally), which
are in the capital and, E3 and E7 (for a less degree) located in the southern part of the
island. The last is a consequence of the location of the two new facilities outside the
capital, in the North (N2) and in the East (N3).

As Table 3 shows, the new firm’s profits have a high variability depending on the
parameter value that identifies customers reaction to the increase in travel distance. So
the error made when we choose a solution obtained under a certain customer behavior
hypothesis and the patronizing is made according to a different behavior, has been
calculated. For every pair of scenarios (i, j), corresponding to the solution obtained
for scenario i when customer behavior is reflected by scenario j , we obtain the value
ei j given by

ei j = 100 · Π j (S j ) − Π j (Si )

Π j (S j )

where Si and S j are the solutions for scenarios i and j , respectively, and Π j represents
the objective value for the scenario j . Table 5 shows the summary of the percentages
of error for the different scenarios. The first column identifies the scenario whose
solution has been chosen. The following columns describe, for each scenario i, how
ei j , with j = 1, . . . , 3, behaves.

From the results presented in Table 5, we can conclude that, if the decision maker
has no idea about the true value of the parameter that reflects the customers behavior,
the best option is to take the solution, which considers that customers have a high
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predisposition to travel to buy (λ = 0.5) because it is the one that minimizes the average
error in the three scenarios (r = 1, 2, 3). The worst cases occur when customers’ have
high predisposition to travel but the solution is obtained supposing the opposite. In
those cases, the percentage error varies from 182.35 to 205.45 %.

5 Concluding remarks

In this paper, we study a location–quality problem on networks where two firms
compete in order to maximize profits; both location and quality level are decision
variables. Customers behave according to a binary choice rule and demand is assumed
to be inelastic. In this case, an optimal solution may not exist and only an ε-optimal
solution is guaranteed (Suárez-Vega et al. 2004b). Although many authors have studied
either the location or quality problem, to the authors’ knowledge, the joint location–
quality problem on networks with a binary choice rule has never been solved.

For solving the location problem, an integer linear program was proposed. As
alternative to the ILP, two exact algorithms for solving the problem were presented.
For r = 1, we propose an upper bound for the total capture in an edge and it was
introduced in Algorithm 1 to discard edges where the optimal solution is not possible.
The use of this algorithm for solving the location problems presented in this paper has
meant an average reduction of 64.59 % of the edges investigated in the search for the
best solution. For a general value of r , an upper bound and an alternative expression for
the new firm capture are proposed. These results have been introduced in Algorithm
2 allowing for a significant improvement with respect to an exhaustive-based method.
A comparison between the performance of both Algorithm 1 and Algorithm 2 and the
resolution of the ILP using LINGO is presented. We conclude that for the problems
solved in this paper, Algorithm 1 is always faster than LINGO and for r = 2, Algorithm
2 improves LINGO, but for r = 3, LINGO goes faster than Algorithm 2.

Using either the ILP program, Algorithm 1 (for r = 1) or Algorithm 2 (for r > 1),
we have designed a branch and bound-based algorithm, which allows us to find an
ε-optimal solution to the joint location–quality problem. Defining the quality as the
facility size, the algorithm proposed is employed to find the best locations and the
sizes for the hypermarkets belonging to a firm that wants to enter the retail market in
Gran Canaria (Spain).

The problem has been solved in several scenarios, changing the decay distance
parameter reflecting the customers willingness to travel for shopping. When customers
present hight predisposition to travel, the best locations for the new facilities are in
the capital, where 59.88 % of the total population and 45.60 % of hypermarkets sales
area are concentrated. When customers present low predisposition to travel to make
purchases, the first hypermarket is located in the capital but the others are sited far
away, in the North (where no hypermarkets exist) or in the East (in a populated area
between two hypermarkets).

The study of the error produced when the chosen solution does not coincide with
the customers’ behavior suggests that the most favorable choice in this case is to apply
the model assuming the lowest value for the decay parameter. The worst case occurs
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when the customers have high predisposition to travel but the solution is obtained
supposing the opposite, with errors that varied from 182.35 to 205.45 %.

The work presented in this paper can be extended in several directions. One of
this possible extensions is the study of the quality–location problem for nonbinary
choice rules. We can consider that the behavior of the customer is modelled by a
nonnegative, continuous decreasing function of the travel distance, which represents
the part of demand captured by each facility (some results about the use of these decay
functions in covering location problems can be found in Berman et al. 2003, 2010).
For each firm, the closest facility to the customer could capture part of the demand, the
demand captured by each of these facilities would depend on the difference in travel
distance from the customer to the closest facility of the competing firms. A customer
would use firm A exclusively if the distance from this customer to the competitors
exceeds the distance to firm A in an amount greater than or equal to a threshold. Other
models to be considered are those where the customer choice rule is probabilistic or
proportional; in this case, the demand of a customer is distributed among the facilities
operating in the market, and not only among the closest ones, according to the travel
distance between the consumers and the stores. On the other hand, we could study
the location problem for unessential demands; in this situation, the customer may
no to use all its buying power if the facilities are considered not attractive enough.
Moreover, if more than one firm plans enter the market, several scenarios may arise
depending on the manner in which the competence is carried out (for example, firms
may act individually or according to collusion agreements). Finally, location problems
with preemptive strategies, anticipating the actions of future competitors, and dynamic
location models, considering the opening of several facilities in different periods of
time, could be analyzed.
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