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Abstract d’Aspremont (Econometrica 47:1145–1150 , 1979) showed that a Hotelling
(Econ J 39:41–57 , 1929) duopoly model with quadratic transport costs yields maximal
differentiation. However, the introducing of an online firm ensures that the duopolist
will never be located at the end points of the market. In other words, an online firm can
raise a market effect that induces two firms to be finitely differentiated. The implication
of the socially optimal solution is derived. The results herein can be extended to allow
multiple firms. Finally, a free-entry equilibrium and the Stackelberg equilibrium are
also discussed.

JEL Classification R32 · L13 · C62

1 Introduction

Online business has developed rapidly in the past decade. Now, traditional firms must
not only compete with other traditional firms but also face competition from online
firms. The latter can open 24-h daily, whereas doing so is very costly for the traditional
firms (brick-and-mortar stores). However, the making of an online purchase has the
obvious disadvantage that the customer must typically wait 3–7 days for delivery.
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310 W.-C. Guo, F.-C. Lai

An increasing number of studies are investigating competition by online firms
with physical firms. For instance, Balasubramanian (1998) establishes a circular spa-
tial model to analyze price competition between directed marketers and conventional
retailers, in which the locations of all firms are exogenously given. Bouckaert (2000)
proposes a similar structure in which one mail order business competes with many
retail stores. Under the condition of free entry, he shows that the number of firms in
equilibrium is fewer than that determined by Salop (1979) and that competition from
the mail order firm reduces the profits of retailers. Chevalier and Goolsbee (2003)
suggest that significant competition exists between online and conventional retailers
of computer equipment. Prince (2007) provides both demand-side and supply-side
explanations of increasing cross-price elasticity for personal computers that are sold
online or in traditional stores.1 So far, limited theoretical studies have discussed a tra-
ditional spatial duopoly framework with online business. The purpose of this study is
to establish a theory to analyze competition among two physical firms and one online
firm. This work constructs a bridge between online businesses and traditional spatial
duopoly models, with a focus on endogenous locations.

This study takes into account the findings of a rich literature of price–location
models of the role of physical firms.2 d’Aspremont et al. (1979) revise the Hotelling
(1929) model and show that competition between two firms with quadratic transport
costs yields maximal differentiation. However, introducing an online firm prevents the
duopolists from being located at the end points of the market. Intuitively, consumers
who are far away from the physical firm tend to purchase from the online firm. Accord-
ingly, if the physical firms remain located at the end points of the market, then they
will lose a considerable number of remote consumers who reside close to the market
center. Restated, this online firm can have the market effect of causing two physical
firms to be finitely differentiated whenever the waiting cost of an online purchase is
low enough.

In the proposed model, the waiting cost of purchasing goods from an online firm
represents all of the disadvantages of an online firm.3 This study will show that a
decrease in the waiting cost leads to an increase in the equilibrium price charged by
the online firm and a decrease in the equilibrium price charged by the physical firms.
We also solve the socially optimal problem. When the transport rate and the waiting
cost of an online purchase satisfy some relationships, the socially optimal solution is
reached. The implication of taxation is also provided. Finally, a free-entry equilibrium
and the Stackelberg equilibrium are also discussed.

The rest of this paper is organized as follows. Section 2 describes the presented
model, and Sect. 3 solves the location–price equilibrium. It also presents comparative

1 As an extensive application of Hotelling-like models, Wolinsky (1987) also provides a related framework
in which labeled products and unlabeled products in a traditional industrial organization can be regarded
as goods sold by retail stores and the online store, respectively.
2 Several related studies such as Economides (1984) and Hinloopen and Marrewijk (1999) introduce an
upper bound on the reservation prices, and a price–location equilibrium then emerges for some range of the
exogenous reservation price. Eiselt (2011) provides a detailed survey of Hotelling models.
3 Besides the waiting cost, consumers cannot touch, hear or smell the products that are listed on a Web
site. Hence, the consumers may be uncertain regarding the quality of the product. This fact is an obvious
disadvantage for the online purchases.
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statics and discusses the implication of social welfare. Section 4 extends duopolistic
physical firms to multiple firms. An extension with the free entry of physical firms
is included in Sect. 5. The robustness for a Stackelberg competition is established in
Sect. 6. Conclusions are provided in Sect. 7.

2 The model

Consider two physical firms (1, 2) that are located on a linear market of unit length
at x1, x2, respectively. The market also includes an online firm (3), which has no
specific location. Consider a two-stage game, and only pure strategies on location–
price are discussed. In the first stage of the game, both physical firms determine their
locations simultaneously, and in the second stage, these two firms and the online firm
set their prices (p1, p2 and p3) simultaneously at zero marginal costs. Marginal costs
are assumed to be zero to simplify the analysis. Consumers are uniformly distributed
along this linear market. Each consumer buys a product from either one of the two
physical firms or from the online firm. The utility for a consumer at x ∈ [0, 1] who
purchases from firm 1 is

u1 = v − p1 − k(x1 − x)2, (1)

where v is a reservation price and k is the unit transportation cost. Similarly, if the
consumer at x ∈ [0, 1] purchases the product from firm 2, its utility is

u2 = v − p2 − k(x2 − x)2. (2)

The online firm has no specific location, and thus, the utility (u3) of its consumers
includes no physical transportation cost:

u3 = v − p3 − z, (3)

where z is the waiting cost of purchasing online.
Now consider a set of pure strategy equilibria in which both physical firms occupy

disjoint regions of the market and the online firm takes out all remaining markets. This
is the case of interior locations. Those cases of boundary locations, when at least one
of the physical firms is located at the boundaries (x1 = 0 or x2 = 1), will be shown
never to be equilibria with the assumption that the online firm is not redundant just
before Proposition 1. Let nR

1 , nL
1 and nL

2 , nR
2 be the market boundaries of firm 1 and

firm 2, respectively (Fig. 1), where “R” represents “right”, and “L” represents “left”.
The equilibrium conditions should be nL

1 > 0, nR
1 < nL

2 , and nR
2 < 1.

Solving u1 = u3 yields

nR
1 = x1 +

√
kp3 + kz − kp1

k
, nL

1 = x1 −
√

kp3 + kz − kp1

k
.

Solving u2 = u3 yields

nR
2 = x2 +

√
kp3 + kz − kp2

k
, nL

2 = x2 −
√

kp3 + kz − kp2

k
.
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312 W.-C. Guo, F.-C. Lai

Fig. 1 The market regions of three firms

Let N1, N2 and N3 be the market shares for firms 1, 2 and 3, respectively, then

N1 = nR
1 − nL

1 = 2
√

k(p3 + z − p1)

k
, (4)

N2 = nR
2 − nL

2 = 2
√

k(p3 + z − p2)

k
, (5)

N3 = 1 − N1 − N2. (6)

The profit functions are

π1 = p1 · N1 = 2p1
√

k(p3 + z − p1)

k
, (7)

π2 = p2 · N2 = 2p2
√

k(p3 + z − p2)

k
, (8)

π3 = p3 · N3 = p3
(
k − 2

√
k(p3 + z − p1) − 2

√
k(p3 + z − p2)

)

k
. (9)

3 Location–price equilibrium with an online firm

Using backward induction, the price competition in the second stage of the game
is solved for the location–price game. Solving ∂π1/∂p1 = 0, ∂π2/∂p2 = 0, and
∂π3/∂p3 = 0 simultaneously yields4

p∗
1 = p∗

2 = 2z

5
+ k

100
+

√
k(k + 80z)

100
, (10)

p∗
3 = −2z

5
+ 3k

200
+ 3

√
k(k + 80z)

200
. (11)

4 Solving the first-order condition yields another solution: p1 = p2 = − 2z
5 + k

100 +
√

k(k+80z)
100 , p3 =

− 2z
5 + 3k

200 − 3
√

k(k+80z)
200 < 0, which results in a negative equilibrium price set by the online firm, and so

this solution is excluded.
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The solution satisfies the second-order conditions, because ∂2π1/∂p2
1 = ∂2π2/∂p2

2 =
−30

√
2/B < 0, and ∂2π3/∂p2

3 = (−10k
√

2(240 + z + k + √
k(k + 80z))/B3 < 0,

where B =
√

k(40z + k + √
k(k + 80z). Substituting the equilibrium prices into the

market shares yields

N∗
1 = N∗

2 =
√

2
√

40z + k + √
k
√

80z + k

10
√

k
, (12)

N∗
3 = 5k − √

2k
√

40z + k + √
k
√

80z + k

5k
. (13)

The necessary conditions for the existence of equilibrium are nL
1 > 0, nR

2 < 1 and
nR

1 < nL
2 . Solving nL

1 > 0 yields

x1 > xmin
1 ≡

√
2k

(
k + 40z + √

k(k + 80z)
)

20k
> 0. (14)

Solving 1 − nR
2 > 0 yields

x2 < xmax
2 ≡ 1 −

√
2k

(
k + 40z + √

k(k + 80z)
)

20k
< 1. (15)

Solving nL
2 − nR

1 > 0 yields

x2 − x1 > (x2 − x1)
min =

√
2k

(
k + 40z + √

k(k + 80z)
)

10k
≡ xmin

d . (16)

Therefore, the necessary condition to guarantee the existence of pure strategy equilibria
is

xmax
2 − xmin

1 − xmin
d

= 1 −
√

2
√

40z/k + 1 + √
80z/k + 1

5k
> 0, if and only if z <

3

16
k. (17)

In other words, if z < 3k/16, then xmax
2 − xmin

1 > xmin
d is satisfied. Hence, when

the waiting cost of online purchase is low enough such that z < 3k/16, there exist a
set of equilibria locations (x∗

1 , x∗
2 ) in some interior ranges. Accordingly, the proposed

model ensures that a set of equilibria exist whenever no firm locates at the end points
of the market.

In the cases when at least one of the firms is located at boundaries, either (x1 =
0, x2 = 1) or (x1 = 0, x2 = x∗

2 ),5 and the profit of firm 1 will be shown to become

5 In this situation, only firm 1 moves from the interior locations to a boundary location. Alternatively,
another symmetric situation such that (x1 = x∗

1 , x2 = 1) is similar and is thus omitted here.
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lower than its profit in previous interior solutions. For (x1 = 0, x2 = 1), the solution
to the second stage of the game yields p1 = p2 = 2

5 z+ k
25 + 1

25

√
k(k + 20z) and p3 =

− 2
5 z + 3

50 k + 3
50

√
k(k + 20z) and thus π1(x1 = 0, x2 = 1) =

√
2(10z+k+√

k(k+20z))
3
2

250
√

k
.

Comparing π1(x1 = 0, x2 = 1) with π∗
1 yields

π1(x1 = 0, x2 = 1) − π∗
1

= −√
2k

250

⎛

⎝250

(
40

z

k
+ 1 +

√
1 + 80

z

k

) 3
2

−
(

10
z

k
+1+

√
1 + 20

z

k

) 3
2

⎞

⎠ < 0.

Therefore, the corner solutions are worse than the interior solutions.
In the case of (x1 = 0, x2 = x∗

2 ), the equilibrium prices are

p1 = p2 = 2

5
z + 4

225
k + 4

225

√
k(k + 45z),

p3 = −2

5
z + 2

75
k + 2

75

√
k(k + 45z),

and the profit of firm 1 is

π1 = 2
(
45z + 2k + 2

√
k(k + 45z)

)3/2

3375
√

k
.

Similarly,

π1(x1 = 0, x2 = x∗
2 ) − π∗

1 = −
√

2k

3375

[

3375

(
40

z

k
+ 1 +

√
1 + 80

z

k

)3/2

−√
2

(
45

z

k
+ 2 + 2

√
1 + 45

z

k

)3/2
]

< 0.

Therefore, the brick-and-mortar stores will not deviate from their interior locations to
the boundary locations.6

Proposition 1 When two physical firms compete with an online firm, the only possible
equilibrium is that both physical firms occupy unconnected regions of the market, and
the online firm takes all other markets when z < 3k/16. The equilibrium prices

6 However, if only one brick-and-mortar firm is competing with one online firm, a boundary location may
be better than the interior location for the brick-and-mortar firm when z is small enough. Specifically, when
z
k < 1

5 [(21/3 + 1)2 − 1] ∼= 0.8214, the boundary location is better for firm 1 than is the interior location.
Similarly, when the transportation cost is linear in distance, the boundary location is better for firm 1 than

is the interior location when z2 < k2

2 because π1(x1 = 0)−π∗
1 (x1 = 1/2) = (k2−2z2)

18k . In fact, Anderson
(1988) shows that when the transport cost function is linear quadratic, there is no pure strategy equilibrium
whenever the parameter of the linear part is not zero. We are grateful to one of the anonymous referees for
pointing out the case of corner locations.
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(p∗
1, p∗

2, p∗
3) must satisfy (10), the equilibrium locations (x∗

1 , x∗
2 ) must satisfy x∗

1 >

xmin
1 , x∗

2 < xmax
2 and x∗

2 − x∗
1 > xmin

d and the equilibrium market shares must satisfy
(12) and (13).

The above proposition suggests that, when one online firm competes with two
physical firms, there exists a set of pure strategy equilibria such that both physical firms
occupy unconnected market areas, and the online firm takes all remaining markets.
Accordingly, the spatial duopolists will never be located at the end points of the market.
Instead, both physical firms will remain a distance from the end points (x∗

1 < xmin
1

and x∗
2 < xmax

2 ). Additionally, they will not be located so close to each other, such
that x∗

2 − x∗
1 > xmin

d , that each of them enjoys a local monopolistic market. Restated,
the online firm can raise a market effect of causing the spatial duopolistic firms to be
finitely differentiated.

When z ≥ 3k
16 , the online firm will exit the market. As predicted by d’Aspremont

et al. (1979), the two brick-and-mortar firms have an incentive to move far away.
However, they may not be far apart when there is an online firm as a potential entrant.
By symmetry, if p1 + k( 1

2 − x1)
2 > z, then the online firm will reenter again. Solving

p1 + k( 1
2 − x1) − z = 0 yields x1 = 6k−4

√
k2+kz

4k , when z < 5
4 k. When z ≥ 5

4 k,
the equilibrium locations of these two brick-and-mortar firms will reduce to those
obtained by d’Aspremont et al. (x1 = 0).7,8 This result can be summarized as the
following corollary.

Corollary 1 When 3k
16 ≤ z < 5

4 k, the online firm will exit from the market and the
equilibrium (symmetric) locations of the brick-and-mortar stores will be (x∗

1 , x∗
2 ) =(

6k−4
√

k2+kz
4k , 1 − x∗

1

)
, with a potential (online) entrant. When z ≥ 5

4 k, the equilib-

rium locations reduce to those of d’Aspremont et al. (1979) as boundary locations
(x1 = 0, x2 = 1).

Example 1 Consider the following simple example. Let k = 1, and z = 1/64. From
Proposition 1, xmin

1 = 0.025, xmax
2 = 0.875, xm

d = 0.25 and p∗
1 = p∗

2 = p∗
3 =

0.03125. In other words, a set of locations such that x∗
1 > 0.125, x∗

2 < 0.875 and
x∗

2 −x∗
1 > 0.25 can sustain location–price equilibria. This result shows the existence of

finite differentiation equilibria and demonstrates that the equilibrium range of locations
can be very large.

In order to emphasize the role of the online firm in spatial models, z < 3k/16 is
assumed hereafter. Differentiating (14), (15) and (16) yields

7 It is possible to impose price regulation to prevent spatial duopolistic firms from engaging in maximal
product differentiation. For instance, Bhaskar (1997) introduces a price floor into the Hotelling (1929)
model with quadratic transport cost functions and shows that the minimal differentiation equilibrium exists
if and only if the price floor is high enough.
8 In our setting, the online firm cannot force out all brick-and-mortar firms, since they have the advantage
of lower production costs for selling to nearby consumers.
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dxmin
1

d(z/k)
= 2

(√
1 + 80z/k − 1

)

√
2 + 80z/k − 2

√
1 + 80z/k

√
1 + 80z/k

> 0, (18)

dxmax
2

d(z/k)
= − 2

(√
1 + 80z/k − 1

)

√
2 + 80z/k − 2

√
1 + 80z/k

√
1 + 80z/k

< 0, (19)

dxmin
d

d(z/k)
= 4

(√
1 + 80z/k − 1

)

√
2 + 80z/k − 2

√
1 + 80z/k

√
1 + 80z/k

> 0. (20)

Accordingly, the properties of the location limits are summarized as the following
proposition.

Proposition 2 Define λ = z/k, then dxmin
1 /dλ > 0, dxmax

2 /dλ < 0 and
d(xmin

d )/dλ > 0. In other words, the range of equilibrium locations becomes wider
as the waiting cost decreases (unit transportation cost increases).

Proposition 2 implies that an online firm will enjoy a greater competitive advantage
as the waiting cost declines, perhaps because of technological progress, much of
which has occurred in the last decade. As the advantage of the online firm increases,
such as when oil prices rise, increasing transportation costs, or when online business
becomes more convenient, reducing the waiting cost, the two physical firms move
closer to the end points and the minimal distance between them increases. Therefore,
the equilibrium range of locations becomes narrower.

The property of equilibrium prices described by (8) is now discussed. Further
calculations yield

p∗
1 − p∗

3 = k

(
4

5

z

k
− 1

200

(
1 +

√
1 + 80

z

k

))
< 0, if and only if z <

k

64
, (21)

dp∗
1

dz
= dp∗

2

dz
= 2

(√
k(k + 80z) + k

)

5
√

k(k + 80z)
> 0,

dp∗
3

dz
= −2

√
k(k + 80z) − 3k

5
√

k(k + 80z)
< 0, if z >

k

64
,

dp∗
1

dk
= dp∗

2

dk
= k + 40z + √

k(k + 80z)

100
√

k(k + 80z)
> 0,

dp∗
3

dk
= 3

(
k + 40z + √

k(k + 80z)
)

200
√

k(k + 80z)
> 0.

The above results can be summarized as the following proposition.

Proposition 3 In equilibrium, the online firm charges a higher price than the physical
firms (p∗

1 < p∗
3) if and only if z < k/64. As the waiting cost decreases, the equilibrium

prices that are charged by the online firm increase if and only if z > k/64, while
the equilibrium prices that are charged by the physical firm decreases. As the unit
transportation cost increases, all of the equilibrium prices increase.
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Intuitively, the waiting cost is a relative disadvantage (advantage) for the online
(physical) firms. If the waiting cost of online purchases is lower than a proportion of
the physical transportation rate, then the equilibrium prices charged by the online firm
will exceed the prices that are charged by the physical firms to reflect the convenience
it provides. The online firm generally does not charge the same price as the physical
firms, except when z = k/64.9 As the waiting cost declines, the online firm can
charge a higher price that reflects the greater convenience that it offers. However, the
unit transportation cost is a disadvantage for all firms, so as k increases, all equilibrium
prices increase.

In the following, the first-best solution is investigated. Since each consumer buys
one unit of product from one of these three firms, the socially optimal solution is equal
to the result of minimizing the total transportation costs (denoted by TTC):

min TTC{N1,N2,N3}
= 2

⎛

⎜
⎝

1
2 N1∫

y=0

ky2dy +
1
2 N2∫

y=0

ky2dy

⎞

⎟
⎠ + N3 · z

= k

12
N 3

1 + k

12
N 3

2 + z(1 − N1 − N2). (22)

The first-order condition for the above minimization is

∂TTC

∂ N1
= k N 2

1

4
− z = 0. (23)

The optimal market sizes are therefore

Nw
1 = Nw

2 = 2
√

kz

k
, (24)

and

Nw
3 = 1 − Nw

1 − Nw
2 = k − 4

√
kz

k
. (25)

Solving N∗
1 = Nw

1 , N∗
2 = Nw

2 and N∗
3 = Nw

3 for z yields z∗ = k/64. Restated, when
z = k/64, the market equilibrium is socially optimal. This result can be summarized
as the following proposition.

Proposition 4 When z = k/64, the equilibrium solution is identical to the socially
optimal solution.

Intuitively, when z = k/64, p∗
1 = p∗

2 = p∗
3 , representing a minimal TTC. The

implication of the above proposition suggests an implication for taxation policy. When
k > 64z (k < 64z), an optimal unit subsidy (taxation) t on the transportation costs of
the consumer such that k + t = 64z reaches the socially optimum.

9 Empirically, Clay et al. (2002) show that online bookstores and physical bookstores do not generally
charge the same prices.
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4 Multiple physical firms and one online firm

This section extends the previous results to cases that involve multiple physical firms.
Suppose each consumer buys a product from one of the m physical firms (1, 2, . . . , m)
that are located at xi ∈ [0, 1], i = 1, . . . , m, and x1 ≤ x2 ≤ · · · ≤ xm , or an online
firm (m + 1) that has no specific location. Suppose that their prices for one unit of
good are pi , i = 1, . . . , m + 1, respectively. The utility functions of a consumer who
is located at x and purchases from the physical firms i = 1, . . . , m and online firm
m + 1 are, respectively,

ui = v − pi − k(x − xi )
2, i = 1, . . . , m,

um+1 = v − pm+1 − z.

Each consumer purchases one unit of product from the firm that maximizes his/her
utility. Similar to Proposition 1, consider the case of interior locations, summarized
as Fig. 2.

Suppose nL
i (nR

i ) is the left (right) indifferent consumer between firm i and firm
m + 1.

Solving ui = um+1 yields

nR
i = xi +

√
kpm+1+kz − kpi

k
, nL

i = xi −
√

kpm+1 + kz − kpi

k
, i = 1, . . . , m.

The market share of firm i is

Ni = (nR
i − nL

i ) = 2
√

k(pm+1 + z − pi )

k
, i = 1, . . . , m,

and the market share of firm m + 1 is Nm+1 = 1 − ∑m
i=1 Ni .

Fig. 2 Equilibrium market configuration in multifirms case
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The profit functions are

πi = pi · Ni = 2pi
√

k(pm+1 + z − pi )

k
, i = 1, . . . , m, (26)

πm+1 = pm+1 · Nm+1 = pm+1

(

1 −
m∑

i=1

2
√

k(pm+1 + z − pi )

k

)

. (27)

Solving ∂πi/∂pi = 0, i = 1, . . . , m + 1 yields

p∗
i = 10m2z + k + √

k(20m2z + k)

25m2 , i = 1, . . . , m, (28)

p∗
m+1 = 3k + 3

√
20m2zk + k2 − 20m2z

50m2 . (29)

The necessary conditions for the existence of equilibrium are nL
1 > 0, nR

2 < 1 and
nR

i < nL
i+1, i = 1, . . . , m − 1, which yield:

nL
i+1 − nR

i > 0 ⇒ xi+1 − xi >

√
2
√

10m2z + k + √
k
√

20m2z + k

5
√

km

≡ xmin
d , i = 1, . . . , m − 1, (30)

nL
1 > 0 ⇒ x1 >

√
2
√

10m2z + k + √
k
√

20m2z + k

10
√

km
≡ xmin

1 , (31)

nR
m < 1 ⇒ xm < 1 −

√
2
√

10m2z + k + √
k
√

20m2z + k

10
√

km
≡ xmax

m . (32)

Since xi+1 > xi by assumption, applying the lower bound of x1 and the upper bound
of xm yields:

xmax
m − xmin

1 −
m−1∑

i=1

xmin
d > 0 ⇒

1 −
√

2
√

10m2z/k + 1 + √
20m2z/k + 1

5
> 0, if and only if z <

3

4m2 .

Therefore, to ensure the existence of equilibrium, z < 3/(4m2) is required. Intu-
itively, the waiting cost of online purchases must be lower than a proportion of the
transportation rate so that the online firm can capture some of the market between the
physical firms. The online firm cannot compete with the physical firms if waiting cost
is relatively high such that z ≥ 3/(4m2).
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Substituting the equilibrium prices into the market shares yields:

N∗
i =

√
2
√

10m2z + k + √
k
√

20m2z + k

5
√

km
, i = 1, . . . , m, (33)

N∗
m+1 = 5k − √

2k
√

10m2z + k + √
k
√

20m2z + k

5k
. (34)

This result can be summarized as the following proposition.

Proposition 5 When m physical firms compete with an online firm, there exist a set of
pure strategy equilibria such that each physical firm occupies a region of the market
that is unconnected with other physical firms, and the online firm takes the rest of the
market when z < 3/(4m2). The equilibrium locations (x∗

i , i = 1, . . . , m) must satisfy
(30), (31) and (32), the equilibrium prices must satisfy (28) and (29), and the market
shares satisfy (33) and (34).

Proposition 6 The equilibrium prices p∗
i i = 1, . . . , m are increasing in k and z,

while p∗
m+1 is increasing in k and decreasing in z. Moreover, p∗

i < p∗
m+1 if and only

if z < k/(16m2).
The detailed calculations to show the above proposition can be derived easily from

(30) and (31). The intuition of Proposition 6 is similar to Proposition 3. Moreover, if
m increases, then p∗

i < p∗
m+1 is more difficult to satisfy.

From (33) and (34), the market shares can be compared:

N∗
m+1 − N∗

i =
5m − √

2

√
10m2 z

k + 1 +
√

20m2 z
k + 1 · (m + 1)

5m
. (35)

This function is strictly decreasing in z/k and positive at z/k = 0. Thus, (35) is positive
when z/k < (3m−2)/(4(m2+2m+1)·m). However, (3m−2)/(4(m2+2m+1)·m) >

1/(4m2), when m ≥ 1 + √
6/2 ≈ 2.225. Therefore, the condition z/k < 1/(4m2)

in Proposition 5 guarantees that N∗
m+1 − N∗

i > 0. Since z < k/m is assumed, N∗
m+1

definitely exceeds N∗
i , i = 1, . . . , m. Moreover,

N∗
m+1 −

m∑

i=1

N∗
i

=
5 − 2

√
2

√
10m2 z

k + 1 +
√

20m2 z
k + 1

5
> 0 if and only if z <

k

16m2 .

(36)

These results can be summarized as the following proposition.

Proposition 7 In equilibrium, the market share of the online firm is larger than that
of a physical firm. When z < k/(16m2), the market share of the online firm is larger
than the total market share of all of the physical firms.

123



Quadratic transport costs 321

The next step is to consider social welfare. Since the product demand is inelas-
tic, the socially optimal solution is identical to the result of minimizing the sum of
transportation costs and waiting costs (denoted by TTC):

min
xi ,i=1,...,m

TTC = Nm+1 · z +
m∑

i=1

nR
i∫

nL
i

k(x − xi )
2dx

= k

12

m∑

i=1

N 3
i + z

(

1 −
m∑

i=1

Ni

)

. (37)

Then, the optimal solutions become:

N o
i = 2

√
kz

k
i = 1, . . . , m, N o

m+1 = k − 2m
√

kz

k
. (38)

Comparing N∗
i with N o

i yields the following proposition.

Proposition 8 When z = k/(16m2), the equilibrium solution is identical to the
socially optimal solution.

This fact suggests that when z = k/(16m2), p∗
i = p∗

m+1, i = 1, . . . , m, which
represents a minimal TTC. Proposition 8 provides a rationale for the taxation of online
businesses. Intuitively, when z is very low (z < k/(16m2)), the online firm will set
a higher price than the physical firms. Hence, the optimal taxation must be lower for
the online firm to equalize these prices and reach to the social optimum.

5 Endogenous number of firms with free entry

This section extends to a framework in which an endogenous number of physical firms
is assumed. From (24) and (29), the equilibrium profits of physical firms become

πi (k, z, m) = p∗
i N∗

i

= 10m2z + k + √
k(20m2z + k)

25m2 ·
√

2
√

10m2z + k + √
k
√

20m2z + k

5
√

km
,

i = 1, . . . , m.

It can be shown that ∂πi (k, z, m)/∂m < 0,∀i = 1, . . . , m + 1 consider that each
physical firm involves a fixed cost F , while the online firm has no fixed cost. The
profit function of the physical firm i is

π F
i = πi (k, z, m) − F i = 1, . . . , m.

The equilibrium number (m∗) of physical firms is specified by the following proposi-
tion:
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Proposition 9 Allowing free entry for physical firms, the equilibrium number of phys-
ical firms m∗. satisfies

πi (k, z, m) − F ≥ 0 > πi (k, z, m + 1) − F. (39)

Additionally, m∗ is non-increasing in F, non-decreasing in z and non-decreasing in
k if k is relatively large (or z is close to zero).

Proof By detailed calculations for comparative statics, ∂πi (k, z, m)/∂z > 0 and
∂πi (k, z, m)/∂m < 0, and

∂πi (k, z, m)

∂k
= A(z, k, m)·

(k2 +
√

20m2z + kk3/2 + 15km2z + 5m2z
√

k
√

20m2z + k − 100m4z2), (40)

where A(z, k, m) is a positive function. Since the second term on the right-hand side of
(40) is strictly increasing in k, implying ∂πi (k, z, m)/∂k > 0 if k is large or z is close
to zero. From ∂π F

i /∂ F < 0, the comparative statics in the proposition are proved by
performing detailed calculations. �

Example 2 Given k = 10, z = 1, and F = 0.15, π F
i (m = 7) = 0.031 and π F

i (m =
8) = −0.026. Therefore, m∗ = 7. If F = 0.02, then π F

i (m = 3) = 0.028 and
π F

i (m = 4) = −0.082, and m∗ = 3.

6 Stackelberg competition

After the complete analysis on Nash equilibria, in this section, our model is extended
to a von Stackelberg structure for comprehensiveness.10 Consider a different game in
which an online firm sets its price (pm+1) prior to the M brick-and-mortar firms setting
their prices. From (26), solving ∂πi/∂pi = 0 yields pi = 2

3 (pm+1 + z), i = 1, . . . , m.
Plugging pi into (27) yields

ps∗
m+1 = k + √

4m2zk + k2 − 4m2z

6m2 . (41)

Plugging (41) into pi yields

ps∗
i = k + √

4m2zk + k2 − 4m2z

9m2 , i = 1, . . . , M. (42)

10 We are grateful to one of the anonymous referees for pointing out this game structure.

123



Quadratic transport costs 323

Therefore, the necessary conditions for the existence of equilibrium are nL
1 >

0, nR
2 < 1 and nR

i < nL
i+1, i = 1, . . . , m − 1, yielding:

nL
i+1 − nR

i > 0 ⇒ xi+1 − xi >

√
2
√

2m2z + k + √
k
√

4m2z + k

3
√

km

≡ xmin
d , i = 1, . . . , m − 1, (43)

nL
1 > 0 ⇒ x1 >

√
2
√

2m2z + k + √
k
√

4m2z + k

6
√

km
≡ xmin

1 , (44)

nR
m < 1 ⇒ xm < 1 −

√
2
√

2m2z + k + √
k
√

4m2z + k

6
√

km
≡ xmax

m . (45)

Since xi+1 > xi , using the lower bound of x1 and the upper bound of xm yields:

xmax
m − xmin

1 −
m−1∑

i=1

xmin
d > 0

⇒ 1 −
√

2
√

2m2z/k + 1 + √
4m2z/k + 1

3
> 0, if and only if z <

3

4m2 .

Comparing (41) and (42) yields

ps∗
i − ps∗

m+1 = −k − √
k(4m2z + k) + 16m2z

18m2 < 0 iff z <
9k

64m2 . (46)

Comparing (28) and (29) with (41) and (42) yields ps∗
m+1 − p∗

m+1 > 0, since z < 3k
4m2

is assumed in Proposition 5. Similarly, ps∗
i − p∗

i > 0 since we have assumed z < 3k
4m2 .

The above results can be summarized as the following proposition.

Proposition 10 Under a Stackelberg competition in the price game such that the
online firm sets its price pm+1 before the M brick-and-mortar firms, the equilib-
rium prices (ps∗

m+1, ps∗
i ) satisfy (41) and (42), respectively. The equilibrium locations

(xs∗
i , i = 1, . . . , m) must satisfy (43), (44) and (45). Moreover, ps∗

i < ps∗
m+1, i =

1, . . . , M, if and only if z < 9k
64m2 . Finally, the equilibrium Stackelberg prices are

higher than those in the Cournot competition (ps∗
m+1 > p∗

m+1 and ps∗
i > p∗

i ).

These results imply that the degree of competition in a Stackelberg game is less
than that in a Nash game, while the equilibrium locations are similar to those in
Cournot competition. Therefore, the equilibrium prices are higher under Stackelberg
competition.

7 Conclusions

Introducing an online firm into a spatial duopoly model yields a type of non-maximal
differentiation equilibrium that has seldom been discussed in the literature. The model
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presented in this paper demonstrates that the online firm plays an important role in
affecting the traditional location–price equilibrium. The online firm may charge either a
higher or lower price than the physical firms, depending on its relative advantages. Our
model is extended to the situations of multiple firms and the Stackelberg framework.

Our analysis relies on the assumption that the online firm has no specific location.
This assumption could be true in a metropolitan area, but for a large market scale,
such as a national market, an online firm may consider the optimal locations of its
distribution facilities. For example, Amazon has recently increased the number of
its distribution centers in order to get close to customers and so reduce consumers’
waiting costs. In this situation, the transportation costs are endogenously determined
by the online firm. This spatial scale issue is left for future research.
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