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Abstract We reconsider a Cournot spatial competition in a circular city. We discuss
an oligopoly model. We find that two equilibria exist if the transport cost function is
nonlinear in distance, while a continuum of equilibria exists if it is linear. Thus, the
result of the real indeterminacy of equilibria in the linear transport cost case is knife
edge.

JEL Classification R32 · L13

1 Introduction

Hamilton et al. (1989) and Anderson and Neven (1991) carried out pioneering works
on spatial Cournot competition.1 In their models, each firm chooses its location in
a linear city and delivers its product for each point in the city. They showed that all
firms agglomerate at the central point. Pal (1998) showed that their result depends on
the assumption of the linear city. He investigated a circular city duopoly model and
found that an equidistant location pattern appears in equilibrium; that is, locational

1 Spatial Cournot models are also widely adopted for analyzing competition and public policies. See, Chen
and Lai (2008), Matsumura (2003), Matsushima (2001b), Matsushima and Matsumura (2003, 2006), Nikae
and Ikeda (2006), and Sun (2009).
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34 T. Matsumura, N. Matsushima

dispersion appears. He also suggested that equidistant location pattern constitutes an
equilibrium in oligopoly. Matsushima (2001a) extended Pal’s model to an n-firm oli-
gopoly and showed another equilibrium where half of the firms locate at one point
and the other half locate at the opposite point (partial agglomeration). Gupta (2004)
showed that a continuum of equilibria exists if n is even and larger than 3. Thus, we
face the real indeterminacy problem of equilibria in the circular city model.

Although the above three works on the circular city models use the linear transport
cost function in distance, this assumption might not be innocuous. We use a linear-
quadratic transport cost function to allow both convex and concave transport costs. For
analytical simplicity, we investigate 4-firm oligopoly because a continuum of equilib-
ria exists if the number of firms is even and larger than 3 under the linear transport
cost function (Gupta 2004). We find that only two location patterns are equilibrium
outcomes when the transport cost is either strictly convex or concave; one is an equidis-
tance type pointed out by Pal (1998) and the other is a partial agglomeration type shown
by Matsushima (2001a). Although multiple equilibria still exist, the real indeterminacy
problem found in Gupta et al. (2004) disappear when we use a nonlinear transport costs.

We especially emphasize that the (strictly) concave transport cost is quite impor-
tant in shipping models (delivered pricing models). The transport cost functions for
firms are usually concave with respect to the distance. Air, ship, and railway freight
costs are usually concave with respect to the distance. For instance, in the transport
by air, the transportation cost is far from proportional to the distance (Brander and
Zhang 1990). Large costs are incurred at take off and landing while the actual time in
the air requires low costs, which yield concave transportation cost functions. Another
example is the following situation. When the distance is small (large), the firm uses a
truck (air cargo). Marginal cost for truck transport is larger than that for air transport,
thus the transportation cost becomes concave (Dorta-González et al. 2005).

Regarding non-linear transport costs in circular city Cournot spatial models,
Matsumura and Shimizu (2006, 2008) also adopted nonlinear transport cost in a duop-
oly model but did not discuss oligopoly cases. Matsumura et al. (2005) discussed non-
linear transport cost in a four-market model with four firms. In their model, possible
locations are only four, so it excluded the possibility of a continuum of equilibria.
Our work is closely related to Gupta et al. (2006). They investigated a Cournot spatial
model with two complementary goods and showed that linear and convex transport
cost yields different equilibrium locations and the set of equilibrium outcomes in the
latter case is smaller than that in the former case. However, they did not examine the
case of concave transport cost.

The remainder of the paper is organized as follows. Section 2 presents the basic
model. Section 3 provides the result. Section 4 concludes.

2 The model

We present a two-stage location–quantity game. Let xi (i ∈ {1, 2, . . . , n}) be the loca-
tions of firm i . xi is the point on the circle located at a distance from 0 (measured
clockwise). In the first stage, each firm i (i ∈ {1, 2, . . . , n}) simultaneously chooses
its location xi . Let qi (x) denote the firm i’s output offered at each point x ∈ [0, 1].
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Spatial Cournot competition and transportation costs 35

x is the point on the circle located at a distance from 0 (measured clockwise). In the
second stage, each firm i (i ∈ {1, 2, . . . , n}) observes its competitors’ locations and
simultaneously chooses qi (x) ∈ [0,∞) for x ∈ [0, 1]. Let p(x) denote the price of the
product at x and q(x) ≡ ∑n

i=1 qi (x) denote the total quantity supplied at x . We assume
that the demand function at each point x is linear and is given by: p(x) = 1 − q(x).

Let d(x, xi ) denote the distance between x and xi . This signifies the shorter distance
of the two possible ways to transfer the goods along the perimeter. To ship a unit of the
product from its own location to a consumer at point x , each firm i (i ∈ {1, 2, . . . , n})
pays a transport cost T (x, xi ) ≡ td(x, xi ) + τd(x, xi )

2, where t and τ are constant
values. We assume that t > 0 and τ > −t so as to ensure that T is increasing in
d(x, xi ). Firms are able to discriminate among consumers since they control transpor-
tation. Consumer arbitrage is assumed to be prohibitively costly. Each of (n) firms has
identical technology and constant marginal cost of production, which is normalized to
zero. These assumptions are standard and also made in many other location–quantity
models.2

3 Equilibrium

In this section, we discuss the equilibrium in the model formulated above. We use
subgame perfection as the equilibrium concept. The game is solved by backward
induction. First, we discuss the equilibrium outcomes in the second-stage subgames
given the location of each firm.

3.1 Quantity choice

We follow the Cournot assumption that firms compete in quantities at each point in the
market. Since marginal production costs are constant, quantities set at different points
by the same firm are strategically independent. Cournot equilibria can be characterized
by a set of independent Cournot equilibria, one for each point x . Let πi (x) denote firm
i’s (i ∈ {1, 2, . . . , n}) profit at x , given the locations of all firms;

πi (x) = (1 − q(x) − T (x, xi ))) qi (x). (1)

The first-order condition of firm i (i ∈ {1, 2, . . . , n}) is given by

1 − T (x, xi ) − qi (x) −
n∑

i=1

qi (x) = 0. (2)

2 Gupta (2004) discussed linear but non-identical transport costs. Shimizu (2002) and Yu and Lai (2003)
discussed product differentiation in spatial Cournot models but they use liner transport costs. So as to focus
on the effect of nonlinear transport costs, we do not incorporate these effects.
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Fig. 1 The equilibrium location
patterns

In this paper, we assume that the whole market will always be served by the firms.
This assumption is satisfied if 4 > n(2t + τ).3

The output quantity and profit of firm i supplying for market x are given by

qi (x, xi ) = 1 + ∑n
i=1 T (x, xi ) − (n + 1)T (x, xi )

n + 1
, πi (x, xi ) = qi (x, xi )

2. (3)

The total quantity supplied and the price are:

q(x) = n − ∑n
i=1 T (x, xi )

n + 1
, p(x) = 1 + ∑n

i=1 T (x, xi )

n + 1
. (4)

3.2 Location choice

In this subsection, the equilibrium locations are discussed. We consider a four firm
case. n = 4 is the minimum number of firms yielding a continuum of equilibria.4

Without loss of generality, we set that the equilibrium location of firm 1 is 0. As
shown by Gupta et al. (2004), when the transportation cost is linear in distance (τ = 0),
a continuum of equilibria exists.

Result 1 (Gupta et al. 2004) Suppose that n = 4. If the transportation cost function
is linear in distance (i.e., τ = 0), (x1, x2, x3, x4) = (0, xa, 1/2, 1/2 + xa) constitutes
an equilibrium for any xa ∈ [0, 1/2).

The first case of equilibrium location in Fig. 1, equidistant location pattern, was
discovered by Pal (1998). The second case of equilibrium location in Fig. 1, par-
tial agglomeration, was pointed out by Matsushima (2001a). Gupta et al. (2004)
showed that many other equilibrium location patterns exist (third case in Fig. 1). The

3 A similar assumption (small t and τ ) is also made in many studies of quantity-setting spatial models. See,
among others, Anderson and Neven (1991) and Pal (1998).
4 If n = 2, the unique equilibrium is equidistance type for any increasing transport cost functions. See
Matsumura and Shimizu (2006). If n = 3 and τ = 0, Gupta et al. (2004) showed that two equilibria exist,
one is equidistance type and the other is partial agglomeration type, where one firm locates at 0 and two
firms locate at 1/2. We can show that the latter is equilibrium only if τ = 0, while the former is always an
equilibrium regardless of τ. More generally, if n (≥3) is odd, the location patterns where (n − 1)/2 firms
locate at 0 and (n +1)/2 firms locate at 1/2 constitutes an equilibrium if and only if τ = 0. If n(≥2) is even,
the location patterns where n/2 firms locate at 0 and n/2 firms locate at 1/2 constitutes an equilibrium for
all τ. For any n ≥ 1, firm i locates at (i − 1)/n constitutes an equilibrium for all τ. The proofs are available
upon request for authors.
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Spatial Cournot competition and transportation costs 37

following proposition indicates that the result drastically changes if the transport cost
is nonlinear (i.e., τ �= 0). The first and the second cases are equilibria but others are
not.

Proposition 1 Suppose that n = 4. Suppose that τ �= 0 (i.e., the transport cost func-
tion is nonlinear). (x1, x2, x3, x4) = (0, xa, 1/2, 1/2+ xa) constitutes an equilibrium
if and only if xa = 0 or xa = 1/4.

Proof See Appendix. ��

Remarks We now mention two remarks. As mentioned earlier, Matsumura et al.
(2005) discussed general transport cost functions in a spatial Cournot competition
model with four firms (a four-market setting), and showed that Pal’s results (equi-
distance) are more robust than Matsushima’s conclusions (partial agglomeration).
Proposition 1 does not show such a property because the linear-quadratic transport
cost function cannot capture extremely concave functions. We can make an example
in which only Pal’s location pattern appears in equilibrium. Consider the following
transportation cost function:

T (x, xi ) = t

(
1

16
−

(
1

2
− d(x, xi )

)4
)

.

T is a concave function with respect to d. Under the cost function, the location pattern
(0, 0, 1/2, 1/2) does not appear in equilibrium, while (0, 1/4, 1/2, 3/4) constitutes
an equilibrium (see Appendix).

In our paper, we assume the transport cost function nonlinear in distance but lin-
ear in quantity. However, air, ship, and railway freight costs are also usually concave
with respect to the quantity. Even if we replace the transport cost T T (q(x), d(x)) =
T (d(x))q(x) with T T (q(x), d(x)) = T (d(x) + a)q(x) + bq(x)2, our results hold
true as long as marginal cost is positive and the full coverage condition (the whole
market will always be served by the firms) is satisfied.

We briefly discuss what happens if n > 4. As Gupta et al. (2004) showed, the set
of equilibrium locations is quite complicated if the transport cost is linear. It is also
true with non-linear transport cost. Proposition 1 states that the number of equilib-
rium location pattern is two when n = 4 but it is not true for n > 4. For example,
if n = 8, we can show that the following three location patterns constitutes equilib-
ria; (x1, x2, x3, x4, x5, x6, x7, x8) = (0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8) (equidis-
tance), (0, 0, 0, 0, 1/2, 1/2, 1/2, 1/2) (two point agglomeration), (0, 0, 1/4, 1/4, 1/2,

1/2, 3/4, 3/4) (hybrid 1), (0, 0, 0, 1/4, 1/2, 1/2, 1/2, 3/4) (hybrid 2). We now focus
on the second equilibrium location pattern.

Result 2 (Gupta et al. 2004) Suppose that n is even. Suppose that the transport cost
function is linear in distance. Suppose that x1 = x2 = · · · = xn/2−1 = 0 and
xn/2−1 = · · · = xn−2 = 1/2. xn−1 = xb and xn = xb + 1/2 constitutes an equilib-
rium for any xb ∈ [0, 1/2).
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A continuum of equilibria exists when the transport cost function is linear.
However, if costs are strictly concave or convex, most strategies again fail to qualify
as equilibria. The same principle can apply to other three patterns.

Proposition 2 Suppose that n is even. Suppose that τ �= 0 (i.e., the transport cost
function is nonlinear). Suppose that x1 = x2 = · · · = xn/2−1 = 0 and xn/2 = · · · =
xn−2 = 1/2. xn−1 = xb and xn = xb + 1/2 constitutes an equilibrium if and only
if xb = 0 or xb = 1/4.

We omit the proof because the way to prove it is similar to that of Proposition 1.
We can also show that the location pattern (0, 0, 0, 1/3, 1/3, 1/2, 2/3, 2/3) does not
appear in equilibrium if the transport cost function is nonlinear, whereas this pattern
appears as an equilibrium outcome in Gupta et al. (2004). Given the location patter,
a firm locating at 1/3 or 2/3 has an incentive to move to point 0. For n ≤ 9, we can
derive equilibrium location patters as summarized in Fig. 2. Basically, asymmetric
location patterns in Gupta et al. (2004) disappear in our model.

We guess that a sufficiently large number of equilibrium location pattern exists if
n → ∞. However, we believe that it is at most countable under nonlinear transport
costs. We can also show that equidistance location pattern pointed out by Pal (1998)
always constitutes an equilibrium and that two point agglomeration pointed out by
Matsushima (2001a) also constitutes an equilibrium as long as n is even. Although
many other hybrid type equilibria exist, we think that it is quite natural to focus on
these two equilibria as two polar cases.

4 Concluding remarks

This study investigates a location-quantity model of oligopoly markets. The equilib-
rium location pattern crucially depends on whether or not the transport cost is linear.
Our result indicates that linearity of the transport cost yields quite specific results.
This makes sharp contrast to the discussion in the linear city model. As Anderson and
Neven (1991) showed, the equilibrium location patterns is agglomeration at the center
whether transport cost is linear and nonlinear. Our result indicates that in circular city
model, we should care about the robustness of the equilibrium pattern when we use
linear transport costs.

In the main part, we show an example in which Pal (1998) type location pattern
appears as an equilibrium outcome whereas Matsushima (2001a,b) type does not
appear. We have a conjecture that the Pal type is more robust than the Matsushima
type. Investigating the conjecture is a considerable future research.

Appendix

Proof of Proposition 1 (only if part) (x1, x2, x3, x4) = (0, k, 1/2, k + 1/2) consti-
tutes an equilibrium only if x2 = k is firm 2’s best reply given (x1, x3, x4) =
(0, 1/2, k + 1/2). Without loss of generality we assume that k ≤ 1/4.
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Spatial Cournot competition and transportation costs 39

Fig. 2 Equilibrium location patterns for n = 2, 3, . . . , 9
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When x2 ≤ k, the profit function of firm 2 is

π2(x2) =
1∫

0

(
1 + ∑4

i=1 T (x, xi ) − 5T (x, x2)

5

)2

dm

= 20(6(2 − t) + (7 − 48k2 + 64k2)t2) − 5(8 − (27 − 192k2 + 256k3)t)τ

6000

+ (33−200k2+160k3+160k4)τ 2+320k(1−2k)(6t (t+τ)+(1+2k)τ 2)x2

6000

+−960((1−4k)t (t+τ)−2k2τ 2)x2
2 −640(2t (t+τ)+(1+2k)τ 2)x3

2 +960τ 2x4
2

6000
.

Thus, we have

∂π2(x2)

∂x2
= 4k(1−2k)(6t (t + τ) + (1 + 2k)τ 2)−24((1−4k)t (t + τ)−2k2τ 2)x2

75

+−24(2t (t + τ) + (1 + 2k)τ 2)x2
2 + 48τ 2x3

2

75
, (5)

∂2π2(x2)

∂x2
2

= −8[((1−4k)t (t+τ)−2k2τ 2)+2(2t (t+τ)+(1+2k)τ 2)x−6τ 2x2]
25

.

(6)

Substituting x2 = k into (5) we have

∂π2(x2)

∂x2

∣
∣
∣
∣
x2=k

= 4k(1 − 2k)(1 − 4k)τ 2

75
≥ 0,

and the equality is satisfied only if k = 0 or k = 1/4. Substituting x2 = k into (6) we
have

∂2π2(x2)

∂x2
2

∣
∣
∣
∣
∣
x2=k

= −8(t + τ − 2kτ)(t + 2kτ)

25
.

This is always negative for k = 0 and k = 1/4 because we have assumed t > 0 and
τ > −t .

When k ≤ x2 ≤ 1/2, the profit function of firm 2 and the derivative of it are

π2(x2) =
1∫

0

(
1 + ∑4

i=1 T (x, xi ) − 5T (x, x2)

5

)2

dm

= 20(6(2 − t) + (7 − 48k2 − 64k2)t2) − 5(8 − (27 − 192k2 − 256k3)t)τ

6000
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+ (33−200k2+160k3+160k4)τ2+320k(1−2k)(6t (t+τ)+(1−2k)τ2)x2

6000

+−960((1+4k)t (t+τ)−2k2τ2)x2
2 +640(2t (t+τ)−(1+2k)τ2)x3

2 +960τ2x4
2

6000
.

∂π2(x2)

∂x2
= 4k(1 + 2k)(6t (t + τ) + (1−2k)τ2)−24((1 + 4k)t (t + τ)−2k2τ2)x2

75

+24(2t (t + τ) − (1 + 2k)τ2)x2
2 + 48τ2x3

2
75

, (7)

∂2π2(x2)

∂x2
2

= −8[((1 + 4k)t (t + τ)−2k2τ2)−2(2t (t + τ)−(1 + 2k)τ2)x−6τ2x2]
25

. (8)

Substituting x2 = k into (5) we have

∂π2(x2)

∂x2

∣
∣
∣
∣
x2=k

= 4k(1 − 2k)(1 − 4k)τ 2

75
≥ 0,

and the equality is satisfied only if k = 0 or k = 1/4. Substituting x2 = k into (8) we
have

∂2π2(x2)

∂x2
2

∣
∣
∣
∣
∣
x2=k

= −8(t + τ − 2kτ)(t + 2kτ)

25
.

This is always negative for k = 0 and k = 1/4 because we have assumed t > 0 and
τ > −t .

Thus, if k �= 0 and k �= 1/4, π2(x2) is strictly increasing when x2 = k (the first-
order condition is never satisfied). Therefore, x2 = k can be its best reply only if k = 0
or k = 1/4. ��

Proof of Proposition 1 (if part) We show that x2 = k is firm 2’s best reply given
(x1, x3, x4) = (0, 1/2, k + 1/2) when k = 0 and k = 1/4. In the proof of only if
part, we have shown that the first-order condition is satisfied when x2 = k if k = 0 or
k = 1/4. Thus, we now show that x2 = k is globally optimum if k = 0 or k = 1/4.

First, we consider the case in which k = 0. Substituting k = 0 into (7) we have

∂π2(x2)

∂x2
= −8x2(1 − 2x2)(t (t + τ) + τ 2x2)

25
≤ 0.

π2(x2) is non-increasing in x2 for x2 ∈ [0, 1/2] and strictly decreasing in x2 for
x2 ∈ (0, 1/2). These imply that x2 = 0 is best reply of firm 2.
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Second, we show that x2 = k is globally optimum when k = 1/4. We can show
that given (x1, x3, x4) = (0, 1/2, 3/4), π2(y) > π2(1/2+ y) for y ∈ (0, 1/2).5 Thus,
the best reply of firm 2 lies on [0, 1/2].

By symmetry, π2(z) = π2(1/2 − z) for z ∈ [0, 1/4]. Thus, we can restrict our
discussion on the case where x2 ≤ 1/4. Substituting k = 1/4 into (5), we have

∂π2(x2)

∂x2
= (1 − 4x2)((2t + τ)2 + 16t (t + τ)x2 + 8τ 2(1 − 2x2)x2)

100
,

π2(x2) is non-decreasing in x2 for x2 ∈ [0, 1/4] and strictly increasing in x2 for
x2 ∈ [0, 1/4). This implies that x2 = 1/4 is the globally optimum point. ��

An example that only Pal-type location pattern appears As mentioned in the main
part, we consider the following transport cost function:

T (x, xi ) = t

(
1

16
−

(
1

2
− d(x, xi )

)4
)

.

First, we show that x2 = 0 is not firm 2’s best reply given (x1, x3, x4) = (0, 1/2,

1/2). It implies that (x1, x2, x3, x4) = (0, 0, 1/2, 1/2) does not constitutes an
equilibrium.

When x2 ≤ 1/2, the profit function of firm 2 is

π2(x2) =
1∫

0

(
1 + ∑4

i=1 T (x, xi ) − 5T (x, x2)

5

)2

dm

= 40320 − 4032τ + 319τ 2

1008000

+ x2
2

(
5184−26880x2+48384x2

2 −64512x3
2 +64512x4

2 −18432x5
2 +13824x6

2

)
τ 2

1008000
.

Thus, we have

∂π2(x2)

∂x2
= x2(1 − 2x2)(9 − 52x2 + 64x2

2 − 152x3
2 + 32x4

2 − 48x5
2)τ 2

875
.

We can easily find that this is zero if x2 = 0 and positive if 0 < x2 ≤ 1/10 (this
inequality is a sufficient condition that the partial derivative is positive). Therefore,

5 When 0 < y ≤ 1/4, we have

π2(y) − π2(y + 1/2) =
y
(

4t (t + τ)(3 − 16y2) + 3(1 − 16y2)τ2
)

150
> 0.

By symmetry, π2(y) = π2(1/2 − y). We also have π2(y) > π2(1/2 + y) for y ∈ [1/4, 1/2). Therefore,
π2(y) > π2(1/2 + y) for y ∈ (0, 1/2).

123



Spatial Cournot competition and transportation costs 43

x2 = 0 is not optimal for firm 2. Therefore, (x1, x2, x3, x4) = (0, 0, 1/2, 1/2) does
not constitutes an equilibrium.

Next, we show that x1 = 0 is firm 1’s best reply given (x2, x3, x4)=(1/4, 1/2, 3/4).
When x1 ≤ 1/4, the profit function of firm 1 is

π1(x1) =
1∫

0

(
1 + ∑4

i=1 T (x, xi ) − 5T (x, x1)

5

)2

dm

= 10321920 − 1032192τ + 96235τ 2

258048000

− x2
1

(
656640 − 2709504x2

1 − 12386304x4
1 − 3538944x6

1

)
τ 2

258048000
.

Thus, we have

∂π1(x1)

∂x1
= −3x1

(
95 − 784x2

1 − 5376x4
1 − 2048x6

1

)
τ 2

56000
.

We can easily show that this is zero if x1 = 0 and negative if 0 < x1 ≤ 1/4.
Therefore, x2 = 0 is local optimal.

When 1/4 ≤ x1 ≤ 1/2, the profit function of firm 1 is

π1(x1) =
1∫

0

(
1 + ∑4

i=1 T (x, xi ) − 5T (x, x1)

5

)2

dm

= 10321920 − 1032192τ + 344107τ 2

258048000

− x1
(
3241728−15019776x1+35696640x2

1 −49158144x3
1 +45416448x4

1

)
τ 2

258048000

+ x1
(
28901376x5

1 − 9437184x6
1 + 3538944x7

1

)
τ 2

258048000
.

Thus, we have

∂π1(x1)

∂x1
= − (1 − 2x1)τ

2

112000

×
[
1407 − 10224x1+26032x2

1 − 33280x3
1 +32000x4

1 − 11264x5
1 +6644x6

1 )
]
.

We can easily show that this is zero if x1 = 1/2 and negative if 1/4 ≤ x1 < 1/2.
From the discussion, we find that x1 = 0 is the optimal location of firm 1. By symme-

try, this logic applies to the other firms’ location choices. Therefore, (x1, x2, x3, x4) =
(0, 1/4, 1/2, 3/4) constitutes an equilibrium.
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