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Abstract

Purpose Elucidating subchondral bone remodeling in preclinical models of traumatic meniscus injury may address clinically
relevant questions about determinants of knee osteoarthritis (OA).

Methods Studies on subchondral bone remodeling in larger animal models applying meniscal injuries as standardizing entity
were systematically analyzed. Of the identified 5367 papers reporting total or partial meniscectomy, meniscal transection or
destabilization, 0.4% (in guinea pigs, rabbits, dogs, minipigs, sheep) remained eligible.

Results Only early or mid-term time points were available. Larger joint sizes allow reporting higher topographical details.
The most frequently reported parameters were BV/TV (61%), BMD (41%), osteophytes (41%) and subchondral bone plate
thickness (39%). Subchondral bone plate microstructure is not comprehensively, subarticular spongiosa microstructure is well
characterized. The subarticular spongiosa is altered shortly before the subchondral bone plate. These early changes involve
degradation of subarticular trabecular elements, reduction of their number, loss of bone volume and reduced mineralization.
Soon thereafter, the previously normal subchondral bone plate becomes thicker. Its porosity first increases, then decreases.
Conclusion The specific human topographical pattern of a thinner subchondral bone plate in the region below both menisci
is present solely in the larger species (partly in rabbits), but absent in rodents, an important fact to consider when designing
animal studies examining subchondral consequences of meniscus damage. Large animal models are capable of providing
high topographical detail, suggesting that they may represent suitable study systems reflecting the clinical complexities. For
advanced OA, significant gaps of knowledge exist. Future investigations assessing the subchondral bone in a standardized
fashion are warranted.
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Introduction

Understanding the spatio-temporal trajectory of subchondral
bone remodeling may provide better insights into osteoar-
thritis (OA) [27]. In the knee, both menisci complement and
protect the osteochondral unit [25]. Meniscus injury is com-
mon [20, 32], and meniscus tissue insufficiency and loss are
one of the most important causes of knee OA [5-7, 21, 49,
52]. The principle of inducing a defined meniscal lesion is
applied in many animal models to model OA initiation and
development [42, 50]. However, the resulting subchondral
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bone alterations are incompletely understood [36], in con-
trast to the cartilage [35]. Though rodents represent by far
the most popular model, their small joints limit an accu-
rate topographical recapitulation. Therefore, this systematic
review focuses on larger animal models only, analyzing the
available knowledge about subchondral bone remodeling
applying traumatic meniscal injuries as a standardizing
entity. It reports study designs, establishes missing gaps and
pinpoints future research directions.

Comparative morphology of the subchondral bone

As its two major parts, the subchondral bone plate and sub-
articular spongiosa are structurally dissimilar, they need
to be considered separately [37]. The human subchondral
bone plate is composed of 0.2-0.4 mm thick plates join-
ing together, enclosing pores, extensions of the marrow
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space and invading vascular channels [16]. Humans have
the largest tibial plateau width (~7.4 +0.5 cm), followed
by sheep (~5.1+0.1 cm), minipigs (~3.9+0.1 cm), rab-
bits (~1.6+0.1 cm), rats (~0.7+0.1 cm), and mice
(~0.3+0.1 cm). Remarkably, the human subchondral bone
plate is considerably thinner (0.52 +0.11 mm) than in sheep
(1.32+0.14 mm), minipigs (0.82+0.17 mm) and similar
to rabbits (0.49 +0.05 mm) [39]. In these animals, the sub-
chondral bone plate is more compact and less porous [39].
When normalized to the tibial plateau width, the subchon-
dral bone plate in minipig is twofold, and in sheep and rab-
bits threefold thicker than in humans [39]. Its microstructure
(Table 1) relates to the severity of OA [24, 26, 34, 40]. The
subchondral bone plate of rabbits and minipigs is most simi-
lar to humans, including similar BS/BV, BS/TV, and closed
porosity, while BV/TV is higher, and open and total porosity
are lower [39]. In sheep, BV/TV is higher, and BS/BV, BS/
TV, open and total porosity are lower than in humans [39].
Of note, the specific human topographical pattern of a thin-
ner subchondral bone plate in the region below both menisci
is present solely in the larger species (partly in rabbits), but
absent in rodents, a clinically highly relevant fact to consider
when designing animal studies examining structural (sub-
chondral) consequences of meniscus damage.

The more porous subarticular spongiosa of sheep,
minipigs and rabbits is also more dense and complex than
humans, reflected by higher BV/TV, Tb.N, BS/TV, and lower
Tb.Sp [39]. For example, the BV/TV of sheep, minipig and
rabbit is ~ twofold higher, the Tb.N of sheep and rabbit
is ~twofold, minipig is ~ threefold higher, and the Tb.Sp of
sheep is 0.3-fold, minipig is 0.15-fold, and rabbit is 0.4-fold
lower than in humans [39]. Structural differences between
the lateral and medial tibial plateau trabecular structure as
in humans exist in sheep and minipigs [39], but are largely
absent in rabbits [39]. These differences include in the

medial subregions higher BV/TV (humans, sheep, minipigs),
BS/TV (sheep), Tb.Th (humans, minipigs, rabbits), Tb.N,
DA and Conn.Dn (sheep), and lower Tb.Pf (humans, sheep),
and Tb.Sp (humans) compared to lateral [39]. In contrast,
a weaker medial trabecular structure is reflected in a lower
BS/BV (humans, minipigs), BS/TV (minipigs), Tb.N (rab-
bits), FD (sheep, minipigs), Conn.Dn (minipigs), and higher
SMI (rabbits), and Tb.Sp (sheep) in the medial subregions
compared to lateral [39].

Pattern of subchondral bone changes

Structural subchondral bone alterations are important
characteristics of both early and advanced stages of OA.
At onset, primary osteoporotic changes occur [10], besides
early degenerative cartilage changes [15, 25, 36, 43, 45].
Subchondral bone plate porosity increases, and BMD, tra-
becular volume, and complexity of the trabecular structure
decrease [15, 43]. These changes may be caused by micro-
damage of the trabeculae due to altered load [17, 28].
After the initial bone loss, still in early OA, subchondral
sclerosis (increase in trabecular volume and complexity),
as well as osteophytes occur [25, 43]. Later, pronounced
abnormalities of bone shape and cysts appear [25].

Literature search results
(a) PubMed search

An initial PubMed search was performed on 15.04.2023
with the terms “(osteoarthritis) AND ((meniscus) OR
(meniscal) OR (meniscectomy))” yielded 5367 results,
including several studies not reporting any subchondral
bone data (Fig. 1). When the search was refined as “(sub-
chondral bone) AND (osteoarthritis) AND ((meniscus)

Table 1 Bone microstructural parameters frequently used in micro-CT examinations

Name Abbreviations Definitions

Percent bone volume BV/TV Relative volume of calcified tissue in the selected volume of interest
Bone surface-to-volume ratio BS/BV A measure for the bone surface per given bone volume

Bone surface density BS/TV Ratio of surface area to total volume

Trabecular thickness Tb.Th Thickness of the trabecular structure

Trabecular separation Tb.Sp Thickness of the spaces between the trabeculae

Trabecular number Tb.N Inverse of the mean distance between the mid-axes of the examined structure
Trabecular pattern factor Tb.Pf A parameter of cancellous bone connectivity

Structure model index SMI Shows the relative prevalence of plates and rods

Degree of anisotropy DA A measure of how highly oriented substructures are within a volume
Fractal dimension FD An indicator of surface complexity

Connectivity density Conn.Dn Characterizes the redundancy of trabecular connections

Bone mineral density or tissue mineral BMD or TMD Reflects the calcium-hydroxyapatite content

density

@ Springer



5348 Knee Surgery, Sports Traumatology, Arthroscopy (2023) 31:5346-5364
Fig. 1 Flowchart of the 1st - .
.o Terms: ,(osteoarthritis) AND ((meniscus) OR
systematic literature search exploratory ) : "
.. .. (meniscal) OR (meniscectomy))
resulting in n=23 eligible Pubmed
papers, evaluated in the study search L 1) = 160 Ll y
~_
4 \
Terms: ,,(subchondral bone) AND (osteoarthritis) AND
2nd refined L ((meniscus) OR (meniscal) OR (meniscectomy))” J
Pubmed
search -
n =521 results ]
~_
Criteria:
Reports bone parameters,
Abstract solely meniscal OA induction (without additional Excluded: n =299
screening surgical techniques such as ACLT)
~_
[ n =222 remaining ]
~_
Criteria:
Full text available, .
reports bone parameters after meniscal injury, Not retrieved: n = 16
(semi-)quantitative results, Excluded: n =54
adequate controls
Full text I
screening

[ n =152 remaining ]

=
Criteria: not human, mouse or rat stud Human: n =9
) ! v Mouse or rat: n = 121
=
Included [ n =23 included ]

OR (meniscal) OR (meniscectomy))”, it resulted in 521
papers (9.7% of the original search). In the detailed
analysis only those studies were included where OA was
evoked by traumatic tear or injury of the meniscus, surgi-
cal destabilization of the meniscus (DMM), or total or
partial meniscectomy. To avoid any supplementary fac-
tors leading to additional instability such as ligament
transection (e.g. anterior cruciate ligament), such com-
bined methods were excluded (Fig. 1). Papers were also
excluded if full text was unavailable, if they were reviews,
not in English language, subchondral bone or appropriate
controls not reported, or meniscal injury not applied to
induce OA. The paper selection consequently was further
reduced after reading their abstracts (n=222), and full text
(n=152 papers). When human (n=9), mouse (n=96) and
rat (n=25) studies were excluded, n =23 studies remained
eligible for detailed systematic evaluation (only 0.4% of
all papers reporting meniscal injury).

@ Springer

(b) Evaluation of the abundance of studies

The first animal study fulfilling the inclusion criteria was
published in 1993 [3]. The abundance of eligible papers
was constantly low afterwards (n=0-6 in 4-year intervals)
(Fig. 2a).

(c) Evaluation of the study designs

In the finally selected 23 papers, four main types of induced
meniscal damage were described: (1) total meniscectomy,
(2) partial meniscectomy, (3) meniscal transection or tear
(MMT; the medial collateral ligament [MCL] is transected
in small animals and left intact in large ones, and the pars
intermedia is transected at its narrowest point, but no parts
of the meniscus are removed), and (4) DMM by “menis-
cal release” (the anterior root is transected, but no parts are
removed).
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Fig.2 Summary of the n=23 papers evaluating the subchondral bone
in animal models of OA induced by meniscal injuries. a Histogram
showing the number of eligible papers in 4-year intervals and the
most important subchondral bone b evaluation methods and ¢ param-
eters most frequently reported. Note that the cumulative percentages
within the graphs may not be equal to 100% due to some studies
reporting multiple techniques or parameters. d Reported time points

(d) Evaluation of study methods

The most common method to evaluate subchondral bone
structure was histology, used in 44% of the studies (n=10).
Micro-CT was used only in 39% of all studies (n=9),
although it represents the gold-standard method for directly
evaluating bone microstructure [9], with excellent reproduc-
ibility and accuracy [8] (Fig. 2b). When the occurrence of
applying a combined evaluation protocol including micro-
computed-tomography (micro-CT) or histology, paired with
dual energy X-ray absorptiometry (DXA), biochemistry or
gross pathology of the joint was examined, histological
evaluation was mostly used alone (40% of the total n=23
studies), or in combination with gross pathology (30%), or
DXA (30%). Micro-CT was used alone in 30% of all studies,
and in combination with gross pathology in 9%. Histologi-
cal evaluation was mostly applied for reporting subchondral
bone plate thickness, but several studies also used it to evalu-
ate subchondral trabecular microstructure, despite the strong
limitation of the stereologic analysis of a few 2-dimensional

in all of the studies (total n=23), expressed as percentage of the aver-
age life span [41, 42] of the species. Dots indicate study termination
time points corresponding to the displayed percent range. Papers
reporting multiple time points are presented with multiple dots on the
figure. CT computed tomography; DXA Dual Energy X-ray Absorpti-
ometry; /HC immunohistochemistry; MRI magnetic resonance imag-
ing; SCBP subchondral bone plate

(2D) sections assuming plate-like underlying structure [8].
Many of such studies did not identify significant differences
between treatment groups [23, 33]. Overall, the most fre-
quently reported bone parameters were BV/TV, BMD, pres-
ence of osteophytes, Tb.Th, thickness of the subchondral
bone plate, and Tb.N (Fig. 2c). Larger animal studies only
reported early and mid-term time points (Fig. 2d).

Subchondral bone changes caused by meniscus
damage in different larger animal models

(a) Guinea pigs

Partial medial meniscectomy and “meniscectomy” (with
unclear definition, probably rather involving MMT) pro-
tocols were used in four studies (Table 2). In the partial
medial meniscectomy model, at 1 month, BMD decreased
[47], and subchondral bone plate thickness [46] and BV
[46, 47] were unchanged. At 3 months, subchondral bone
plate thickness [46] and medial BMD [47] increased (BV

@ Springer
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unchanged), indicating subchondral bone plate sclerosis at
mid-term. In a (probably) MMT model, at 12 weeks, osteo-
phytes [18], decreased trabecular BMD [18, 19], BV/TV
[18, 19], Tb.Th [18, 19], and increased Tb.Sp [18, 19], SMI
[18, 19], and Tb.Pf [19] were reported, indicating a loss
of trabecular bone. Of note, in the Hartley guinea pigs, a
commonly used outbred strain of short haired albino guinea
pigs, the usage of appropriate, age-matched, sham operated
controls is exceedingly important due to the commonness
of spontaneous OA.

In sum, meniscal damage at 3 months in guinea pigs
resulted in increased subchondral bone plate thickness and
loss of trabecular bone (Table 2, Fig. 3a—c), similarly to
other early/mid-term OA models.

(b) Rabbits

Studies examining the consequences of total and par-
tial medial meniscectomy, or of anterior medial or lateral
root tears did not report major subchondral bone changes
(Table 3, Fig. 3d, e). At 2 weeks after total meniscectomy,
subchondral bone plate BMD decreased [1]. At 3 weeks, a
bone remodelling score was unchanged, scintimetric uptake
increased [22]. Between 3 and 8 weeks, regional bone blood
flow (tibial plateau, femoral condyles) increased [2]. At 4
and 8 weeks, subchondral bone plate BMD decreased [1].

In contrast, beginning at 12 weeks, subchondral bone
plate BMD [1] did not differ from sham operated knees. At
13 weeks, osteophyte developed [38] and the subchondral
bone plate became thicker (peripheral regions, medial tibial
plateau) [23], while BMD [38], total subchondral bone and
trabecular BV/TV [23], trabecular BS/TV [23], BS/BV [23],
Tb.Th [23], and Tb.N [23] were unchanged. At 24 weeks,
unchanged subchondral bone plate BMD [1] was found. At
25 and 40 weeks, the bone structure was similar to the 13
weeks time point, with osteophytes [38], increased subchon-
dral bone plate thickness in the peripheral regions of the
medial tibial plateau [23], unchanged BMD [38], subchon-
dral bone and trabecular BV/TV [23], trabecular BS/TV
[23], BS/BV [23], Tb.Th [23], and Tb.N [23].

In sum, total meniscectomy induced only minor changes
in the subchondral bone, including decreased subchondral
bone plate BMD and increased bone blood flow at the earlier
time points (2-8 weeks). Osteophytes developed in the later
phase after 12 weeks, while BMD and trabecular structure
were unchanged.

After partial meniscectomy, no cysts, osteophytes, or
sclerosis, and unchanged bone structure [14] were reported
at 2—-10 weeks. After DMM, at 8 weeks, increased [53] or
unchanged [48] BV/TV, decreased Tb.N [53], decreased
lateral Tb.N after medial meniscal root tear [48], decreased
medial Tb.N after lateral root tear [48], unchanged Tb.Th
[48, 53], unchanged trabecular and subchondral bone plate

BMD [48], increased lateral Tb.Sp after medial root tear
[48], and increased medial Tb.Sp after lateral root tear
[48], were reported. At 12 weeks, BV/TV increased [51].

In sum, DMM induced only minor changes of the sub-
chondral bone after 8—12 weeks, including increased BV/
TV, and trabecular bone loss mostly in the compartment
opposing the operated compartment. The fact that no char-
acteristic major microstructural changes were detected
(Fig. 3d, e) might be due to the limited sensitivity of the
applied 2D detection methods applied. In order to achieve
better comparability with human and other animal data,
more short- and long-term studies with sensitive 3D detec-
tion methods such as micro-CT are needed.

(c) Dogs

Partial and total meniscectomy and meniscal destabiliza-
tion were examined in 2 studies (Table 4, Fig. 3f) [31, 33].
Both partial and total meniscectomy at 16 weeks evoked
non-significantly increased percentage bone area, besides
largely similar cartilage damage, and evidence of menis-
cal repair [31]. DMM at 12 weeks resulted in increased
medial tibial plateau subchondral bone plate thickness
[33], unchanged trabecular BV/TV [33] and Tb.Th [33]
besides medial compartment cartilage pathology [33].

Thus, data from dogs are scarce and analyses only based
on 2D histological sections which have limited accuracy
compared to true 3D analyses with micro-CT [8]. Further-
more, time points covered only the 12-16 week period
corresponding to early/mid stage OA, when no extensive
alterations of the subchondral bone were observed. To
allow for a detailed comparison with human and other
animal data, more shorter- and longer-term studies are
necessary.

(d) Minipigs

Only one study described purely meniscus-related OA
changes of the subchondral bone [4] (Table 5). In Yucatan
minipigs, at 1 month after DMM, cartilage contact area
decreased and concentrated at the cartilage-cartilage
region [4], deep BV/TV decreased [4], and superficial
Tb.Th increased [4]. At 3 months, contact area, deep BV/
TV, and superficial Tb.Th all became normal [4]. These
changes might be due to an early transient loss of smaller
trabeculae caused by increased loads, which is consistent
with other early OA models [15].

Longer duration studies are needed to examine whether
the minipig DMM model shows similar late OA subchon-
dral bone sclerosis as humans.

@ Springer



5352

Knee Surgery, Sports Traumatology, Arthroscopy (2023) 31:5346-5364

Guinea pig DMM,

Guinea pig MMT, 12 weeks 1 month

100 100

2 2 2 2 1

50

0 0o/ 0
0||||||||

RS X Q“
ng QA\ S /\0 " AN
9
€5 R <
Q,Q

Direction of change
(in % of reporting papers)
(9]

o

Direction of change
(in % of reporting papers)

e

Q.

Rabbit DMM, 8 weeks

100 100

50 50

0 00

Direction of change
(in % of reporting papers)

0 0

QRSO Q“ SR
/\iv /\‘0,@"’ AN Qg“
< £

%‘“ &

Direction of change
(in % of reporting papers)

SR\
Q’Q'\

=2

Sheep partial meniscectomy, 6 weeks

m m
o @ 100 o @ 100
® g ® &
S o 11 S o 2
< o <
(SN O c
o £ 50 o T 50
58 1 § &
£ < 5 <
oG G
axX 0 a X 0
£ QL R £
= g =
Q,Q '\®4 4(0 &0&0 (\o Q0 QQ
‘—) Q (J ‘—) 0
<b® ‘bé
i j
Sheep total meniscectomy, Sheep total meniscectomy,
3 months 6 months
m m
o o 100 o @ 100
L &
T s o 1
S cF
S € s0 L 50
58 58
5 < 5 <
25 2%
axX 0 a X 0
£ S £ S
= o = o
S S
S 00 ) 0
& &

Fig.3 Numbers and ratios of studies reporting the directions of
changes of the individual bone microstructural parameters at different
time points in multiple species. Stacked column diagrams showing
OA-related changes of the bone microstructural parameters follow-
ing a guinea pig medial meniscal transection (MMT) at 12 weeks and
guinea pig destabilization of the medial meniscus (DMM) at b 1 and
¢ 3 months, rabbit DMM at d 8, and at e 13-40 weeks, f dog DMM

@ Springer

Rabbit DMM, 13 = 25 = 40 weeks (all identical)

Guinea pig DMM,

3 months
B 100
e
S a
< o
O <
D=
c £
cs 50
L o
5 &
O o
Yo
a X
£ 0
= « ©
S
(O
Q
>
f

Dog DMM, 12 weeks
100

Direction of change
(in % of reporting papers)
w
o

00O 0 0 0 00O
Q& RS q\ o Q& DR &
/\\\o «‘0,@"’ NN éz’“/\v“ ‘6«‘0 «‘0/\<>°’ AN
(; (/
Q,@
Sheep partial meniscectomy, 6 months
2 2 2
Q& R
'64\‘0 &‘%{0" (\0 0
(;
k
Sheep total meniscectomy,
9 months
100
[ Increased

@ Unchanged
O Decreased

Direction of change
(in % of reporting papers)
w
=)

at 12 weeks, and sheep partial meniscectomy at g 6 weeks and h
6 months, and total meniscectomy at (i) 3, (j) 6, (k) 9 months. Num-
bers in columns show the number of studies evaluated. BMD or TMD
bone or tissue mineral density; BV/TV percent bone volume; Conn.
Dn connectivity density; SCBP th. subchondral bone plate thickness;
Tb.N trabecular number; Tb. Pf trabecular pattern factor; 7b.Sp trabec-
ular separation; 7b.Th trabecular thickness
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Table 4 Studies describing OA alterations of the canine subchondral bone following surgically induced meniscal injuries

Meniscal damage Study design Follow-up duration Used methods, evalu- Relevant findings in OA References
ated subchondral bone
parameters
(1) partial medial Unilateral: 16 weeks Histology: percentage  Partial and total menis-  [31] Johnson 2004
meniscectomy (caudal (1) left unoper- bone area cectomy groups were
pole hemi-meniscec- ated +right partial largely similar, includ-
tomy, posterior half of =~ meniscectomy; ing shifted weight dis-
the medial meniscus (2) left unoper- tribution to the control
removed); ated +right total limb, some degree of
(2) total medial menis- meniscectomy meniscal regenera-
cectomy tion, macroscopic and
microscopic cartilage
damage in the medial
tibial plateau and
medial femoral
condyle, and slightly
but not significantly
increased percentage
bone area (subchon-
dral bone density)
DMM (medial meniscal Unilateral: 12 weeks Histology: subchondral Medial compartment [33] Kuroki 2011

release by transection
of posterior horn)

(2) left unoper-
ated 4 right sham

(3) other treatment
groups

bone plate: thickness;
subchondral trabecular

cartilage pathology,
increased medial tibial

bone: BV/TV, Tb.Th plateau subchondral
bone plate thickness,
unchanged trabecular

BV/TV and Tb.Th

At the study design “other treatment groups” mean drug or surgical treatments irrelevant for the present review

BV/TV percent bone volume; DMM destabilization of the medial meniscus; 7b.Th trabecular thickness

(e) Sheep

A detailed systematic review analyzed meniscectomy-
induced OA in sheep [50], although the focus was not on
subchondral bone alterations and no studies before 2010
were reported. Surgical OA induction was achieved via total
medial (n=2 studies) [3, 12], total lateral (n=3 studies)
[11, 13, 29], and anterior partial medial (n=2 studies) [43,
44] meniscectomy, complete transection of the medial pars
intermedia (i.e. MMT; n=1 study) [12], and DMM (n=1
study) [12] (Table 6).

After total (medial or lateral) meniscectomy, at 3 months,
osteophytes [12, 13, 29], increased subchondral bone plate
thickness [12, 29], and unchanged BMD [29] were observed.
At 6 months, osteophytes [3, 11, 13], increased subchondral
bone plate thickness [13], decreased operated (lateral) and
increased contralateral (medial) compartment BMD [11],
and thicker operated and thinner contralateral compartment
subchondral bone plate [11] were detected. At 9 months,
subchondral bone plate thickness [29], BMD [29] increased
and osteophytes developed [29]. Thus, osteophytes and
increased subchondral bone plate thickness are characteristic
of both the relatively early and more advanced stages of OA,
while BMD first decreased at mid-term, and then increased
at a more advanced stage.

At the anterior subregions after anterior partial medial
meniscectomy, at 6 weeks, small osteophytes, increased
subchondral bone plate porosity, unchanged subchondral
bone plate thickness, decreased subchondral bone plate
BMD; distinct loss and thinning of subchondral trabecu-
lae were observed besides developing cartilage damage
[43]. In other subregions of the medial tibial plateau,
such changes were minor and the subchondral bone plate
unchanged [43]. At 6 months, subchondral bone plate
thickness increased, its porosity and BMD decreased, and
large osteophytes occurred in the anterior subregions.
The entire medial tibial plateau exhibited a strong loss of
subchondral trabeculae (decreased BMD, and Tb.N, and
increased Tb.Sp, and Tb.Th) [43, 44]. These data reveal a
progressive loss of subchondral trabeculae, starting below
the location of the meniscal injury at early and mid-term
OA, reflected in disrupted correlations of microstructural
osteochondral parameters.

Total meniscectomy, MMT and DMM all induced
largely similar cartilage damage at 3 months [12]. Differ-
ences included more anterior and focal cartilage lesions in
DMM versus more widespread lesions. Osteophyte forma-
tion and subchondral bone plate thickness increased after
total meniscectomy and MMT [12].

@ Springer
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Table 5 Study describing OA alterations of the porcine subchondral bone following surgically induced meniscal injury

Reference

Relevant findings in OA

Follow-up duration Used methods, evaluated subchon-

Study design

Meniscal damage

dral bone parameters

[4] Bansal 2020

1 month: contact area decreased

Micro-CT: superficial (subchondral

1 or 3 months

Bilateral: DMM or sham (no further

DMM (transection of the anterior

and concentrated at the cartilage-
cartilage region, deep BV/TV

decreased, superficial Tb.Th

increased
3 months: contact area, deep BV/TV,

bone plate + subchondral trabecular
bone), deep (subchondral trabecu-

lar bone): BV/TV, Tb.Th

details available)

horn of the medial meniscus)

superficial Tb.Th returned to base-
line (to the same level as sham,

which did not change with time)

BV/TV percent bone volume; DMM destabilization of the medial meniscus; 7b.Th trabecular thickness

In sum, early and mid-term ovine OA development was
observed in the studied 1.5-9 months’ time-frame. It is char-
acterized by a local deterioration of the subchondral bone
with osteophyte development, increased subchondral bone
plate thickness, loss of bone volume and trabeculae, and
decreased mineralization affecting primarily the compart-
ment with compromised meniscal integrity, mostly indepen-
dently of the applied technique (Table 6, Fig. 3g—k). Impor-
tantly, studies resembling human late OA by examining such
ovine subchondral bone changes with longer follow-up time
(several years) are noticeably lacking.

Discussion

The most important finding is the spatio-temporal pattern
of subchondral bone remodeling: Changes in the subarticu-
lar spongiosa occur shortly before those of the subchondral
bone plate. These early alterations involve a degradation of
the trabecular elements, reduction of their number, loss of
bone volume and reduced mineralization. Soon thereafter,
the previously normal subchondral bone plate becomes
thicker. Its porosity first increases, then decreases. Other
essential conclusions are that: (1) Only early or mid-term
time points were presented. (2) Larger joint sizes allow
reporting higher topographical details. (3) The most fre-
quently reported bone parameters were BV/TV (61%), BMD
(41%), osteophytes (41%) and subchondral bone plate thick-
ness (39%). (4) Subchondral bone plate microstructure is
not comprehensively characterized. (5) Microstructure of the
subarticular spongiosa is well described.

Out of the 5367 identified meniscus-related OA studies,
only 521 (9.7%) mentioned subchondral bone in its title or
abstract, and out of them only 23 (0.4%) fulfilled the criteria
to report subchondral bone characteristics in the surgical
protocol solely based on meniscal damage in guinea pigs,
rabbits, dogs, minipigs, and sheep. Data on dogs and mini-
pigs were scarce with only a few published studies. For dogs,
this might be due to the public perception being compan-
ion animals, the often complex ethical approval processes,
and their difficult and costly management [41]. Minipigs
require specialized husbandry and food, and they are con-
siderable less docile than sheep, and the miniature strains,
more suitable for OA research than large agricultural pigs,
are possibly less widely available in some countries [41].
No data from horses or goats were identified. Some large
animal studies reported their results in high topographic
details, usually examining only 1 or 2 time points. In rab-
bits, contrastingly, 3-5 end points, covering a broader time
scale from early to mid-term / late OA were sometimes
reported. Only a low percentage (0.4%) of studies report
subchondral bone characteristics. The number of such stud-
ies did not change recently for the examined larger species.
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Table 6 (continued)

&

References

Relevant findings in OA

dral bone parameters

Follow-up duration Used methods, evaluated subchon-

Study design

Meniscal damage

Springer

[44] Olah 2022

Anterior subregions: macroscopic

Micro-CT: osteophyte area, sub-

6 months

Unilateral:

Anterior partial medial meniscec-

and microscopic cartilage dam-

chondral bone plate: thickness,

(1) left unoperated + right partial

tomy

age, decreased subchondral bone
plate porosity, BS/TV, BS/BV,

BMD, disrupted osteochondral

porosity, BMD, BV/TV, BS/BV,

BS/TV
Subchondral trabecular bone: BMD,

meniscectomy with neutral HTO

(2) other treatment groups

correlations, large osteophytes

Other subregions: strong loss of

BV/TV, BS/BV, BS/TV, Tb.Th,

Tb.Sp, Tb.N, Tb.Pf, SMI, DA,

FD, Conn.Dn

subchondral trabeculae (decreased
BS/TV, BV/TV, BMD, Tb.N,

Conn.Dn, BS/BV, DA, FD

increased Tb.Sp, Tb.Th, Tb.Pf)

At the study design “other treatment groups” mean drug or surgical treatments irrelevant for the present review

BMD bone mineral density; BS/BV bone surface-to-volume ratio; BS/TV bone surface density; BV/TV percent bone volume; Conn.Dn connectivity density; DA degree of anisotropy; DMM
destabilization of the medial meniscus; DXA Dual Energy X-ray Absorptiometry; FD fractal dimension; HPLC High Performance Liquid Chromatography; MMT medial meniscal transection;

SMI structure model index; 7h.N trabecular number; 7b. Pf trabecular pattern factor; 7h.Sp trabecular separation; 7b.Th trabecular thickness

Among them, rabbits are most frequently used (39%). OA
is induced mostly in the medial compartment (87%), in a
unilateral study design (61%), in the right (57%) knee, by
total meniscectomy (48%). Micro-CT was only selected in
39% of the studies (histology: in 44%), although it is the
most capable and recommended [8] method to analyze bone
structure at high detail.

Eligible work presented only early or mid-term time
points of OA development. Studies reporting more severe
damage in the region below a meniscus lesion confirm the
spatio-temporal pattern of subchondral bone remodeling
induced by a meniscus injury [43, 44]. At the site of the
injury, osteophytes appear relatively soon. Remarkably,
changes in the subarticular spongiosa appear slightly before
subchondral bone plate alterations, as ovine data suggests.
These early alterations are characterized by a degradation
of the trabecular elements and reduction of their number
(decreased Tb.N), loss of bone volume (mostly decreased
trabecular BV/TV, increased Tb.Pf and Tb.Sp), and reduced
mineralization (BMD, TMD). Soon afterwards, the previ-
ously normal subchondral bone plate becomes thicker. Its
porosity, a parameter negatively associated with sclerosis,
first in-, then decreases (Fig. 4).

Methodological issues were also identified (Table 7). A
detailed, quantitative 3D microstructural assessment of the
subchondral bone is still not a general practice (performed
in~1/5 of the studies), limiting our knowledge about
subchondral remodeling. Although cartilage analyses are
relatively well standardized, similar methodical guidance
of bone evaluation is absent. Such data would be needed to
allow for clinically relevant and comparable conclusions in
distinct model species and time-points. A standardization
of the evaluation techniques and the reported parameters
could be achieved for example by using the gold-standard
micro-CT, reporting a minimum parameter set of BV/TV,
Tb.Th, Tb.Sp, and Tb.N of the subchondral trabecular bone
(as recommended in the classical paper of Bouxsein et al.)
[8], together with subchondral bone plate thickness and
osteophytes. These parameters can be reliably and accurately
detected also in patients with clinical CT [40], allowing for
a direct comparisons with the animal models. Still, only
22% of all examined studies report these 4 recommended
trabecular parameters, and only 9% of all studies present
the extended parameter set including subchondral bone plate
thickness and osteophytes.

Definition of analysis volumes of interests (VOI) also
needs standardization, by constantly separating the sub-
chondral bone plate from the trabecular bone VOIs. Yet,
many studies reported them together, even though separa-
tion is possible in all examined species [39]. This appears
especially important because simultaneous different direc-
tion of numerical changes in the two bone regions, observed
commonly in various models (e.g. an increased BV/TV in
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Fig.4 Summary of the reported subchondral bone microstructural
changes in early/mid-term OA. a 3-dimensional reconstructed micro-
CT model of the subchondral bone plate and subarticular spongiosa
showing the generally evaluated microstructural parameters. Rep-
resentative safranin-O/fast-green stained histological sections of the
medial tibial plateau of b a normal sheep and ¢ a sheep 6 months
after partial medial meniscectomy [43]. Arrowheads point to char-
acteristic subchondral bone microstructural alterations described
in multiple animal models in early / mid-term OA, including (1)

Early / mid-term OA

Normal c

increased subchondral bone plate porosity, and degradation of the
trabecular elements with (2) increased trabecular separation, and (3)
reduction of their number, loss of bone volume and reduced miner-
alization. BMD bone mineral density; BS/BV bone surface-to-volume
ratio; BS/TV bone surface density; BV/TV percent bone volume;
Conn.Dn connectivity density; DA degree of anisotropy; FD fractal
dimension; SMI structure model index; Th.N trabecular number; Tbh.
Pf trabecular pattern factor; 7b.Sp trabecular separation; 7b.Th tra-
becular thickness

Table 7 Recommendations and considerations for future studies examining OA development in the subchondral bone following meniscal injury

Aspect to consider Future studies

Explanation

Controls Add normal/sham controls

Surgical protocol

Longitudinal studies

Selection of volumes of interests
articular spongiosa

Gold-standard evaluation technique Perform micro-CT

Minimum set of micro-CT parameters
Tb.Th, Tb.Sp, and Tb.N

Extended set of micro-CT parameters

Clear and detailed description needed

Investigate early, mid, late time points

Separate the subchondral bone plate from the sub-

Evaluation of subarticular spongiosa: BV/TV,

Evaluation of subchondral bone plate: thickness
and osteophytes (in addition to the minimum set)

Appropriate controls were missing in several pub-
lications, and these studies had to be excluded
from the present review

Description of surgical protocols was often insuf-
ficient to clearly identify the applied method
of OA induction and relate it to the clinical
problem

To compare OA progression in different surgi-
cal models and animal species vs. human OA,
longitudinal studies with multiple time points
are needed

Bone microstructural alterations may be opposite
direction in the two subchondral bone regions,
thus separate VOI selection is crucial

Micro-CT is capable of accurate 3D evaluation of
the subchondral bone in high spatial resolution
in contrast to 2D methods such as histology

Recommended [8] for a comparable characteriza-
tion of the subchondral bone across different
studies and models

Additionally to the minimum set of subarticular
spongiosa parameters recommended by Boux-
sein et al. [8], these additional subchondral bone
plate parameters give a more comprehensive
view of the entire subchondral bone

2D 2-dimensional; 3D 3-dimensional; BV/TV percent bone volume; micro-CT microcomputed-tomography; OA osteoarthritis; 7b.N trabecular
number; Th.Sp trabecular separation; 7b.Th trabecular thickness; VOI volume of interest

the subchondral bone plate and decreased BV/TV in the
subchondral trabecular bone), would result in apparently
unchanged total subchondral bone parameters, complicating
to reveal existing structural alterations and possibly resulting
in false conclusions.

In early human and late large animal OA related to trau-
matic meniscal injuries, structural subchondral data are
largely absent that could provide crucial information about
the temporal trajectory of changes. As many parameters
decrease in early OA below normal, and increase above it in

@ Springer



5362

Knee Surgery, Sports Traumatology, Arthroscopy (2023) 31:5346-5364

late OA (or vice versa), a direct comparison of the results is
not feasible without a clear definition of “early”, “mid-term”,
and “late” OA stages within each species. Depending on OA
stage, an increase, decrease or no difference of a certain
parameter vs. normal is also possible and may reliably mir-
ror the actual disease stage. Combining multiple microstruc-
tural parameters may identify a phenotypical fingerprint of
each stage of the disease. Thus, detailed longitudinal studies
with identical surgical protocols, multiple (early, mid, late)
time points, appropriate normal/sham controls, and reliable
and exhaustive structural analyses are required in all species.

Limitations include the absence of large animal micro-
structural data on late OA, complicating the comparability
with humans. They are required in the future. High quality
longitudinal studies revealing subchondral bone microstruc-
tural changes following meniscal injuries are unavailable,
but needed to determine which animal model species rep-
resents best the human condition most faithfully. By using
in vivo micro-CT or multiple termination time points, com-
parable longitudinal animal data could also be collected.
While the meniscus tear is traumatic in nearly all animal
models, the more common clinical situation of degenera-
tive tears needs more attention [30]. However, degenerative
lesions of the meniscus will be difficult to imitate in animal
models.

In sum, changes in the subarticular spongiosa have a
short temporal priority over those of the subchondral bone
plate. These early alterations involve a degradation of the
trabecular elements, reduction of their number, loss of bone
volume and reduced mineralization. Soon thereafter, the
subchondral bone plate becomes sclerotic; its porosity first
increases, then decreases. The specific human topographical
pattern of a thinner subchondral bone plate in the region
below both menisci is present solely in the larger species
(partly in rabbits), but absent in rodents, an important
fact to consider when designing animal studies examining
subchondral consequences of meniscus damage. Large
animal models are capable of providing high topographical
detail, suggesting that they may represent suitable study
systems reflecting the clinical complexities. Future studies
need to assess the subchondral bone in a standardized
fashion. Comparative longitudinal studies investigating
its microstructure in early, mid-term, and late stages with
appropriate normal controls in all larger animal species
will allow addressing clinically relevant questions about
fundamental determinants of subchondral bone remodeling
in knee OA caused by meniscal injuries.
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