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Abstract
Purpose  This study aimed to develop and validate machine-learning models for the prediction of recurrent infection in 
patients following revision total knee arthroplasty for periprosthetic joint infection.
Methods  A total of 618 consecutive patients underwent revision total knee arthroplasty for periprosthetic joint infection. 
The patient cohort included 165 patients with confirmed recurrent periprosthetic joint infection (PJI). Potential risk factors 
including patient demographics and surgical characteristics served as input to three machine-learning models which were 
developed to predict recurrent periprosthetic joint. The machine-learning models were assessed by discrimination, calibra-
tion and decision curve analysis.
Results  The factors most significantly associated with recurrent PJI in patients following revision total knee arthroplasty 
for PJI included irrigation and debridement with/without modular component exchange (p < 0.001), > 4 prior open surgeries 
(p < 0.001), metastatic disease (p < 0.001), drug abuse (p < 0.001), HIV/AIDS (p < 0.01), presence of Enterococcus species 
(p < 0.01) and obesity (p < 0.01). The machine-learning models all achieved excellent performance across discrimination 
(AUC range 0.81–0.84).
Conclusion  This study developed three machine-learning models for the prediction of recurrent infections in patients fol-
lowing revision total knee arthroplasty for periprosthetic joint infection. The strongest predictors were previous irrigation 
and debridement with or without modular component exchange and prior open surgeries. The study findings show excellent 
model performance, highlighting the potential of these computational tools in quantifying increased risks of recurrent PJI 
to optimize patient outcomes.
Level of evidence  IV.
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Introduction

Periprosthetic joint infection (PJI) remains a challenging 
clinical complication following total knee arthroplasty 
(TKA). It is associated with substantial patient morbidity 
and mortality as well as an increased economic burden to the 
healthcare system [19, 22]. The burden of PJI on patient’s 

health increases with each episode of recurrence [8]. There-
fore, the preoperative identification of patients at risk for 
periprosthetic joint reinfection following revision TKA has 
the potential to assist in managing patient expectations and 
preoperative counseling [17].

Prior literature identified numerous risk factors for the 
failure of the different PJI treatment strategies [1, 18]. As 
these retrospective risk factor analyses did not quantify the 
weight of each risk factor for the recurrence of PJI following 
revision surgery, a preoperative risk calculator for recurrent 
infection following revision TKA was developed by Klemt 
et al. [20]. However, risk calculators are cumbersome to use 
in clinical practice and additionally demonstrate limited 
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accuracy compared to novel approaches utilizing artificial 
intelligence (AI) [15].

Artificial intelligence algorithms including machine 
learning (ML) methods analyze large and complex datasets 
within seconds and with very high accuracy [11]. To date, 
machine-learning algorithms were used in a variety of non-
orthopedic studies to assist clinical decision-making [7, 24]. 
Recently, machine-learning models were also successfully 
applied in orthopedics to predict clinical outcomes and com-
plications including length of stay and discharge disposi-
tion [29]. However, to the best of our knowledge, there is 
a paucity of studies to predict PJI following hip and knee 
arthroplasty surgery. There has been only one prior study 
utilizing machine-learning algorithms for the identification 
of PJI in total joint arthroplasty (TJA) patients [28]. How-
ever, this prior study did not attempt to predict recurrent 
infections, despite the clinical significance of recurrent PJI in 
terms of increased morbidity and mortality [21]. Therefore, 
this study aimed to predict recurrent infections in patients 
following revision total knee arthroplasty for periprosthetic 
joint infection. The authors hypothesize that artificial neu-
ral networks can accurately predict recurrent infections in 
patients following revision TKA for PJI.

Methods

Patient data

Upon obtaining approval from the Institutional Review 
Board (IRB), a retrospective review of 618 revision total 
knee arthroplasty procedures for periprosthetic joint infec-
tion was performed at a tertiary academic center. The 
patient cohort included 165 patients with confirmed recur-
rent periprosthetic knee joint infection. The eradication of 
PJI following revision TKA was based on postoperative 
microbiology as well as Musculoskeletal Infection Society 
(MSIS) criteria [26]. All patients had a minimum follow-up 
of 3 years. Exclusion criteria for the present study were (1) 
prior revision surgery, and (2) missing or incomplete data.

The average follow-up time for the patient cohort was 
6.6 ± 2.2 years. Patient demographics and surgical vari-
ables for the revision TKA patient cohort are summarized 
in Table 1. In terms of causative pathogens, 98 infections 
at revision surgery were due to Staphylococcus aureus, 94 
infections at revision surgery were due to negative culture, 
84 infections at revision surgery were due to Streptococ-
cus species, 72 infections at revision surgery were due to 
mixed growth, 61 infections at revision surgery were due to 
Staphylococcus species and 31 infections at revision surgery 
were due to Methicillin-resistant Staphylococcus aureus 
(MRSA). Re-revision surgery was performed for negative 
cultures in 26 patients, Staphylococcus aureus in 24 patients, 

Streptococcus species in 21 patients and mixed growth in 
17 patients. Of the 165 patients with recurrent infection, 29 
(17%) of these infections were due to the same organism that 
was present at revision TKA for PJI.

The diagnosis of PJI at revision TKA was based on the 
criteria of the musculoskeletal infection society (MSIS) 
[25]. A PJI was present if a sinus tract communicating with 
the TKA was observed, or if 4 minor criteria existed: (1) 
elevated serum inflammatory makers erythrocyte sedi-
mentation rate (ESR; ≥ 30 mm/h) or C-reactive protein 
(CRP; ≥ 10 mg/L), (2) elevated synovial white blood cell 
(WBC) count (≥ 3000 WBC/μL), (3) elevated synovial neu-
trophil percentage (PMN%; ≥ 80%), (4) presence of puru-
lence in the joint space, or (5) more than five neutrophils 
per high-power field (HPF) observed during histopathologic 
analysis. Revision TKA surgery was performed using irriga-
tion and debridement without modular component exchange 
in 23 patients, irrigation and debridement with modular 
component exchange in 121 patients, single-stage revision 
in 186 patients and two-stage revision in 288 patients. In 
agreement with previous studies, the general indications 
for two-stage revision TKA included the ability to toler-
ate two surgeries on separate occasions, controlled medical 
comorbidities as well as systemic conditions [13], in addi-
tion to patients with poor bone stock and soft tissues [14]. 

Table 1   Patient cohort characteristics

Characteristic TKA patients with periprosthetic 
joint infection (N = 618)

Age (years) 67.2 ± 10.9
Gender 307 male; 311 female
BMI (kg/m2) 30.4 ± 8.8
ASA ASA 1 (10.8%); ASA 2 (60.3%);

ASA 3 (27.0%); ASA 4 (1.9%)
Laterality 326 right; 292 left
Comorbidities
 Smoking 11.6%
 Drinking 33.5%
 Drug abuse 5.9%
 Depression 23.7%
 Diabetes 27.9%
 Renal disease 7.4%
 HIV/AIDS 3.7%
 Metastatic disease 7.8%

Revision surgery type
 Irrigation and debridement 

without modular component 
exchange

3.8%

 Irrigation and debridement with 
modular component exchange

19.5%

 Single-stage revision 28.4%
 Two-stage revision 48.3%
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The antibiotic treatment protocol for PJI was determined in 
collaboration with Infectious Diseases specialists. Medical 
therapy was initiated in all PJI cases using broad-spectrum 
antibiotics after intra-operative samples were taken. Empiri-
cal antibiotic therapy was continued when the definitive tis-
sue sample cultures yielded no pathogen growth.

The diagnosis of PJI at re-revision TKA was also based 
on the criteria of the musculoskeletal infection society 
(MSIS) [25]. All patients were treated with two-stage revi-
sion TKA to treat recurrent PJI.

Clinical variables

Using our institution’s electronic medical record system for 
patient chart review, patient data with respect to potential 
risk factors for recurrent PJI were collected [23]. These risk 
factors include patient demographics, medical comorbidi-
ties, surgical factors, preoperative laboratory findings and 
microbiology (Table 2). The surgical factors included the 
number of surgical interventions prior to revision surgery 
for PJI and the type of revision surgery that was previously 
performed to treat the PJI during index revision TKA.

Machine learning model development

For the classification analysis, we employed three state-of-
the-art supervised machine-learning methods: (1) artificial 
neural networks (ANN), (2) stochastic gradient boosting 
(SGB), and (3) elastic-net penalized logistic regression 
(ENP). The three candidate models were chosen based on 
prior studies demonstrating the potency of these methods to 
accurately predict functional and clinical outcomes of hip 
and knee total joint arthroplasty patients [28]. To investi-
gate the ability of the machine-learning models to predict 
recurrent periprosthetic joint infection, an 80:20 test-train 
split was used: 80% (494 TKAs) of data randomly selected 
and utilized to train the algorithms and 20% (124 TKAs) of 
data was utilized for internal validation and testing [10]. The 
subset of all potential risk factors that was included for final 
modeling of revision TKA patients was selected utilizing a 

recursive feature elimination approach with random forest 
algorithms [9]. A five-fold cross validation was performed 
and repeated five times to assess each algorithm’s ability to 
generalize previously unseen data. In brief, cross validation 
involves randomly partitioning the data sample into comple-
mentary subsets, performing the algorithm development on 
one subset—the training set—and validating the analysis on 
the other subset—the testing set. To reduce variability, the 
cross-validation procedure is repeated for multiple rounds, 
and validation results are averaged over the rounds to gener-
ate final estimates of the algorithm’s performance [28]. We 
applied a coarse-grained grid-search algorithm with repeated 
random sub-sampling to tune each algorithm’s hyperpa-
rameters during the training phase of each cross-validation 
round (ANN: number of hidden layer nodes; SGB: number 
of trees and boosting parameter; ENP: mixing parameter 
α (Ridge regularization α = 0; Lasso regularization α = 0) 
and regularization penalty λ). The grid-search algorithm was 
constrained to pre-defined lower bounds, upper bounds, and 
step sizes for each hyperparameter.

Model assessment was performed through discrimina-
tion, calibration and Brier score [10]. The area under the 
receiver operating curve (AUC) was used for model dis-
crimination. Perfect candidate models have an AUC of 1, 
while an AUC of greater than 0.8 is considered as excellent 
[20]. A calibration plot was used to examine the overall pre-
dictive performance by plotting the observed and expected 
risk deciles and fitting a non-parametric LOESS smoothing 
[6]. The calibration intercept, used to assess whether the 
predictive model overestimates (< 0) or underestimates (> 0) 
risks, and slope, used to assess the general spread of esti-
mated risks, were additionally evaluated for each predictive 
model. Perfect models have a calibration intercept of 0 and a 
calibration slope of 1 [6]. The Brier score, which represents 
the mean squared difference between the predicted prob-
abilities and the observed outcomes, was used as a measure 
of overall performance for each algorithm. Perfect machine-
learning candidate models demonstrate a Brier score error 
of 0 (Fig. 1).

Table 2   Potential risk factors for recurrent periprosthetic joint infection

Patient demographics Age, gender, height, ethnicity insurance type, ASA score, laterality
Medical comorbidities Smoking, drinking, congestive heart failure, obesity, diabetes, hepatitis, dementia, vascular disease, liver disease, renal 

disease, drug abuse, systemic inflammatory diseases, sleep apnea, chronic pulmonary disease, hypothyroidism, defi-
ciency anemia, depression, organ transplant, hepatic cirrhosis, HIV/AIDS, metastatic disease

Surgical factors Irrigation and debridement with/without modular component exchange, single-stage revision, two-stage revision, 
number of prior open procedures

Microbiology Culture negative, Staphylococcus aureus, Streptococcus spp., coagulase-negative staphylococci, polymicrobial organ-
ism, Methicillin-resistant Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa

Laboratory findings Preoperative C-reactive protein (CRP), preoperative erythrocyte sedimentation rate (ESR), preoperative synovial poly-
morphonuclear leukocyte percentage (PMN%), preoperative serum white blood cell count (WBC)
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Statistical analysis

A decision curve was created by plotting the net benefit across 
a range of threshold probabilities; thus a user can then deter-
mine what threshold best suits individual and management 
needs and simultaneously assess the predicted net benefit of 
using the model at that particular threshold [32]. Interpret-
ability and explanation of revision TKA machine-learning 
candidate models was performed at local and global levels. 
Local explanations were provided for individual patients to 
demonstrate which variables for specific patients in question 
contributed to the model predictions. Global explanations 
were provided through variable importance plots (normalized 
to 100 points). All statistical analysis was performed using 
Matlab (MathWorks Inc., Natick, MA, USA), SPSS (SPSS 
Version 18.0, IBM Corp., Armonk, NY, USA), Anaconda 
(Anaconda Inc., Austin, TX, USA) and Python (Python Soft-
ware Foundation, Wilmington, DE, USA).

Results

Model parameters were optimized using a coarse-grained 
grid-search algorithm with repeated random sub-sampling 
validation. The optimal ANN had two hidden layers with 

20 neurons each. The optimal SGB consisted of 120 trees, 
with the number of predictors for each node set to default. 
The optimal SGB boosting learning rate was 0.3 with a sub-
sampling coefficient of 0.85. The optimal ENP used a mix-
ing parameter α = 0.4 and a regularization penalty term of 
λ = 0.6.

In the training set, the AUC for the candidate models 
ranged from 0.79 for random forest to 0.85 for neural net-
works (Table 3). The calibration intercept ranged from 
− 0.10 to 0.13, with the best intercept for neural networks 
(intercept of 0.06; Table  3; Fig.  2). The lowest Brier 
score error was achieved by neural networks (Brier score 
of 0.052). In the testing set of revision TKA patients, all 
machine-learning models demonstrated excellent discrimi-
natory capabilities. The AUC of the three candidate models 
ranged from 0.81 to 0.84 (Table 4), with the highest AUC 
for neural networks (AUC = 0.84). The Brier score errors in 
the testing set varied between 0.053 and 0.056. The lowest 
Brier score error was achieved by neural networks (Brier 
score of 0.053, Table 4).

The variables determined to be significantly associated 
with recurrent infections in patients following revision total 
knee arthroplasty for periprosthetic joint infection were as 
follows: previous irrigation and debridement with or without 
modular component exchange during revision surgery; > 4 

Fig. 1   Five-fold cross validation

Table 3   Discrimination and 
calibration of machine learning 
algorithms on training set for 
revision TKA patients

Data expressed as mean (95% confidence interval). Null model Brier score = 0.056

Metric Neural network Random Forest Elastic-net penalized 
logistic regression

AUC​ 0.85 (0.83 to 0.87) 0.79 (0.75 to 0.81) 0.82 (0.81 to 0.83)
Intercept 0.06 (− 0.02 to 0.14) − 0.10 (− 0.19 to − 0.02) 0.13 (− 0.03 to 0.29)
Slope 1.09 (0.97 to 1.21) 0.88 (0.73 to 1.03) 1.16 (1.08 to 1.24)
Brier 0.052 (0.049 to 0.054) 0.054 (0.053 to 0.055) 0.054 (0.053 to 0.055)
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prior open surgeries, metastatic disease, drug abuse, HIV/
AIDS, extremity status 3, presence of enterococcus species, 
obesity, renal failure, diabetes, depression, alcohol abuse, 
male gender, age, smoking, Medicare insurance and the 
presence of Methicillin-resistant Staphylococcus aureus 
(MRSA) (Fig. 2). The strongest predictors were previous 
irrigation and debridement with or without modular compo-
nent exchange and > 4 prior open surgeries (Fig. 3).

Decision curve analysis showed that all machine-learning 
models achieved higher net benefits for the prediction of 
recurrent PJI, when compared to the default strategies of 
changing management for all patients or no patients (Fig. 4). 
An example of a local, individual patient-level explanation 
for the model predictions by neural networks is shown in 
Fig. 5. For a 68 year old male patient (> 4 prior open surger-
ies, Medicare insurance, smoker) who underwent irrigation 
and debridement with modular component for an infected 

TKA with the presence of Enterococcus, the predicted prob-
ability of recurrent PJI is 37.3% (Fig. 5).

Discussion

The most pertinent finding of the present study was that the 
presented machine-learning models demonstrated excellent 
performance on discrimination, calibration and decision 
curve analysis for the prediction of recurrent infections in 
patients following revision total knee arthroplasty for PJI. 
The strongest predictors for recurrent PJI were previous irri-
gation and debridement with or without modular component 
exchange as well as prior open surgeries.

Prior studies evaluated the utility of risk calculators to 
estimate the probability of postoperative PJI for patients 
following hip and knee arthroplasty surgery [4, 5, 20]. 
Although risk calculators have the potential to assist in 
clinical decision-making as these numerical models take 
into account numerous risk factors to predict the likeli-
hood of postoperative PJI, these prior works reported a 
limited accuracy for the developed risk calculators. Bozic 
et al. developed a PJI risk calculator for patients follow-
ing primary TJA utilizing the Medicare claims database, 
reporting an AUC of 0.78 on validation [5]. In a different 
study, Bilimoria et al. created a PJI risk calculator using 
the American College of Surgeons National Surgical Qual-
ity Improvement Program database, demonstrating an AUC 
of 0.76 on validation for the prediction of PJI following 

Fig. 2   Calibration plot for the 
neural network model for the 
prediction of recurrent infec-
tions in patients following revi-
sion total knee arthroplasty for 
periprosthetic joint infection

Table 4   Discrimination and calibration of machine-learning algo-
rithms on testing set for revision TKA patients

Data expressed as mean (95% confidence interval). Null model Brier 
score = 0.061

Metric Neural network Random Forest Elastic-net penalized 
logistic regression

AUC​ 0.84 0.81 0.83
Intercept 0.05 − 0.07 0.10
Slope 1.05 0.83 1.14
Brier 0.053 0.056 0.054
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Fig. 3   Global variable importance plot for the prediction of recurrent infections in patients following revision total knee arthroplasty for 
periprosthetic joint infection

Fig. 4   Decision curve analysis 
for revision TKA patients using 
neural network models showing 
the net benefit of the neural net-
work model (yellow) relative to 
the default strategies of chang-
ing management for all patients 
(blue) or for no patients (red)



2588	 Knee Surgery, Sports Traumatology, Arthroscopy (2022) 30:2582–2590

1 3

primary hip and knee total joint arthroplasty [4]. There is 
only a single risk calculator for the prediction of recurrent 
PJI, which achieved an AUC of 0.75 on model validation 
[20]. Despite the theoretical utility of these risk calculators, 
its application in clinical practice has been limited to date, 
mainly due its limited accuracy and cumbersome nature. 
In contrast, machine-learning models possess the ability to 
analyze large and complex datasets with high accuracy and 
within seconds. This is achieved through an efficient and 
automated analysis of complex and non-linear relationships 
between numerous patients and surgical variables [11]. This 
present study represents one of the first approaches to predict 
recurrent infections in patients following revision total knee 
arthroplasty for periprosthetic joint infection utilizing multi-
ple machine-learning models. The performance of the three 
candidate models on internal validation was verified through 
a rigorous evaluation in concordance with the Transparent 
Reporting of multivariable prediction models for Individual 
Prognosis or Diagnosis statement [16]. The study findings 
demonstrate high accuracy for all candidate models, in par-
ticular for artificial neural network models with an AUC 
of 0.84. Furthermore, excellent model discrimination was 
achieved, while performance was also verified on calibra-
tion and decision curve analysis. This is essential for clinical 
utility [30], and an aspect that was frequently not addressed 
in prior studies using machine learning for the prediction 
of clinical outcomes in patients following total joint arthro-
plasty [12], thereby highlighting a technical strength of the 
present study.

The findings of this present study demonstrate that sur-
gical variables (previous irrigation and debridement with 
or without modular component exchange; > 4 prior open 

surgeries) and microbiology (Enterococcus, MRSA) were 
strong predictors for recurrent infections in patients follow-
ing revision TKA for PJI. Similar observations were made 
in previous non-machine learning, retrospective studies 
[20, 31]. Shohat et al. demonstrated increased failure rates 
for DAIR patients, when compared to patients treated with 
either single or two-stage revision TJA, in a retrospective 
with 199 patients following revision TJA [27]. With regards 
to the number of prior open surgeries, previous retrospective 
studies have illustrated that numerous prior open surgeries 
are associated with an increased risk of failure following sur-
gical treatment for PJI [31]. In terms of microbiology, Ente-
rococcal PJI was identified in prior literature as a risk factor 
for treatment failure following hip and knee arthroplasty 
surgery for PJI [20, 31]. In addition, the risk calculator for 
recurrent PJI following revision TJA for PJI as developed by 
Klemt et al. highlighted Enterococcal PJI as one of the more 
significant risk factors for recurrent PJI [20]. In comparison 
to the risk calculator for recurrent PJI as developed by Klemt 
et al. [20], the current study also identified MRSA as a risk 
factor for recurrent PJI. This discrepancy may be due to the 
increased accuracy for data analysis as provided by machine-
learning algorithms, when compared to logistic regression 
models. This improved accuracy of machine-learning tech-
nologies is based on its ability to identify complex and non-
linear relationships between multiple clinical parameters, 
even in noisy data and data with missing information [11].

In addition to surgical factors and microbiology, this pre-
sent study identified numerous patient factors to be strongly 
associated with a high risk of recurrent infection follow-
ing revision TKA for PJI. Similar to previous retrospective 
studies, metastatic disease, HIV/AIDS and drug abuse were 

Fig. 5   Example of individual patient-specific explanation generated by the neural network model for a revision TKA patient. Green bars demon-
strate an increase in the probability of recurrent infection, whereas red bars represent a decrease in the probability of recurrent infection
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among the strongest predictors for recurrent PJI [20, 31]. 
Due to the increased risk, the International Consensus Meet-
ing on PJI advised that drug abusers should not be offered 
TJA [2]. This recommendation is well supported by the find-
ings of this present machine-learning study, illustrating that 
obesity is a significant risk factor for recurrent PJI.

The study findings need to be interpreted in light of its 
limitations. Firstly, this study utilizes a retrospective study 
design, which is associated with inherent limitations includ-
ing recall and reporting bias, potentially leading to reduced 
capture rates [3]. Furthermore, the retrospective study 
design may have introduced management and treatment-
related biases in the course of the study period. Additionally, 
all patients were from a single large tertiary referral center 
which limits the generalizability of the machine-learning 
models in clinical practice as patient populations may differ 
between our institution and for instance community hospi-
tals. An external validation using independent populations, 
ideally from numerous patient cohorts across the country, 
has the potential to increase clinical applicability of the pre-
sented machine-learning models. Secondly, most of the risk 
factors were binary and thus this study did not evaluate the 
effect of disease severity, providing an opportunity for future 
work to assess the effect of disease severity on the risk of 
recurrent PJI following revision TKA. Finally, to account 
for the effect of time between revision and re-revision sur-
gery on reinfection rates, this present study only considered 
patients with a minimum follow-up of 5 years. However, 
we acknowledge that a larger percentage of recurrent infec-
tions and re-revisions may occur with longer follow-up time. 
Therefore, future studies with long-term follow-up may be 
needed.

In conclusion, this study developed and validated three 
machine-learning models for the prediction of recurrent 
infections in patients following revision total knee arthro-
plasty for periprosthetic joint infection. The strongest pre-
dictors were previous irrigation and debridement with or 
without modular component exchange and prior open sur-
geries. The study findings illustrate excellent performance 
on discrimination, calibration and decision curve analysis 
for all machine-learning models, highlighting the potential 
of these computational tools in quantifying increased risks 
of recurrent periprosthetic joint infection to optimize patient 
outcomes.
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