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Abstract
Purpose  The purpose of the present study was to determine how the medial structures and ACL contribute to restraining 
anteromedial instability of the knee.
Methods  Twenty-eight paired, fresh-frozen human cadaveric knees were tested in a six-degree of freedom robotic setup. 
After sequentially cutting the dMCL, sMCL, POL and ACL in four different cutting orders, the following simulated clini-
cal laxity tests were applied at 0°, 30°, 60° and 90° of knee flexion: 4 Nm external tibial rotation (ER), 4 Nm internal tibial 
rotation (IR), 8 Nm valgus rotation (VR) and anteromedial rotation (AMR)—combined 89 N anterior tibial translation and 
4 Nm ER. Knee kinematics were recorded in the intact state and after each cut using an optical tracking system. Differences 
in medial compartment translation (AMT) and tibial rotation (AMR, ER, IR, VR) from the intact state were then analyzed.
Results  The sMCL was the most important restraint to AMR, ER and VR at all flexion angles. Release of the proximal tibial 
attachment of the sMCL caused no significant increase in laxity if the distal sMCL attachment remained intact. The dMCL 
was a minor restraint to AMT and ER. The POL controlled IR and was a minor restraint to AMT and ER near extension. The 
ACL contributed with the sMCL in restraining AMT and was a secondary restraint to ER and VR in the MCL deficient knee.
Conclusion  The sMCL appears to be the most important restraint to anteromedial instability; the dMCL and POL play 
more minor roles. Based on the present data a new classification of anteromedial instability is proposed, which may support 
clinical examination and treatment decision. In higher grades of anteromedial instability an injury to the sMCL should be 
suspected and addressed if treated surgically.

Keywords  Anteromedial instability · ACL · MCL · Medial collateral ligament · Biomechanics

Introduction

Injury to the anterior cruciate ligament (ACL) and capsulol-
igamentous structures on the medial side of the knee occurs 
frequently [22, 42]. Persistent laxity of the medial struc-
tures can result in increased load in the ACL [4, 24, 26] and 
following ACL reconstruction, residual medial laxity may 
ultimately result in early ACL graft failure [1, 8, 39, 44].

Several studies have examined the roles of the superfi-
cial medial collateral ligament (sMCL), deep MCL (dMCL) 

and posterior oblique ligament (POL) in restraining external, 
internal and valgus rotations of the knee [9, 10, 18, 31, 33, 
40]. However, studies on how the ACL and the ligamen-
tous structures of the medial aspect of the knee interact to 
restrain tibio-femoral laxity, such as “antero-medial rota-
tory instability” (AMRI), remain scarce [11, 31, 43]. Slocum 
and Larson [37] reported that rupture of the middle third of 
the medial capsular ligament, now generally described as 
the dMCL, was the basic lesion permitting AMRI that was 
further increased following successive rupture of the sMCL 
and ACL. Recently, an isolated reefing of the posteromedial 
capsule has been reported to control AMRI [30]. This sur-
gical approach is based on the findings by Hughston et al. 
[12–14] who highlighted that the POL is the key structure 
to restore medial stability.

For clinical examination and further treatment it is impor-
tant to understand the damage that has occurred in an injured 
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knee and its effect on the tibio-femoral laxity. The antero-
medial drawer test (applying an anterior drawer force to the 
tibia with the foot held in external rotation) has been pro-
posed for the detection of AMRI [7, 28, 37, 42, 43]. How-
ever, the absence of a biomechanical validation [36] and lack 
of consensus in the literature as to its primary and second-
ary restraints [7, 11, 13, 28, 37, 42, 43] has meant that the 
interpretation of examination findings remains challenging.

The purpose of this study was to not only evaluate the 
individual contributions of the medial ligamentous structures 
and ACL to restraining simple, uniplanar rotations (exter-
nal, internal and valgus rotation), but also to restraining a 
combined external rotation and anterior translation force, 
simulating an anteromedial drawer test. It was hypothesized 
that the sMCL is the most important restraint to anterome-
dial instability.

Materials and methods

Specimen preparation

Thirty paired cadaveric knees were dissected and tested 
under permission of the “Gesetz über das Leichen-, Bestat-
tungs- und Friedhofswesen (Bestattungsgesetz) des Landes 
Schleswig–Holstein vom 04.02.2005, Abschnitt II, §9 
(Leichenöffnung, anatomisch)”. Two specimens were used 
to develop the sectioning and robotic testing protocol. The 
remaining 28 paired specimens (10 female, 4 male) with a 
median age of 81 years (range 60–103 years) were stored 
at − 20 °C and thawed at room temperature for 24 h prior to 
testing. The femur and tibia were cut 200 mm from the joint 
line and prepared by removing the skin and subcutaneous 
fat, while leaving the remaining muscles and fascia intact. 
A modified transpatellar approach [27] was made to access 
the intercondylar notch to allow sectioning of the ACL and 
to evaluate the knee for any exclusion critera, including 
signs of prior surgery, severe osteoarthritic changes, or liga-
mentous injuries. The patella was predrilled, from medial 
to lateral, with a 2.7-mm diameter drill, before it was split 
longitudinally in the midline, with a fine oscillating saw. 
The split was completed with a scalpel and extended dis-
tally into the patellar tendon. To improve visualization of 
the ACL, the patellar fat pad was partially resected. The 
patella was fixed again with two 4.0-mm cancellous screws. 
Previous studies have shown that the transpatellar approach 
and re-fixation does not change patellofemoral kinematics 
and length-change patterns of peripatellar retinacula [27].

The cut ends of the femur and tibia were then secured 
in aluminum tubes using polymethyl methacrylate bone 
cement. The tibia was centralized in the tube to standardize 
rotational effects, with the tube axis in line with the condylar 
eminence at the center of the tibial plateau [31].

Testing setup

The biomechanical testing platform (Fig. 1), which has 
previously been described [16], was a 6° of freedom 
(DOF) industrial robot (6DOF; KR 125; KUKA Robotics, 
86165 Augsburg, Germany) and a force/moment sensor 
(UFS; FTI Theta 1500–240; Schunk, Lauffen, Germany). 
The robot had a repeatability of ± 0.2 mm and maximum 
load capacity of 2450 N. The UFS`s resolution was 0.25 N 
and 0.05 Nm for forces and torques, respectively.

An optical tracking setup (Optotrak Certus Motion Cap-
ture, Northern Digital, Ontario, Canada) with an accuracy 
of up to 0.1 mm and resolution of 0.01 mm was used to 
track knee kinematics via rigid bodies fixed to the tibia and 
femur using custom made nails. Six tibial (medial/lateral 
tibial shaft, and medial/lateral/anterior/posterior tibial pla-
teau) and four femoral landmarks (medial/lateral femoral 
shaft, and medial/lateral femoral epicondyle) were digi-
tized using a digitizing probe to define the knee coordinate 
system. Visual 3D (C-Motion Inc, Germantown, Mary-
land) created a segment coordinate system of the tibia 
using a Cardan sequence x–y–z. The digitized landmarks 
served to create a static and moving knee model at each 
tested flexion angle. This allowed 6° of freedom kinemat-
ics to be computed in terms of rotations and translations in 
respect to the static tibia model at the knee’s neutral start-
ing position. The difference in translation (mm) or rotation 
(degree) between the static and moving model at the end 
of each simulated laxity test was calculated.

Fig. 1   The robotic testing setup: (1) the tibia is fixed to the moving 
arm of the robot, (2) the femur is secured in a fixed mount on the 
base, (3) rigid bodies are fixed to the femur and tibia to track knee 
kinematics using an optical system
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Biomechanical testing

Each knee specimen was flexed and extended ten times to 
minimize tissue hysteresis before it was mounted upside-
down into the robot. The tibia was secured to the manipula-
tor of the robot, while the femur was fixed into the stationary 
base unit. To find the knee´s neutral starting position, the 
forces (< 1 N) and moments (< 0.5 Nm) were minimized at 
full extension and the passive flexion–extension path was 
determined for each knee from 0° to 90° in 1° increments by 
the robotic system. The position of the knee at each flexion 
angle was recorded.

Tibiofemoral joint laxity for each testing state was meas-
ured with simulated knee laxity tests applied to the knee 
at 0°, 30°, 60° and 90° of flexion. The motion path of the 
simulated laxity tests in the intact state was recorded. After 
each resection/cut was performed, simulated laxity tests 
were repeated three times for each cutting state and the mean 
data of each test taken. External rotation (ER) and internal 
rotation (IR) laxity was measured in response to the appli-
cation of a 4 Nm rotation torque. Valgus laxity was meas-
ured in response to an 8 Nm valgus rotation torque (VR). 
To simulate an anteromedial drawer test, a coupled anterior 
tibial drawer force (89 N) and ER torque (4 Nm) was applied 
simultaneously [16]. To clarify motion of the medial tibial 
plateau in response to this test, we distinguished between 
anteromedial translation (AMT), defined as the maximum 
anterior translation of the midpoint of the medial tibial 
plateau, and anteromedial rotation (AMR), defined as the 
maximum ER occurring around the longitudinal axis of the 
tibia [16, 43]. The midpoint of the medial tibial plateau was 
determined as 25% of the distance between the most medial 
digitized point and the most lateral digitized point on the 
tibial plateau.

Tissue resection and cutting order

Following analysis of the knee in its intact state, the medial 
structures and ACL were cut sequentially whilst the knee 
remained mounted in the robotic testing rig (Fig. 2).

Four protocols (Fig. 3) were used to allow the identifica-
tion of the individual roles these structures have. Each knee 
of a pair was allocated to a testing protocol in which the 
medial structures were cut first and subsequently the ACL 
(n = 14) or to a protocol in which the ACL was divided prior 
to the medial structures (n = 14). The data from one knee 
was lost due to a failed connection in the robotic setup, leav-
ing 5 knees for analysis in protocol 3.

In all protocols the dMCL was sectioned before cutting 
the sMCL. Previous studies have shown that the shorter, 
weaker fibres of the dMCL [32, 41] suffer a greater ten-
sile strain (extension as a proportion of original length) 
than do the longer sMCL fibres for the same bone-to-bone 

separation, causing the dMCL to fail at significantly less 
elongation than the sMCL. Thus, consistent with this dif-
ferential strain behavior [2], isolated rupture of the dMCL 
may occur clinicaly whilst the sMCL remains intact but not 
vice versa [13, 31, 32]. The dMCL was approached via a 
longitudinal incision of the anteromedial fascia anterior to 
the sMCL as previously shown by Robinson et al. [33]. The 
dMCL is clearly devided from the sMCL at the joint line, 
which allowed an isolated cut of the meniscofemoral and 
meniscotibial divisions of the dMCL [18, 33].

The proximal and distal tibial attachments of the sMCL 
were identified and divided alternately, either proximal 
attachment or distal attachment first (Figs. 2, 3). Tibio-
femoral laxity testing was undertaken in each state to 

Fig. 2   Medial aspect of a right knee: the femur extends proximally 
to the right, and the tibia extends distally to the left with the patella 
pointing toward the superior left corner. Shown after removal of the 
fascial layer, leaving the sMCL and POL exposed. The dMCL (1) was 
cut transversely at the midsubstance of its meniscofemoral and menis-
cotibial divisions deep to the sMCL. The approach was performed 
via a longitudinal incision of the anteromedial fascia anterior to the 
sMCL as previously shown by Robinson et  al. [33]. The proximal 
(2a) and distal (2b) tibial attachments of the sMCL were identified 
and divided alternately as previously described by Griffith et al. [9]. 
The POL (3) was completely dissected including the superficial, cen-
tral and capsular arm. (4) The ACL was resected via a transpatellar 
approach [27]

Paired knees

Paired knees

Protocol 1

Protocol 2
n=8
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Fig. 3   The medial structures: dMCL (deep medial collateral liga-
ment), sMCL (superficial medial collateral ligament) and POL (pos-
terior oblique ligament) and the ACL were divided according to four 
cutting protocols. prox/dist the proximal and distal tibial attachment 
of the sMCL were cut in an alternating order, n number of specimens
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determine the contribution of each attachment to stabil-
ity, before completely resecting the sMCL at both femoral 
and tibial attachments [18]. The proximal tibial attachment 
to soft tissue around the anterior arm of the semimembra-
nosus tendon [18] was divided by carefully introducing a 
scalpel between the longitudinal fibers of the sMCL and 
the dMCL at the level of the joint line. The distal tibial 
attachment was divided by sharp dissection of the sMCL 
fibres as they attached to bone.

The POL was carefully dissected from its attachment 
to the medial meniscus before it was completely resected 
from its femoral and tibial attachments. Its anterior mar-
gin was defined as the posterior border of the sMCL and 
included the superficial, central and capsular arm (Fig. 2). 
The posterior margin of the POL was defined at the pos-
terior border of the capsular arm where it blended with 
the soft tissues over the medial gastrocnemius tendon [14, 
18, 33].

The ACL was resected through the previously estab-
lished transpatellar approach, while the knee remained 
mounted in the robotic testing rig at 90° of flexion [27]. 
The patella was re-fixed prior to testing.

Statistical analysis

The kinematic data for each tested state, load and flexion 
angle were analyzed using a two-factor repeated-measures 
analysis of variance (ANOVA) and post-hoc Bonferroni 
corrections for multiple comparisons. The two independ-
ent factors were the state of the knee joint with its respec-
tive cutting condition (5 states) and the knee flexion angle 
(4 angles) within the same specimen. The dependent vari-
ables were the resulting angles (ER/AMR, IR, VR) and 
medial tibial translation distances (AMT). One-tailed 
paired Student t tests were used to analyze the specific 
effect of cutting the proximal and distal division of the 
sMCL in group 1 and 2. This was performed using SPSS 
version 24 (IBM Corp.), with significance level set to 0.05.

A power analysis (G*Power 3.1; α = 0.5) was conducted 
based on prior work on medial knee laxity, which found 
statistically significant results with less than six knee 
specimens [31]. An expected moderate/high effect size 
(f = 0.5/f = 0.6) determined a sample size minimum of five 
specimens in each cutting protocol with power of 0.80.

Results

Detailed results are available as supplemental material 
including a comprehensive table (Appendix 1).

Laxity with anteromedial drawer testing—
coupled anterior tibial drawer (89 N) and ER 
torque (4 Nm)

Anteromedial translation (AMT)

With the ACL intact (Fig. 4a) cutting the dMCL at 0°, 30° 
and 60°of flexion produced a small but significant increase in 
AMT (p < 0.05). Further cutting of the sMCL caused a larger 
increase in AMT at all angles of knee flexion (p < 0.05). This 
effect was seen with releasing the distal rather than proxi-
mal tibial attachment of the sMCL. Cutting of the proximal 
sMCL tibial attachment in the dMCL deficient knee pro-
duced no significant increase in AMT (0.1 mm ± 0.1 mm at 
0° flexion to 0.2 mm ± 0.1 mm at 90° flexion) when the distal 
attachment remained intact.

In ACL deficient knees (Fig. 4b), cutting the dMCL 
produced small increases in AMT at all flexion angles 
(p < 0.05). A larger increase in AMT was seen with further 
sectioning of the sMCL (p < 0.05). Subsequent devision of 
the POL yielded a further increase in AMT predominantly 
near extension (p < 0.05).

Anteromedial rotation (AMR)

AMR in response to a combined anterior tibial drawer 
force and ER torque is shown in Fig. 5 With the ACL intact 
(Fig. 5a), cutting the dMCL produced a small (< 2°) increase 
in AMR at 0° and 30° flexion with no effect found at higher 
flexion angles. With the knee in extension, further cutting 
of the sMCL and then the POL produced small increases in 
AMR. At higher flexion angles, cutting the sMCL increased 
AMR at 30°, 60° and 90° of flexion (p < 0.01). This increase 
was observed after cutting the distal rather than the proximal 
sMCL tibial attachment. Cutting the proximal tibial sMCL 
attachment in the dMCL deficient knee produced no signifi-
cant effect on AMR at any flexion angle (0.1° ± 0.2° at 0° 
flexion to 0.3° ± 0.2° at 90° flexion).

At 0° and 30°, isolated cutting of the ACL (Fig. 5b) 
decreased AMR (p < 0.05) compared to the intact state. Fur-
ther release of the POL and dMCL produced no significant 
effect at any angle of knee flexion. However, further release 
of the sMCL produced a large increase in AMR (p < 0.05).

Laxity with uniplanar rotations

External rotation

Tibial ER increased from the intact state following cutting 
the dMCL at all flexion angles (p < 0.05) (Fig. 6a). A larger 
increase in laxity was noted with subsequent cutting of 
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the sMCL (p < 0.01). Sectioning of the distal tibial sMCL 
attachment significantly increased ER from 1.5° ± 0.5° at 
0° flexion to 4.7° ± 1.7° at 90° flexion (p < 0.05). Whereas 
cutting the proximal tibial attachment of the sMCL in the 
dMCL deficient knee caused no significant increase in ER 
(0.2° ± 0.1° at 0° flexion to 0.2° ± 0.2° at 90° flexion). Fur-
ther results are sown in Fig. 6b and in the supplemental 
material.

Internal rotation

Cutting the dMCL resulted in a small increase in IR laxity 
from the intact state at 30°, 60° and 90° (p < 0.05) (Fig. 7a). 
Further cutting of the sMCL caused a further small increase 
in IR at all angles of knee flexion (p < 0.05). A marked 
increase was then noted with further sectioning of the POL 
at 0° and 30° (p < 0.01). Further results are sown in Fig. 7b 
and in the supplemental material.

Valgus rotation

Cutting the dMCL in intact knees produced no effect on 
valgus laxity at any angle of knee flexion (Fig. 8a). Further 
cutting of the sMCL increased valgus rotation at 30°, 60° 
and 90° (p < 0.05). This effect occurred as a result of sec-
tioning the distal tibial sMCL attachment. Sectioning of the 
proximal tibial sMCL attachment caused less than 0.3 ± 0.1° 
increase in VR at any flexion angle (p < 0.05 at 0° and 60°) 
if the distal tibial sMCL attachment remained intact. Cutting 
the distal tibial attachment first caused an increase in val-
gus laxity ranging from 1.3 ± 0.5° at 0° to 3.5 ± 1.4° at 60° 
(p < 0.05). Further cutting of the POL produced increased 
valgus laxity at 0°, 30° and 60° (p < 0.05). Final sectioning 
of the ACL produced a further large, statistically significant 
effect on valgus laxity at all angles of flexion (p < 0.05).

In the ACL deficient knee, cutting the POL produced 
no effect on valgus laxity (Fig. 8b). A dramatic increase in 

Fig. 4   Anteromedial translation, 
i.e., anterior translation of the 
medial tibial plateau, during a 
combined 89 N anterior tibial 
load (ATT) and 4 Nm exter-
nal rotation torque (ER) with 
the knee intact, and the knee 
sectioned according to group 
1 (a) and group 4 (b). Statisti-
cally significant differences 
compared to the previous 
states are indicated (*p < 0.05, 
**p < 0.01, ***p < 0.001). Error 
bars indicate the standard error 
of the mean
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valgus laxity occurred at all angles of knee flexion with final 
sectioning of the sMCL (p < 0.01).

Discussion

The main finding of this study was that the sMCL is the most 
important medial capsuloligamentous structure restraining 
anteromedial rotatory instability of the knee. Sectioning the 
sMCL always had a larger effect on combined anterior trans-
lation of the medial plateau (AMT) and external tibial rota-
tion (AMR) than sectioning the POL or dMCL. In agreement 
with the previous literature the sMCL was also the primary 
medial restraint to uniplanar valgus rotation and tibial ER 
[9–11, 31].

It is well understood that isolated ACL rupture shifts 
the rotational axis of the tibia medially allowing the lateral 
tibial plateau to subluxate anteriorly [3, 21, 25]. This is typi-
cally coupled with an increase in IR laxity near extension as 

shown by the present data and others [11, 17, 21, 25]. Con-
versely, concomitant injury to the ACL and medial capsulo-
ligamentous structures moves the axis of rotation laterally, 
such that knee pivots about the lateral capsuloligamentous 
structures [37]. This allows the medial tibial plateau to sub-
luxate anteriorly accompanied when a uniplanar ER torque is 
applied to the tibia [11, 37, 40, 43]. The present data showed 
marked increases in AMR and AMT in response to a com-
bined external rotation torque and anterior drawer force with 
the sMCL being the key restraining structure.

In the current study cutting the proximal tibial attach-
ment of the sMCL produced no significant effect on AMT, 
AMR, ER or VR, whilst the distal tibial insertion remained 
intact. This is contrary to the findings of Griffith et al. [9], 
who reported that the proximal insertion of the sMCL is 
the primary valgus stabilizer. However, this finding is most 
likely due to the cutting order used in their study: the distal 
insertion was always cut first. A subsequent study by Griffith 
et al. [10] used buckle transducers to measure force in the 

Fig. 5   Anteromedial rotation, 
i.e., tibial external rotation, dur-
ing a combined 89 N anterior 
tibial load (ATT) and 4 Nm 
external rotation torque (ER) 
with the knee intact, and the 
knee sectioned according to 
group 1 (a) and group 4 (b). 
Statistically significant differ-
ences compared to the previous 
states are indicated (*p < 0.05, 
** p < 0.01). Error bars indicate 
the standard error of the mean



411Knee Surgery, Sports Traumatology, Arthroscopy (2021) 29:405–416	

1 3

MCL and found significant higher loads on the distal divi-
sion of the sMCL in response to a valgus torque.

Haimes et al. [11] also reported the motion limits meas-
ured in human cadaveric knees after sectioning the sMCL, 
POL and ACL while the dMCL was left intact. The authors 
found that cutting the sMCL increased uniplanar external 
rotation laxity independent of whether the ACL was intact 
or sectioned. This is contrary to Slocum and Larson [37], 
who observed that rupture of the medial capsular ligament 
was the basic lesion permitting abnormal external rotation 
of the tibia. Kennedy and Fowler [15] also noted that the 
dMCL failed before the sMCL with abnormal valgus and/
or external rotation injury, yet Warren et al. [40] found that 
cutting the dMCL in an otherwise intact knee had a "mini-
mum effect on restraining rotation between the femur and the 
tibia". The present findings were similar with isolated sec-
tioning of the dMCL resulting in only small increase in ER 
(< 2° at all angles tested). Much larger increases in ER laxity 
were seen after additional cutting the sMCL. The findings 

that cutting the dMCL appears to have little effect on rota-
tory laxity but that the structure ruptures with excessive 
external rotation are not counter intuitive and are consistent 
with previous understanding of differential strain behavior 
[2]: the shorter, weaker fibers of the dMCL [32, 41] fail at 
less elongation than the sMCL, resulting in isolated dMCL 
rupture for the same bone to bone displacement [13, 31, 32]. 
In some cases isolated injury to the dMCL cause persistant 
symptoms and may require surgical repair as suggested by 
Narvani et al. [29]. In fact, the deep portion of the MCL is 
not addressed in current anatomic reconstruction techniques 
[7, 8, 19, 20].

Wijdicks et al. [43] measured knee kinematics in response 
to a simulated anteromedial drawer test and also found the 
sMCL to be an important restrain. However, they sectioned 
only the sMCL whilst leaving the dMCL, POL and ACL 
intact. In comparison to the current study the authors found 
less anterior tibial translation, and higher AMR and ER, 
reporting 11.9 ± 3.2° AMR and 3.7 ± 1.9 AMT compared to 

Fig. 6   Knee angulation during 
a 4 Nm external rotation torque 
(ER) with the knee intact, and 
the knee sectioned according 
to group 1 (a) and group 4 (b). 
Statistically significant differ-
ences compared to the previous 
states are indicated (*p < 0.05, 
**p < 0.01). Error bars indicate 
the standard error of the mean
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7.2 ± 1.7° AMR and 6.0 ± 1.8 mm AMT following section-
ing the sMCL at 90° in the present data. These differences 
may be the result of the experimental setup: in the present 
study a lower rotational torque was applied (4 Nm versus 5 
Nm), which may explain the reduced rotation values.

Although this may limit comparison with previous stud-
ies, repeated application of coupled anterior tibial drawer 
force and 5 Nm ER torques caused specimen failure dur-
ing pilot testing. Therefore, reduced rotational torques of 
4 Nm were utilized. This is consistent with other recent bio-
mechanical studies [16]. The higher values of translation 
found in the present study are likely to be due to the fact 
that translation of the medial tibial plateau was measured 
whilst Wijdicks et al. [43] reported overall tibial translation. 
Additionally the dMCL was intact in their study.

Injury to the POL occurs when the knee is towards exten-
sion as the posteromedial capsule tightens [14, 33, 37] and 
is usually associated with injuries to the MCL or cruciate 
ligaments [23, 35]. In the present study, cutting the POL 

caused no increase in AMR as long as the sMCL remained 
intact. Therfore, the POL acted as a secondary restraint to 
anteromedial instability, contrary to earlier clinical observa-
tions that described repair of the POL as the key element 
in controlling AMRI [13, 14, 28]. However, according to 
the present data the POL was a major restraint to IR and a 
secondary restraint to VR near extension, which has been 
shown to provide load sharing to the ACL during the pivot-
shift examination [34].

Combining the results of the present study with those 
of previous findings [5, 9, 11, 31, 43] the following for 
clinical examination of anteromedial instability is proposed 
(Table 1).

1.	 The anteromedial drawer test (anterior drawer with the 
foot rotated externally) performed at 30° to 90° of flex-
ion shows increased AMT (> 5 mm) and AMR (> 5°) 
when the dMCL and sMCL are deficient. An isolated 
medial injury to the dMCL allows a small increase in 

Fig. 7   Knee angulation during 
a 4 Nm internal rotation torque 
(ER) with the knee intact, and 
the knee sectioned according 
to group 1 (a) and group 2 (b). 
Statistically significant differ-
ences compared to the previous 
states are indicated (*p < 0.05, 
**p < 0.01, ***p < 0.001). Error 
bars indicate the standard error 
of the mean
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AMT (< 2 mm) and is most obvious in the ACL deficient 
knee (AMT > 5 mm).

2.	 The external rotation dial test performed at 30° to 90° 
of flexion allows increased ER (> 5°) when the dMCL 
and sMCL are deficient. An isolated medial injury to the 

dMCL shows a small increase in ER (< 2°). The POL 
and ACL act as secondary restraints to ER.

3.	 The internal rotation dial test performed in full exten-
sion allows increased IR (> 5°) when the POL and a 

Fig. 8   Knee angulation during 
a 8 Nm valgus rotation torque 
(ER) with the knee intact, and 
the knee sectioned according 
to group 1 (a) and group 4 (b). 
Statistically significant differ-
ences compared to the previous 
states are indicated (*p < 0.05, 
**p < 0.01). Error bars indicate 
the standard error of the mean

Table 1   Anteromedial grading system

dMCL deep medial collateral ligament, sMCL superficial medial collateral ligament, ACL anterior cruciate ligament

Grade Anteromedial drawer External dial test Valgus stress test Injury pattern

I  +   +  − dMCL
II  +  +   +  +   +  dMCL + sMCL
III  +  +  +   +  +  +   +  +  +  dMCL + sMCL + ACL

Kinematical grading according to the present data with differences (+) compared to the intact knee in response to simulated clinical tests at 
specific knee flexion angles

Anteromedial drawer (30–90°)  +  1–5 mm  +  +  5–10 mm  +  +  +  > 10 mm
External dial test (30°–90°)  +  1°–5°  +  +  5°–10°  +  +  +   > 10°
Valgus stress test (30°)  +  1°–5°  +  +  5°–10°  +  +  +   > 10°
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concomitant structure (dMCL, sMCL, ACL) are insuf-
ficient.

4.	 The valgus stress test performed at 30° of flexion shows 
increased valgus instability (> 3°) when the dMCL and 
sMCL are deficient. Concomitant insufficiency of the 
POL or ACL leads to further increase of laxity (> 5°) at 
0° and 30° of flexion. Massive valgus laxity (> 10° at 0° 
of flexion) occurs when all the medial capsuloligamen-
tous structures and ACL are insufficient.

Minor anteromedial instability, without any valgus insta-
bility, can only be observed with an isolated injury of the 
dMCL that was most obvious with a concomitant ACL 
lesion. Higher grade instabilities always involved a valgus 
instability. According to these findings an easy to use antero-
medial grading system (Table 1) would be: grade 1: “iso-
lated” AMT (< 10 mm) without valgus instability; grade 2: 
“moderate” AMT (< 10 mm) with valgus instability; grade 
3: “severe” AMT (> 10 mm) with valgus instability.

Some inherent limitations in this study should be noted. 
The current results relate only to the passive stabiliz-
ing structures on the medial aspect of the knee. Recently, 
the semimembranosus muscle has been confirmed to be a 
major active restraint to anteromedial instability, especially 
in absence of the MCL and POL at higher flexion angles 
[16]. The posterior horn of the medial meniscus is another 
important structure acting as a “wheel brake” against ante-
rior subluxation of the medial tibial plateau [28]. Thus 
medial meniscectomy or an isolated posteromedial ramp 
lesion, may have a role in anteromedial instability [6, 13, 
28, 37, 38]. Furthermore, the present study’s results were 
derived by cutting the medial structures and the ACL and 
may not reflect the findings that might be seen with partial 
ligament ruptures. Thus, the grading proposed may be appli-
cable when structures are completely ruptured and further 
clinically validation is needed.

The present study used matched-pairs of specimens to 
help eliminate bias between specimens when testing the 
effect of cutting the medial structures in the ACL intact 
and ACL deficient states [43]. However, care must be taken 
when interpreting results from defined sequential cutting 
sequences. The conditions where each of the three individual 
medial structures acted alone or in combination with each of 
the others were not created; however, previous studies have 
reported that the dMCL fails before the sMCL [9, 11, 31, 
43] and thus it was reasonable not to test an isolated cut of 
the sMCL in the dMCL intact knee. In addition, the effect of 
isolated dissection of the sMCL on simulated clinical laxity 
tests has been reported extensively [9, 11, 31, 43]. Another 
limitation might be that the analysis of the effect of cut-
ting the proximal and distal tibial attachments of the sMCL 
was based on fewer specimens due to the alternating cutting 

sequence. However, the current results are consistent with 
previous studies that have shown higher loads at the distal 
attachment with valgus loading of the knee [9].

Conclusion

This study demonstrates the individual contributions of the 
medial capsuloligamentous structures and ACL in control-
ling anteromedial instability. The sMCL was found to be 
the key medial restraint to valgus rotation as well as antero-
medial translation and external tibial rotation consitituting 
pathological laxity in anteromedial instability.
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