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Abstract
Purpose To compare the effect of the lateral meniscus (LM) complete radial tear at different tear sites on the load distribu-
tion and transmission functions.
Methods A compressive load of 300 N was applied to the intact porcine knees (n = 30) at 15°, 30°, 60°, 90°, and 120° 
of flexion. The LM complete radial tears were created at the middle portion (group M), the posterior portion (group P), 
or the posterior root (group R) (n = 10, each group), and the same loading procedure was followed. Finally, the recorded 
three-dimensional paths were reproduced on the LM-removed knees. The peak contact pressure (contact area) in the lateral 
compartment and the calculated in situ force of the LM under the principle of superposition were compared among the four 
groups (intact, group M, group P, and group R).
Results At all the flexion angles, the peak contact pressure (contact area) was significantly higher (lower) after creating the 
LM complete radial tear as compared to that in the intact state (p < 0.01). At 120° of flexion, group R represented the high-
est peak contact pressure (lowest contact area), followed by group P and group M (p < 0.05). The results of the in situ force 
carried by the LM were similar to those of the tibiofemoral contact mechanics. 
Conclusion The detrimental effect of the LM complete radial tear on the load distribution and transmission functions was 
greatest in the posterior root tear, followed by the posterior portion tear and the middle portion tear in the deep-flexed position. 
Complete radial tars of the meniscus, especially at the posterior root, should be repaired to restore the biomechanical function.
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Abbreviations
DOF  Degree of freedom
LM  Lateral meniscus
3D  Three-dimensional
UFS  Universal force/moment sensor

Introduction

The menisci are interposed in the tibiofemoral joint, which 
has low congruity, and cover approximately 60% and 80% of 
the medial and lateral tibial plateaus, respectively [10, 27]. 
As interposition of the menisci increases the joint congru-
ity, an external compressive load is distributed on the tibi-
ofemoral contact surface [34, 40]. The ultrastructure as well 
as the morphology of the meniscus also contribute to the 
biomechanical function. The extra-cellular matrix forming 
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the meniscus is mainly composed of type I collagen fibers, 
which are predominantly aligned circumferentially [32]. The 
circumferential fibers are organized by radial tie-fiber sheets 
and are inserted directly into the bone at the firm attach-
ments (meniscal roots) [2, 3]. The collagen hoop structure 
serves to transfer a compressive load into a circumferential 
tensile load; consequently, most of the load onto the tibi-
ofemoral joint is transmitted through the menisci [35, 38]. 
The load distribution and transmission functions are pivotal 
roles of the meniscus for cartilage protection and joint pres-
ervation [14].

Radial tear of the meniscus disrupts the integrity of the 
circumferential collagen fibers and has a detrimental effect 
on the load distribution and transmission functions [7, 8]. 
The lateral meniscus (LM) complete radial tear drastically 
deteriorated the biomechanical function, although partial 
tear of radial width did not affect the tibiofemoral contact 
mechanics in the lateral compartment or the in situ force 
carried by the LM [28, 37]. In the clinical settings, radial 
tears of the meniscus can be observed at various locations; 
however, the effect of the tear site on the deterioration of the 
load distribution and transmission functions remains unclear 
[9, 36]. The meniscus complete radial tear at different tear 
sites may cause different impacts on the load distribution 
and transmission functions. Understanding the association 
between the radial tear location of the meniscus and the deg-
radation of the biomechanical function must be helpful to 
estimate the adverse effect on the tibiofemoral joint or decide 
the appropriate treatment strategies in clinical practice.

The purpose of this study was to compare the effect of 
the LM complete radial tear at different tear sites on the load 
distribution and transmission functions using a porcine knee 
model. It was hypothesized that the detrimental effect of the 
LM complete radial tear on the load distribution and trans-
mission functions would differ among different tear sites.

Materials and methods

Thirty fresh-frozen porcine knees, which were obtained from 
a local butcher, were used in this study. The institutional 
review board of the Osaka University Hospital reviewed 
the study protocol and determined that this study did not 
require oversight. The mean age and weight of specimens 
were 24 weeks (range 23–25 weeks) and 120 kg (range 
115–125 kg), respectively. It was verified that the size of 
the tibial joint surface was relatively uniform and its trans-
verse diameter was approximately 48 mm [29]. Knees with 
an apparent injury to the ligaments, menisci, or articular 
cartilage were excluded. Each knee was thawed at room tem-
perature for 24 h before testing. All the muscles except for 
the popliteus were removed, while the patella, the patellar 
tendon, the collateral ligaments, and the capsule around the 

knee were carefully left intact. The femur and the tibia were 
both cut at a distance of 13 cm from the joint line, and both 
ends were potted and fixed in cylindrical molds of acrylic 
resin (Ostron II; GC, Tokyo). The fibula was cut 4-cm dis-
tal from the proximal tibiofibular joint and was fixed in the 
anatomic position with acrylic resin.

Robotic system

A 6-degree of freedom (DOF) robotic system (FRS-2010; 
Technology Service Ltd., Nagano) was utilized in this 
study. The system consists of a velocity-control 6-DOF (3 
translational-axis and 3 rotational-axis) manipulator with 
a universal force/moment sensor (UFS) (SI-660-60; ATI 
Industrial Automation, Apex, NC) and a control computer 
(Windows XP; Microsoft, Redmond, WA) linked with a 
high-speed motion network (Mechatrolink-II; Yaskawa Elec-
tric, Fukuoka) [15, 17, 18]. The manipulator is composed 
of the upper and lower driving mechanisms, and the UFS is 
attached to the upper mechanism. The upper mechanism is 
linked to two translational-axis actuators (SGDS-01F12A; 
Yaskawa Electric) and three rotational-axis actuators (HA-
800B-3A; Harmonic Drive Systems, Tokyo), while the lower 
mechanism is linked to 1 translational-axis actuator. All the 
actuators are powered by alternating-current servomotors. 
The data about both the position of and the force/moment 
acting on the knee joint are acquired via the UFS, and the 
control computer operates the program in a graphical lan-
guage programming environment (LabView 8.6.1; National 
Instruments, Austin, TX) to control the position and the 
force/moment.

This system can manipulate the physiological three-
dimensional (3D) motion of the knee joint by calculating and 
applying the 3D path to eliminate the force/moment on the 
knee joint except for the operator’s intended direction. The 
manipulator has a position accuracy of less than ± 0.015 mm 
in translation and ± 0.01° in rotation; the clamp-to-clamp 
stiffness is more than 450 ± 180 N/mm in translation and 
110 ± 30 Nm/° in rotation [11]. The frequency of data acqui-
sition, kinematic and kinetic calculation, and motion of actu-
ators is 20 Hz. The tibial and femoral cylindrical molded 
ends were connected firmly to the upper and lower driving 
mechanisms of the manipulator, respectively, with custom-
designed aluminum clamps. A knee joint coordinate system 
developed by Grood and Suntay [20] was introduced, and a 
3D digitizer (MicroScribe-3Dx; Immersion, San Jose, CA) 
was utilized to aim the femoral insertions of both the medial 
and lateral collateral ligaments (resolution, 0.13 mm; accu-
racy, 0.23 mm).
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Pressure film sensor

A thin electronic pressure film sensor with a thickness of 
0.2 mm (K-Scan system model 4011; Tekscan, Boston, MA) 
was utilized to measure the tibiofemoral contact mechan-
ics (pressure and area) in real time (sampling frequency: 
100 Hz) [5, 12]. The pressure film sensor was made up of 
404 sensels (based on 26 × 22 grid of sensels with 2-mm 
square). The sensor was used after cutting in half and was 
initially calibrated in a dry environment following the 
instructions of the manufacturer. To prevent the diminish-
ing of the load output over time due to exposure to liquid 
[22], both the upper and lower surfaces of the sensor were 
coated with 0.01 mm-thick polyurethane plastic film (Eleban 
film; Hakuzo Medical, Osaka) creating a small tab beside 
the sensor as in the previous report [41] (Fig. 1a). A 20-mm-
long horizontal incision was created on the capsule between 
the anterior portion of the LM and the anterior edge of the 
lateral tibial plateau. The pressure film sensor was inserted 
between the LM and the tibial articular surface through 
the capsular incision and was fixed by sewing the capsule 
including the tab using a 3-0 polyester suture (Fig. 1b).

Testing protocol

At the beginning of the examination, three cycles of flex-
ion–extension motion between 15° and 120° of flexion 
with a continuous compressive load of 20 N were applied 

to the intact knees to exclude the influence of creep behav-
ior in viscoelastic soft tissues. First, an axial compressive 
load of 300 N was applied to the intact knees at 15°, 30°, 
60°, 90°, and 120° of flexion, respectively. A compres-
sive load of 300 N was employed, because the amount 
was approximately equivalent to a quarter of the porcine 
weight and is considered as the load imposed on the tibi-
ofemoral joint in the static standing position. The tibi-
ofemoral contact pressure and area in the lateral compart-
ment were recorded via the pressure film sensor, while 
the 3D path of the tibia relative to the femur (Pi) and the 
force/moment acting on the knee joint (Fi) were recorded 
via the UFS.

Next, the porcine knees were divided into three groups of 
ten knees each, and the LM complete radial tears were cre-
ated at the middle portion (group M), the posterior portion 
(group P), or the posterior root (group R) using a scalpel 
from the extra-knee joint. The locations of complete radial 
tears were the midpoint between the anterior and posterior 
roots in group M, the midpoint between the group M point 
and the posterior root in group P, and the meniscal insertions 
of both the posterior root and the meniscofemoral ligament 
in group R (Fig. 2). Subsequently, the same loading proce-
dure was followed by the knees in all the three groups. The 
tibiofemoral contact pressure and area in the lateral com-
partment were again recorded via the pressure film sensor, 
while the 3D path (Prt) and the force/moment (Frt) on the 
knee joint were also recorded via the UFS.

Fig. 1  a Electronic pressure film sensor. Both the upper and lower 
surfaces of the sensor were coated with 0.01 mm-thick polyurethane 
plastic film creating a small tab beside the sensor (white arrow). b 
Insertion of the pressure film sensor between the LM and the tibial 

articular surface. The sensor was fixed by sewing the capsule includ-
ing the tab using a 3-0 polyester suture (white arrow head). LM lateral 
meniscus
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Finally, the pressure film sensor was extracted from 
all the knees through the capsular incision by cutting the 
suture on the capsule and tab. Then, the LM was totally 
removed by resecting the anterior and posterior roots, the 
meniscofemoral ligament, and the connective fibers to the 
surrounding capsule using a scalpel. Then, the previously 
recorded 3D paths in the intact knees and the knees with 
the LM complete radial tear (Pi and Prt) were sequentially 
reproduced on the LM-removed knees recording the force/
moment on the knee joint (Fi′ and Frt′). This process was 

conducted to calculate the in situ force carried by the LM 
under 300 N of axial compressive load (Fig. 3).

Data acquisition

The peak contact pressure and the contact area in the lat-
eral compartment under 300 N of axial compressive load 
were automatically calculated from the sensor output 
data by an exclusive analyzing software (I-Scan system 
ver. 5.2; Tekscan, Boston, MA). The peak contact pres-
sure was defined as the average pressure of the area with 

Fig. 2  Sites of the LM complete radial tear. The locations of com-
plete radial tears were the midpoint between the anterior and poste-
rior roots in group M, the midpoint between the group M point and 

the posterior root in group P, and the meniscal insertions of the both 
posterior root and the meniscofemoral ligament in group R (red arrow 
head). LM lateral meniscus

Fig. 3  Testing protocol and data acquisition. *The in  situ force car-
ried by the LM was calculated under the four meniscal conditions 
(intact, group M, group P, and group R) based on the principle of 

superposition and compared among the four groups. LM lateral 
meniscus, RT radial tear, 3D three-dimensional
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2 × 2 sensels which showed the highest net load. The peak 
contact pressure and the contact area in the lateral com-
partment were compared among the intact (n = 30), group 
M (n = 10), group P (n = 10), and group R (n = 10). The 
in situ force carried by the LM was calculated under the 
four meniscal conditions (intact, group M, group P, and 
group R) as the difference of the acquired force/moment 
vector between before (Fi and Frt) and after (Fi′ and Frt′) 
the removal of LM based on the principle of superposition 
[16, 18]. The in situ force carried by the LM under 300 N 
of axial compressive load was also compared among the 
four groups. The data at the third cycle were employed for 
all the assessments.

Statistical analysis

All statistical analyses were performed using the JMP soft-
ware (JMP Pro version 13.1.0; SAS Institute, Cary, NC). 
Power analysis (power, 0.8; α, 0.05; estimated detectable 
difference, 167.2 for the peak contact pressure, 86.9 for 
the contact area, and 24.8 for the in situ force carried by 
the LM; estimated standard deviation, 80.8 for the peak 
contact pressure, 41.3 for the contact area; and 12.0 for the 
in situ force carried by the LM) indicated a sample size 
requirement of ten subjects in each group for valid com-
parisons. The null hypothesis of normal distribution of the 
acquired data was tested and denied with the Shapiro–Wilk 
test. Therefore, the Kruskal–Wallis test for one-way fac-
torial analysis of variance by ranks and the Steel–Dwass 
test for post-hoc multiple comparison were used to com-
pare non-parametric variables among the four groups; a p 
value < 0.05 were considered statistically significant.

Results

Peak contact pressure and contact area in the lateral 
compartment

The peak contact pressure was significantly higher and 
the contact area was significantly lower after creating the 
LM complete radial tear as compared to that in the intact 
state at all the flexion angles (p < 0.01). At 90° of flexion, 
the peak contact pressure and the contact area in group 
R were higher and lower, respectively, as compared to 
those in group M (p < 0.05). At 120° of flexion, group 
R represented the highest peak contact pressure and the 
lowest contact area, followed by group P and group M 
(p < 0.05) (Fig. 4).

In the intact knees, the tibiofemoral contact pressure was 
constantly well distributed in the lateral compartment. On 
the other hand, the contact pressure was concentrated at the 
central area in the knees after creating the LM complete 
radial tear. In addition, the concentrated part of the contact 
pressure seemed to have shifted more posteriorly in group 
R as compared to that in both groups M and P at 120° of 
flexion (Fig. 5).

In situ force carried by the LM

The in situ force carried by the intact LM under 300 N 
of axial compressive load ranged from 76 to 123 N. The 
in situ force carried by the LM was significantly decreased 
by 40–88% after creating the LM complete radial tear as 
compared to that in the intact state at all the flexion angles 
(p < 0.01). At 90° of flexion, the in situ force carried by the 
LM in group R was lower as compared to that in both groups 

Fig. 4  Peak contact pressure (a) and contact area (b) in the lateral compartment. *Statistically significant difference (p < 0.05)
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M and P (p < 0.05). At 120° of flexion, group R represented 
the lowest in situ force, followed by group P and group M 
(p < 0.05) (Table 1).

Discussion

The principal finding of this study was that the detrimental 
effect of the LM complete radial tear on the load distribution 
and transmission functions was greater as the tear site was 
closer to the LM posterior root in the deep-flexed position.

Fig. 5  Representative contact 
pressure maps in the lateral 
compartment for each group. 
The data were obtained from the 
electronic pressure film sensor 
(K-Scan system model 4011; 
Tekscan, MA, USA)

Table 1  The in situ force carried by the LM under 300 N of axial compressive load

Mean ± standard deviation (N), (): percent decrease as compared to the value in the intact state (%)
LM lateral meniscus
*Significantly lower as compared to the value in the intact state (p < 0.01)
† Significantly lower as compared to the value in the group M (p < 0.05)
‡ Significantly lower as compared to the value in both the groups M and P (p < 0.05)

Flexion angle 15° 30° 60° 90° 120°

Intact (n = 30) 123.2 ± 25.4 114.1 ± 24.4 106.0 ± 26.6 96.8 ± 28.5 75.6 ± 23.0
Group M (n = 10) 70.5 ± 11.1* (− 42.8) 56.6 ± 14.9* (− 50.4) 45.7 ± 17.7* (− 56.9) 41.0 ± 14.6* (− 57.6) 36.0 ± 11.0* (− 52.4)
Group P (n = 10) 73.3 ± 13.2* (− 40.5) 60.2 ± 10.5* (− 47.2) 42.9 ± 10.3* (− 59.6) 32.8 ± 8.7* (− 66.1) 23.9 ± 9.1*,† (− 68.3)
Group R (n = 10) 73.5 ± 12.5* (− 40.3) 60.5 ± 15.4* (− 47.0) 34.8 ± 16.2* (− 67.2) 17.4 ± 7.3*,‡ (− 82.0) 9.0 ± 7.1*,‡ (− 88.1)
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The meniscus has a high tensile modulus in a circumfer-
ential direction close to that of the major knee ligaments [26] 
as it is primarily composed of dense circumferential collagen 
fibers [32]. In addition, the meniscus is also relatively stiff 
in a radial direction [26] because the circumferential fibers 
are organized by radial tie-fiber sheets as fascicles [2, 3]. 
Thus, the 3D configuration of the meniscus is substantially 
maintained under a compressive load onto the tibiofemoral 
joint, contributing to the load distribution [34, 40]. Moreo-
ver, the ultrastructure of the meniscal surface is analogous 
to that of the articular cartilage surface; this ensures that 
an external compressive load is efficiently transferred into 
an internal circumferential tensile load [4]. The meniscus 
transmits the tensile load through the well-organized circum-
ferential collagen fascicles directly attached to the bones via 
the meniscal roots [3, 35, 38]. Complete radial tear of the 
meniscus absolutely disrupts the integrity of the circumfer-
ential collagen hoop structure, which is essential for the load 
distribution and transmission functions. Therefore, this study 
demonstrated that the LM complete radial tear, regardless 
of the tear site, drastically deteriorated the load distribution 
and transmission functions in accordance with the results of 
previous reports [28, 37].

The load distribution and transmission functions of 
the meniscus are also attributable to the firm attachments 
(meniscal roots) at the joint center. As far as the circum-
ferential collagen fibers are anchored to the bones via the 
meniscal roots, the internal tensile load can be generated 
inside the collagen fibers. Accordingly, even when complete 
radial tear of the meniscus has occurred to the mid-sub-
stance, the meniscal portion being still stabilized by the roots 
can resist the extrusion and develop the biomechanical func-
tion [35]. Besides, Walker et al. [39] reported that a com-
pressive load onto the tibiofemoral joint was applied mainly 
to the anterior portion of the meniscus in the extended posi-
tion and to the posterior portion in the deep-flexed position. 
Therefore, in this study, the detrimental effect of the LM 
complete radial tear was not different among the three dif-
ferent tear sites in the extended position because the anterior 
portion of the LM remained intact in all the three groups. 
In contrast, in the deep-flexed position, the deterioration of 
the load distribution and transmission functions was greater 
as the tear site was closer to the posterior root due to the 
decrease of the meniscal portion being continued to the 
posterior root (Fig. 6). Actually, complete disruption of the 
medial meniscus posterior root [1] or the LM posterior root/

Fig. 6  Differences of the load distribution and transmission through 
the LM among the three different tear sites. A compressive load onto 
the tibiofemoral joint is applied mainly to the anterior portion of the 
meniscus in the extended position and the posterior portion in the 
deep-flexed position. The meniscal portion being still anchored to 

the bones by the meniscal roots can develop the load distribution and 
transmission functions against an external compressive load. The det-
rimental effect of the LM complete radial tear on the load distribution 
and transmission functions was greater as the tear site was closer to 
the posterior root in the deep-flexed position. LM lateral meniscus
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meniscofemoral ligament [19] is associated with comparable 
deterioration of the load distribution function as observed 
after the corresponding total meniscectomy in the deep-
flexed position.

Clinically, complete radial tears of the meniscus, espe-
cially at the posterior root, have increasingly recognized as a 
cause of development of knee osteoarthritis [6, 23, 24]. This 
study also demonstrated that the peak contact pressure in 
the lateral compartment was almost doubled and the in situ 
force carried by the LM was reduced by approximately half 
after cleating the LM complete radial tear as compared to the 
values in the intact state. However, radial tears of the menis-
cus, including the posterior root tears, have historically been 
treated with partial or total meniscectomy to achieve short-
term benefit such as pain relief or alleviation of catching 
symptoms [30]. Biomechanical analyses have demonstrated 
that both inside-out and all-inside repairs to complete radial 
tears of the meniscus [28, 43], as well as in situ pull-out re-
fixation to the complete posterior root tears [25, 31], improve 
the involved tibiofemoral contact mechanics to a level com-
parable to the intact state. Moreover, satisfactory clinical 
outcomes are achievable after those meniscus repairs during 
a short-term follow-up, and the progression of knee osteoar-
thritis seems to be prevented [13, 42]. Therefore, complete 
radial tears of the meniscus, especially the posterior root 
tears, should be repaired to restore the load distribution and 
transmission functions and prevent the progression of knee 
osteoarthritis.

This study had several limitations. First, a porcine knee 
model was utilized. As the porcine knee has steeper posterior 
tibial slope and stiffer meniscus compared to the human knee 
joint, the results in this study; the significant differences of 
the detrimental effect following the LM complete radial tear 
depending on the tear site in the deep-flexed position; may 
not be applicable to the human knee joint. Second, the in situ 
force carried by the LM was possibly overestimated because 
there might be interactive forces between the LM and the 
surrounding capsule. The calculated in situ force might not 
accurately reflect the actual force transmitted though the LM 
because of incomplete following of the assumptions required 
for the principle of superposition [21]. Third, the horizontal 
capsular incision to insert the pressure film sensor may have 
influenced the tibiofemoral contact mechanics or the in situ 
force carried by the LM. The knee joint kinematics might 
be altered by creating the capsular incision; however, the 
incision length was minimized and most of the capsule was 
carefully left intact. Finally, unlike the previous reports [19, 
25, 33], the detrimental effect of complete radial tear was 
not compared with that of partial or total meniscectomy and 
the effect of meniscal repair was also not evaluated. Further 
investigations regarding these clinically relevant conditions 
need to be performed. However, the finding of this study 
would be useful to estimate the adverse effect of radial tear 

of the meniscus depending on the tear site or decide the 
appropriate treatment strategies in clinical practice.

Conclusions

The LM complete radial tear at different tear sites caused 
different detrimental effects on the load distribution and 
transmission functions and the effect was greatest in the pos-
terior root tear, followed by the posterior portion tear and the 
middle portion tear in the deep-flexed position. As complete 
radial tears of the meniscus, especially at the posterior root, 
have a harmful impact on the load distribution and transmis-
sion functions, these tears should be repaired to restore the 
biomechanical function and prevent the progression of knee 
osteoarthritis.
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