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Abstract
Purpose Machine-learning methods are flexible prediction algorithms with potential advantages over conventional regres-
sion. This study aimed to use machine learning methods to predict post-total knee arthroplasty (TKA) walking limitation, 
and to compare their performance with that of logistic regression.
Methods From the department’s clinical registry, a cohort of 4026 patients who underwent elective, primary TKA between 
July 2013 and July 2017 was identified. Candidate predictors included demographics and preoperative clinical, psychosocial, 
and outcome measures. The primary outcome was severe walking limitation at 6 months post-TKA, defined as a maximum 
walk time ≤ 15 min. Eight common regression (logistic, penalized logistic, and ordinal logistic with natural splines) and 
ensemble machine learning (random forest, extreme gradient boosting, and SuperLearner) methods were implemented to 
predict the probability of severe walking limitation. Models were compared on discrimination and calibration metrics.
Results At 6 months post-TKA, 13% of patients had severe walking limitation. Machine learning and logistic regression 
models performed moderately [mean area under the ROC curves (AUC) 0.73–0.75]. Overall, the ordinal logistic regression 
model performed best while the SuperLearner performed best among machine learning methods, with negligible differences 
between them (Brier score difference, < 0.001; 95% CI [− 0.0025, 0.002]).
Conclusions When predicting post-TKA physical function, several machine learning methods did not outperform logistic 
regression—in particular, ordinal logistic regression that does not assume linearity in its predictors.
Level of evidence Prognostic level II
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Introduction

Previous studies have indicated that 11–20% of patients 
reported dissatisfaction following total knee arthroplasty 
(TKA), and that patient dissatisfaction was associated 
with persistent functional limitations [15]. Thus, early and 

accurate identification of patients at risk for poor post-TKA 
functional outcomes would be preferable in terms of direct-
ing resources toward preventive care.

Reviewing the literature, most clinical prediction models 
for post-TKA physical function [6, 30, 34], including one of 
ours [30], have been developed using conventional regres-
sion analyses. However, machine learning, a data analysis 
technique that develops algorithms to predict outcomes by 
iteratively “learning” from data, is increasingly emphasized 
in orthopaedics [3] and rheumatology [24] as a competi-
tive alternative to regression analysis. Importantly, machine 
learning has the potential to outperform conventional regres-
sion, possibly through its ability to capture nonlinearities 
and complex interactions among multiple predictor variables 
[12]. Despite this, only three studies [10, 16, 22] have used 
machine learning algorithms to predict post-TKA physical 
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function, and only two studies [10, 22] compared their per-
formance with that of logistic regression.

Given the clinical importance of identifying patients who 
are at risk for poor functional outcomes and given the pau-
city of machine learning studies in TKA, this study aimed to 
use machine learning methods to predict post-TKA walking 
limitation, and to compare their performance with that of 
logistic regression. It is hypothesized that machine learn-
ing algorithms outperform multivariable logistic regression 
models in terms of discrimination between severe and non-
severe walking limitations.

Methods

This was a single-centre, cohort study at Singapore General 
Hospital—the largest tertiary teaching hospital in Singa-
pore which performed half of all knee arthroplasties in a 
nation of 5.6 million people. From the department’s data-
base, 5491 patients aged ≥ 50 years who underwent a uni-
lateral primary TKA between July 2013 and July 2017 were 
identified. Patients who underwent a revision knee surgery 
within 6 months post-TKA (n = 16) were excluded. Patients 
who had a history of rheumatoid arthritis (n = 58) and 
patients with stroke or Parkinson disease (n = 108) were also 
excluded. For patients with consecutive admissions for TKA 
(n = 863), only data from their first admission were used. Of 
the remaining 5309 patients, a cohort of 4026 patients with 
non-missing 6-month follow-up outcomes were selected. 
Included patients were similar to those who were excluded 
because of missing data (Appendix Table 1 in ESM). All 
data were collected by physiotherapists and data techni-
cians trained in the testing procedures and entered into an 
electronic registry database as per routine practice policies 
of the institution. Data were de-identified prior to analyses. 
The institutional review board approved the study with a 
waiver of informed consent (SingHealth CIRB 2014/2027, 
Singapore).

Outcome

The primary outcome was severe postoperative (6 months) 
walking limitation. An intermediate (6 months) time point 
was chosen because (1) model prediction accuracy may 
decrease with a longer time horizon and (2) knowledge of 
intermediate-term (6 months) risk for poor TKA outcomes 
will aid patient education and assist in rehabilitation plan-
ning. Patients were asked to estimate the time they were 
able to walk (without a rest) before they had severe difficulty 
with the operated knee. This variable had four categories: (1) 
> 30 min, (2) 16–30 min, (3) 5–15 min, and (4) around the 
house only. Severe walking limitation was defined as a maxi-
mum walk time of ≤ 15 min (severe walking limitation = 1 

for those who were in categories 3 and 4 and severe walking 
limitation = 0 otherwise).

Predictor variables

Predictor variables were selected based on clinical exper-
tise, literature review [6, 16, 38], and data availability in 
the department’s databases. To improve the practicality of 
the prediction models, variables which were less equipment 
dependent and were routinely and easily measured in the 
clinical setting were considered. Altogether, 25 predictors 
were identified and they included demographics and pre-
operative clinical, psychosocial, and outcome measures 
(Table 1). Of note, these clinical, psychosocial, and outcome 
measures were mainly derived from the Short Form 36 (SF-
36) health survey, Oxford Knee Questionnaire, and Knee 
Society Clinical Rating Scale, and previous studies [7, 23, 
26] have demonstrated good test–retest reliability for these 
instruments in patients with TKA (intraclass correlation 
coefficients 0.80–0.92).

Model development

Apart from the “education-level” variable which was miss-
ing at 7.7%, all other predictors were missing at very low 
levels (0.02% to 0.5%). Thus, the transcan function in the R 
[31] Hmisc [19] package was used to perform single imputa-
tion. Eight common regression (logistic, ordinal logistic with 
splines, L-1 penalized logistic [35], L-2 penalized logistic 
[20], and L-1/L-2 penalized logistic [42]) and ensemble 
machine learning (random forest, extreme gradient boosting, 
and SuperLearner) methods were implemented to predict 
the probability of severe walking limitation. Notably, these 
machine learning methods were chosen because they were 
successfully used in clinical research [9, 27]. All analyses 
were done with the rms [18], Superlearner [29], caret [25], 
and vip [13] R packages (http://www.r-proje ct.org).

Logistic regression

A logistic regression model that included all variables was 
first fitted. To create a reference model against which per-
formance of all other models can be compared, additive 
predictor effects were assumed and the (regression) coef-
ficients for continuous predictors were linearly associated 
with the logit of the probability of having severe walking 
limitations. A proportional odds ordinal logistic regression 
model was then fitted on the ordinal (non-dichotomized) 
walking limitation outcome, and all continuous predictors 
in the ordinal model were modelled as restricted cubic 
splines with three knots [8, 17]. Three penalized logistic 
models were further fitted. The first model was a logis-
tic regression with least absolute shrinkage and selection 
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Table 1  Patient demographics and preoperative clinical characteristics

Variables Month-6 severe walking limitation P value

Absent (n = 3488) Present (n = 538) Overall (n = 4026)

Age 62.5 67.4 72.9 (67.5 ± 7.4) 65.1 70.5 76.1 (70.2 ± 8.2) 62.8 67.8 73.4 (67.9 ± 7.5) < 0.0011

Weight (kg) 58 66 74 (67 ± 13) 58 67 76 (68 ± 14) 58 66 74 (67 ± 13) 0.151

Height (m) 1.5 1.6 1.6 (1.6 ± 0.1) 1.5 1.5 1.6 (1.5 ± 0.1) 1.5 1.6 1.6 (1.6 ± 0.1) < 0.0011

BMI (kg/m2) 24.4 27.0 30.1 (27.5 ± 4.4) 24.8 28.1 31.7 (28.5 ± 5.2) 24.4 27.1 30.3 (27.6 ± 4.6) < 0.0011

Race < 0.0012

 Chinese 86% (3009) 77% (415) 85% (3424)
 Malay 7% (245) 11% (61) 8% (306)
 Indian 5% (172) 10% (53) 6% (225)
 Others 2% (62) 2% (9) 2% (71)

Women 74% (2574) 80% (429) 75% (3003) 0.0032

Contralateral knee pain 59% (2054) 68% (368) 60% (2422) < 0.0012

Hypertension 60% (2082) 66% (354) 61% (2436) 0.0072

Dyslipidemia 40% (1410) 43% (233) 41% (1643) 0.22

Diabetes 19% (662) 25% (132) 20% (794) 0.0032

Adult recon specialist 65% (2261) 59% (319) 64% (2580) 0.0132

Caregiver available 73% (2550) 69% (369) 73% (2919) 0.0292

Education Level < 0.0012

 None 19% (648) 32% (174) 20% (822)
 Primary 38% (1327) 36% (196) 38% (1523)
 Secondary 33% (1139) 24% (130) 32% (1269)
 Tertiary 11% (374) 7% (38) 10% (412)

Gait aids < 0.0013

 None 73% (2555) 48% (258) 70% (2813)
 Stick 22% (768) 37% (199) 24% (967)
 Quadstick 3% (98) 9% (47) 4% (145)
 Walking frame 2% (67) 6% (34) 3% (101)

Knee pain < 0.0013

 None or very mild 2% (71) 1% (7) 2% (78)
 Mild 16% (554) 9% (48) 15% (602)
 Moderate 46% (1607) 35% (187) 45% (1794)
 Severe 36% (1256) 55% (296) 39% (1552)

Depression level < 0.0013

 Most or all 3% (112) 6% (33) 4% (145)
 A good bit 5% (174) 9% (48) 6% (222)
 Some 16% (573) 20% (108) 17% (681)
 A little 12% (422) 13% (71) 12% (493)
 None 63% (2207) 52% (278) 62% (2485)

Anxiety level 0.563

 Most or all 4% (132) 4% (22) 4% (154)
 A good bit 4% (141) 4% (21) 4% (162)
 Some 14% (497) 16% (87) 15% (584)
 A little 16% (569) 15% (81) 16% (650)
 None 62% (2149) 61% (327) 62% (2476)

Difficulty when climbing down stairs < 0.0013

 None 8% (283) 4% (20) 8% (303)
 Little 20% (705) 11% (58) 19% (763)
 Moderate 28% (977) 21% (113) 27% (1090)
 Extreme 37% (1293) 46% (249) 38% (1542)
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operator (LASSO)—a state-of-the-art variable selection 
and shrinkage method. The second model was a logistic 
regression with ridge regularization—a shrinkage method 
that constraints all regression coefficients toward zero to 
reduce model variance. The third model was a logistic 
regression with elastic net regularization—a variable 
selection and shrinkage method that combines the LASSO 
and the ridge regularization penalties.

Random forest

Random forest is an ensemble tree-based machine learning 
method [1] that fits multiple classification and regression 
trees on bootstrap samples of the data. When fitting a tree, 
the random forest algorithm considers a random subset of 
the predictors at each node and iteratively identifies optimal 
splits in them to maximally separate the outcome into two 
groups with disparate outcome probabilities. Using a ran-
dom number of predictor variables, diverse trees that are less 
correlated with one another are created, potentially increas-
ing prediction accuracy. To reduce model variance, the ran-
dom forest algorithm uses a “bagging” (bootstrap aggrega-
tion) procedure that averages predictions from diverse trees 
grown on bootstrap samples. The optimal number of predic-
tor variables considered at each node was determined using 
repeated cross-validation of the training dataset (described 
later).

Extreme gradient boosting machine

Gradient boosting is an ensemble tree-based machine learn-
ing method that sequentially fits a series of classification 
and regression trees, with each tree created to predict the 
outcomes misclassified by the previous tree [11]. By creat-
ing trees to predict residuals of previous trees, the gradient 
boosting process focuses on predicting more difficult cases 
and corrects its own shortcomings. This “boosting” process 
continues iteratively, with the tree depth, learning rate, and 
number of trees were optimized using repeated cross vali-
dation. Extreme gradient boosting (XGBoost) is a specific 
implementation of the gradient boosting process [4], and 
uses memory-efficient algorithms to improve computational 
speed and model performance.

SuperLearner

SuperLearner is an ensemble machine learning method that 
creates an optimal prediction algorithm from a set of predic-
tion algorithms [36]. By cross-validating these candidate 
algorithms, the SuperLearner optimally weighs and com-
bines predictions from them, and this “stacking” process has 
been shown to be asymptotically as accurate as the best indi-
vidual candidate algorithm. In this study, XGBoost, random 
forest, binary logistic regression, logistic regression with 
LASSO, and logistic regression with ridge regularization 
were employed as candidate prediction algorithms.

The median 50th percentile values are in bold
1 Continuous variables are summarized as 25th, 50th, 75th percentiles (mean ± SD), and tested with the Wilcoxon–Mann–Whitney test
2 Categorical variables are summarized as percentages and frequencies (N), and tested with the Pearson’s χ2 test
3 The proportional odds likelihood ratio test

Table 1  (continued)

Variables Month-6 severe walking limitation P value

Absent (n = 3488) Present (n = 538) Overall (n = 4026)

 Unable 7% (230) 18% (98) 8% (328)
Difficulty when kneeling and getting up < 0.0013

 None 2% (66) 1% (4) 2% (70)
 Little 3% (108) 1% (6) 3% (114)
 Moderate 4% (136) 3% (16) 4% (152)
 Extreme 5% (186) 4% (20) 5% (206)
 Unable 86% (2992) 91% (492) 87% (3484)

Knee flexion 109 121 131 (118 ± 18) 105 119 129 (116 ± 19) 108 121 131 (118 ± 18) 0.0041

Knee extension 2.0 6.0 10.0 (7.1 ± 6.9) 3.0 6.0 11.0 (7.8 ± 8.1) 3.0 6.0 10.0 (7.2 ± 7.1) 0.261

SF-36 physical function 25 40 55 (41 ± 23) 10 20 35 (23 ± 19) 20 35 55 (38 ± 23) < 0.0011

Walking limitation < 0.0013

 > 30 min 19% (650) 4% (21) 17% (671)
 16–30 min 31% (1068) 14% (74) 28% (1142)
 5–15 min 42% (1469) 52% (282) 43% (1751)
 Around house 9% (301) 30% (161) 11% (462)
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Model performance

To validate the models, nested cross-validation which 
comprised an outer and an inner cross-validation loop was 
used [39] (Fig. 1). In the outer loop, 200 repeated ran-
dom splits of the dataset were performed, dividing it into 
training (70% of sample) and validation (30%) datasets. In 
the inner loop, hyperparameters of the machine learning 
and penalized logistic regression models were optimized 
using three repeats of fivefold cross-validation, and the 
final models (with the optimized hyperparameters) were 
fitted on the entire training dataset. These models were 
applied to the validation datasets and their performance 
was assessed in three ways. First, model discrimination 
was measured by the area under the receiver operating 
characteristic (AUC) curve, where a value of 1.0 repre-
sents perfect discrimination and 0.5 represents no discrim-
ination (‘coin flip’). Specifically, the AUC is the probabil-
ity that a randomly chosen patient with the event (severe 

walking limitation) will have a higher predicted risk than a 
randomly chosen patient without the event. Second, model 
calibration was assessed using loess-smoothed calibration 
plots, and the val.prob function [18] implemented in R 
software was used to compute the mean absolute error 
in predicted and loess calibrated probabilities. Third, the 
Brier score [2], where a value of 0 represents perfect over-
all model performance was computed. Of note, while the 
AUC measures model discrimination, the Brier score is 
the mean quadratic difference between predicted probabili-
ties and observed binary outcomes and thus, includes both 
discrimination and calibration aspects. From the outer 
cross-validation loop, the mean performance indices and 
their 95% confidence limits were computed. Finally, to 
gain insights into the relative contribution of the predictor 
variables in the best performing logistic regression and 
machine learning methods, the Wald χ2 statistic minus the 
degrees-of-freedom (χ2 − df) [17] was computed for the 
best performing logistic regression and the AUC-based 

Fig. 1  Analysis pipeline
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permutation importance measure [1, 13, 14] was computed 
for the best performing machine learning method.

Results

Table 1 shows the demographics and preoperative charac-
teristics of the patients. Preoperatively, half of the patients 
(55%, 95% CI 53–57%) reported an inability to walk for 
more than 15 min; at 6 months post-surgery, just over one 
of every ten patients (13%, 95% CI 12–14%).

Figure 2 summarizes the discrimination and calibration 
performance of machine learning and logistic regression 
models. In terms of model discrimination, the cross-vali-
dated AUCs of the best performing logistic regression model 
(ordinal regression) and the best machine learning method 
(XGBoost) were similar (AUC difference, 0.002; 95% CI 
[− 0.015, 0.018]). Notably, compared with the binary logis-
tic regression model (mean AUC: 0.751), the AUC differ-
ence was greatest for ordinal logistic regression model with 
spline terms (AUC difference, 0.006; 95% CI [− 0.008, 
0.019]). The random forest model was least discriminative.

Fig. 2  Results of discrimina-
tion and calibration metrics of 
machine learning and logistic 
regression models computed 
from nested cross-validation. 
Area under the receiver operat-
ing characteristic curve (AUC), 
mean absolute error, and Brier 
score values are represented 
for each model by mean and 
95% confidence intervals (95% 
CIs). XGBoost: extreme gradi-
ent boosting; e-net: elastic net 
regression



3213Knee Surgery, Sports Traumatology, Arthroscopy (2020) 28:3207–3216 

1 3

In terms of calibration performance, indexed by mean 
absolute error in predicted and loess calibrated probabili-
ties, ordinal and penalized (L-1/L-2 and L-2 norms) logistic 
models and the SuperLearner were amongst the best cali-
brated models. Similarly, in terms of overall performance, 
indexed by the Brier score, ordinal logistic regression model 
(with spline terms) was the best performing model while 
the SuperLearner was the best performing machine learn-
ing method. Figure 3 shows the top ten predictor variables 
in the ordinal regression model and the SuperLearner. For 
both methods, age and preoperative physical function (that 
is, preoperative walking limitation levels, type of gait aids 
used preoperatively, and preoperative SF-36 physical func-
tion) were among the most important predictors. Although 
the top four predictors were the same (with different ranks) 
between the two methods, some predictors were unique in 
the ordinal logistic model such as “Operated by adult recon-
struction specialist”, “Depression”, and “Race:Malay” while 
“Anxiety” and “Kneeling difficulty” were only listed in the 
SuperLeaner method. To help clinical readers interpret the 
potential contributions of individual predictors to the Super-
Learner predictions, a linear regression model was fitted to 
approximate predictions from the SuperLearner, and Appen-
dix Table 2 in ESM gives the odds ratios from both ordinal 
logistic and SuperLearner (approximated) models.

Discussion

The key finding of this cohort study was that machine learn-
ing algorithms did not improve the predictions of post-TKA 
severe walking limitation compared with logistic regression 
models. Thus, the study hypothesis was not confirmed. All 
models showed moderate discrimination, with AUC statis-
tics above 0.73. Similar to the logistic regression model, 
the best performing machine learning model identified older 
age and poorer preoperative physical function as important 
predictors of more severe walking limitations (Fig. 3 and 
Appendix Table 2 in ESM). Thus, these findings give clini-
cians and researchers confidence in the machine learning 
approach.

Reviewing the literature, the AUC values are generally 
similar to those of Fontana et al. [10], who investigated 
logistic regression with LASSO (0.75), random forest (0.75), 
and support vector machine (0.73) in predicting post-TKA 
Knee Disability and Osteoarthritis Outcome Scores for joint 
replacement (KOOS-Jr) scores. The findings also agree with 
the conclusion of a recent systematic review that machine 
learning was not superior to logistic regression in clinical 
prediction modelling [5]. More specifically, they are consist-
ent with those of Huber et al. [22]—a TKA study that was 
similar in design to this study. Huber et al. [22] investigated 

Fig. 3  Relative contribution of the top ten predictor variables in ordinal regression model (ranked by their χ2 − df values) and SuperLearner 
model (ranked by their AUC-based permutation importance)
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eight machine learning and logistic regression models to 
predict post-TKA physical function, and they reported that 
the AUC values of XGBoost and logistic regression were 
nearly identical (0.70). Because machine learning models 
could potentially outperform logistic regression by allow-
ing nonlinearities and interactions among predictors, this 
study and Huber et al.’s indicate that in the prediction of 
post-TKA physical function, predictors mainly act addi-
tively, with complex non-additive effects and nonlinearities 
not sufficiently pronounced to make machine learning meth-
ods beneficial.

In this study, the best performing method was ordinal 
logistic regression model (Fig. 2). At a time when machine 
learning papers tend to dichotomize (ordinal) outcomes and 
present “conventional” regression simply as a method that 
assumes linearity, this finding is timely and unsurprising: 
the proportional odds ordinal regression model shares the 
same structure as the binary logistic model but uses the full 
(ordinal) information in the outcome and thus has greater 
statistical power than a binary logistic regression [17]. Fur-
thermore, because assuming linearity may reduce model 
performance [17], all continuous predictors in the ordinal 
model were expanded using restricted cubic splines. Given 
that ordinal regression has other positive elements, such as 
its ability to give exceedance probabilities at any outcome 
cut-points, this finding supports previous calls [32] for a 
wider adoption of ordinal outcome analysis.

Among the machine learning methods, the AUC of 
XGBoost was best and second only to that of ordinal regres-
sion overall. Although this finding is consistent with that of 
Huber et al. [22], discrimination is just one aspect of model 
performance [5, 35]. Given that model calibration accuracy 
is also important in the field of orthopaedics, this study went 
further and found that XGBoost was not the best calibrated 
model. Instead, the SuperLearner was, overall, the best 
performing machine learning algorithm, and this finding is 
consistent with prior literature in other clinical settings [28, 
33]. As it is unlikely that one prediction algorithm will be 
most accurate across all scenarios [41], a major strength of 
the SuperLearner framework is that it does not require the 
analyst to rely on a single algorithm [36]. However, as gen-
erally applies to machine learning algorithms, a potential 
drawback of the SuperLearner is that its “black box” nature 
may limit its interpretability and thus, its acceptance by the 
clinical community. Nevertheless, work is going on [14, 21] 
to develop methods for visualizing predictor variable impor-
tance. Figure 3 shows the top ten predictor variables from 
the best performing logistic and machine learning methods.

Limitations

This study has limitations. First, the data come from 
only one institution, though it does deliver care to a large 

segment of the nation’s population. Second, a relatively 
small number of predictors were studied. Thus, one poten-
tial criticism is that we have not harnessed the ability of 
machine learning methods to handle numerous predictors, 
which may limit the ability of machine learning techniques 
to outperform traditional logistic regression modelling. 
That said, Huber et al. [22] considered 81 pre-specified 
predictors in their analyses and arrived at the same conclu-
sion as this study. Furthermore, simulation analyses [37] 
have suggested that machine learning methods may require 
substantially larger effective sample sizes than logistic 
regression to avoid model overfitting and produce small 
optimism in cross-validated AUC. Third, although deep 
learning is the most rapidly emerging tool in biomedical 
research, deep learning was not employed to analyse the 
data because current application of deep learning focuses 
on imaging data analysis [40] and requires extremely large 
datasets. Thus, it is possible that in studies with radio-
graphic or imaging predictors, deep learning or machine 
learning may outperform logistic regression. Due to lim-
ited performance of support vector machine (SVM) [9, 
27], SVM was also not employed in this study.

Conclusion

In conclusion, when predicting post-TKA physical func-
tion, this study found that several machine learning meth-
ods were not more accurate than logistic regression—in 
particular, ordinal logistic regression that did not assume 
linear predictor effects. These findings suggest that both 
ordinal logistic regression and machine learning methods 
may be used to identify patients who are at high risk for 
severe walking limitations. Furthermore, to facilitate clini-
cal interpretation of the machine learning model, variable 
importance and potential predictor effects were illustrated 
(Fig. 3 and Appendix Table 2 in ESM). It is hoped that 
this study will encourage future head-to-head compari-
sons between machine learning and “well-done” logistic 
regression, and the R codes used in this study are publicly 
available in an online repository (https ://githu b.com/yhpua 
/RvML).

Acknowledgements We thank Brandon Greenwell for his gener-
ous help with the vip R package and Michael W. Wade at Vanderbilt 
University Medical Center for his editorial work on this article. We 
acknowledge the support from Jennifer Liaw, the head of the Depart-
ment of Physiotherapy, Singapore General Hospital. We thank Wil-
liam Yeo from the Orthopaedic Diagnostic Centre, Singapore General 
Hospital, for his assistance. Finally, we thank Ee-Lin Woon, Felicia 
Jie-Ting Seah, Nai-Hong Chan, and the therapy assistants (Penny Teh 
and Hamidah Binti Hanib) for their kind assistance.

Funding No funding was provided for the completion of this study.

https://github.com/yhpua/RvML
https://github.com/yhpua/RvML


3215Knee Surgery, Sports Traumatology, Arthroscopy (2020) 28:3207–3216 

1 3

Compliance with ethical standards 

Conflict of interest The authors have no professional or financial affili-
ations that may be perceived to have biased the presentation. Each au-
thor certifies that he or she has no commercial associations that might 
pose a conflict of interest in connection with the submitted article.

Ethical approval Ethical approval was provided by the SingHealth Cen-
tralized IRB (SingHealth CIRB 2014/2027, Singapore).

References

 1. Breiman L (2001) Random forests. Mach Learn 45:5–32
 2. Brier GW (1950) Verification of forecasts expressed in terms of 

probability. Mon Weather Rev 78:1–3
 3. Cabitza F, Locoro A, Banfi G (2018) Machine learning in ortho-

pedics: a literature review. Front Bioeng Biotechnol 6:75
 4. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting sys-

tem. In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining, pp 785–794

 5. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, 
van Calster B (2019) A systematic review shows no performance 
benefit of machine learning over logistic regression for clinical 
prediction models. J Clin Epidemiol 110:12–22

 6. Dowsey MM, Spelman T, Choong PF (2016) Development of 
a prognostic nomogram for predicting the probability of nonre-
sponse to total knee arthroplasty 1 year after surgery. J Arthroplast 
31:1654–1660

 7. Dunbar M, Robertsson O, Ryd L, Lidgren L (2001) Appropriate 
questionnaires for knee arthroplasty: results of a survey of 3600 
patients from The Swedish Knee Arthroplasty Registry. J Bone 
Joint Surg Br 83:339–344

 8. Durrleman S, Simon R (1989) Flexible regression models with 
cubic splines. Stat Med 8:551–561

 9. Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) 
Do we need hundreds of classifiers to solve real world classifica-
tion problems? J Mach Learn Res 15:3133–3181

 10. Fontana MA, Lyman S, Sarker GK, Padgett DE, MacLean CH 
(2019) Can machine learning algorithms predict which patients 
will achieve minimally clinically important differences from total 
joint arthroplasty? Clin Orthop 477:1267–1279

 11. Friedman JH (2001) Greedy function approximation: a gradient 
boosting machine. Ann Stat 29:1189–1232

 12. Goldstein BA, Navar AM, Carter RE (2017) Moving beyond 
regression techniques in cardiovascular risk prediction: apply-
ing machine learning to address analytic challenges. Eur Heart J 
38:1805–1814

 13. Greenwell B, Boehmke B, Gray B (2018) vip: variable importance 
plots. R package version 0.1.2. https ://CRAN.R-proje ct.org/packa 
ge=vip. Accessed 10 Jan 2019

 14. Greenwell BM, Boehmke BC, McCarthy AJ (2018) A simple and 
effective model-based variable importance measure. arXiv pre-
print. arXiv:1805.04755

 15. Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Rob-
ertson BW (2017) Patient dissatisfaction following total knee 
arthroplasty: a systematic review of the literature. J Arthroplast 
32:3854–3860

 16. Gutacker N, Street A (2017) Use of large-scale HRQoL datasets 
to generate individualised predictions and inform patients about 
the likely benefit of surgery. Qual Life Res 26:2497–2505

 17. Harrell FE Jr (2015) Regression modeling strategies: with applica-
tions to linear models, logistic and ordinal regression, and survival 
analysis. Springer, New York

 18. Harrell Jr FE (2019) rms: regression modeling strategies. R 
package version 5.1-3. http://CRAN.R-proje ct.org/packa 
ge=rms. Accessed 10 Jan 2019

 19. Harrell Jr FE, with contributions from Charles Dupont and 
many others (2019) Hmisc: Harrell Miscellaneous. R package 
version 4.2-0. https ://CRAN.R-proje ct.org/packa ge=Hmisc . 
Accessed 10 Jan 2019

 20. Hoerl AE, Kennard RW (1970) Ridge regression: biased estima-
tion for nonorthogonal problems. Technometrics 12:55–67

 21. Hubbard A, Kennedy C (2018) varimpact: variable importance 
estimation using targeted causal inference (TMLE). R package 
version 1.3.0-9004. http://githu b.com/ck37/varim pact. Accessed 
10 Jan 2019

 22. Huber M, Kurz C, Leidl R (2019) Predicting patient-reported 
outcomes following hip and knee replacement surgery using 
supervised machine learning. BMC Med Inform Decis Mak 
19:1–13

 23. Impellizzeri FM, Mannion AF, Leunig M, Bizzini M, Naal FD 
(2011) Comparison of the reliability, responsiveness, and con-
struct validity of 4 different questionnaires for evaluating out-
comes after total knee arthroplasty. J Arthroplast 26:861–869

 24. Jamshidi A, Pelletier JP, Martel-Pelletier J (2019) Machine-learn-
ing-based patient-specific prediction models for knee osteoarthri-
tis. Nat Rev Rheumatol 15:49–60

 25. Kuhn M (2019) caret: classification and regression training. 
R package version 6.0-82. https ://CRAN.R-proje ct.org/packa 
ge=caret . Accessed 10 Jan 2019

 26. Martimbianco ALC, Calabrese FR, Iha LAN, Petrilli M, Lira Neto 
O, Carneiro Filho M (2012) Reliability of the “American Knee 
Society Score”(AKSS). Acta Ortop Bras 20:34–38

 27. Ogutu JO, Piepho HP, Schulz-Streeck T (2011) A comparison of 
random forests, boosting and support vector machines for genomic 
selection. BMC Proc 5(Suppl 3):1–5

 28. Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van 
der Laan MJ (2015) Mortality prediction in intensive care units 
with the Super ICU Learner Algorithm (SICULA): a population-
based study. Lancet Respir Med 3:42–52

 29. Polley E, LeDell E, Kennedy C, van der Laan M (2018) Super-
Learner: super learner prediction. R package version 2.0-24. https 
://CRAN.R-proje ct.org/packa ge=Super Learn er

 30. Pua YH, Poon CL, Seah FJ, Thumboo J, Clark RA, Tan MH et al 
(2019) Predicting individual knee range of motion, knee pain, and 
walking limitation outcomes following total knee arthroplasty. 
Acta Orthop 90:179–186

 31. R Core Team (2013) R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing, Vienna, 
Austria. URL http://www.R-proje ct.org/. Accessed 10 Jan 2019

 32. Roozenbeek B, Lingsma HF, Perel P, Edwards P, Roberts I, Mur-
ray GD et al (2011) The added value of ordinal analysis in clinical 
trials: an example in traumatic brain injury. Crit Care 15:1–7

 33. Rose S (2013) Mortality risk score prediction in an elderly popula-
tion using machine learning. Am J Epidemiol 177:443–452

 34. Sanchez-Santos MT, Garriga C, Judge A, Batra RN, Price AJ, 
Liddle AD et al (2018) Development and validation of a clini-
cal prediction model for patient-reported pain and function after 
primary total knee replacement surgery. Sci Rep 8:1–9

 35. Tibshirani R (1996) Regression shrinkage and selection via the 
lasso. J R Stat Soc Series B Stat Methodol 6:267–288

 36. Van der Laan MJ, Polley EC, Hubbard AE (2007) Super learner. 
Stat Appl Genet Mol Biol 6:1–21

 37. van der Ploeg T, Austin PC, Steyerberg EW (2014) Modern mod-
elling techniques are data hungry: a simulation study for predict-
ing dichotomous endpoints. BMC Med Res Methodol 14:1–13

 38. Van Onsem S, Van Der Straeten C, Arnout N, Deprez P, Van 
Damme G, Victor J (2016) A new prediction model for patient sat-
isfaction after total knee arthroplasty. J Arthroplast 31:2660–2667

https://CRAN.R-project.org/package%3dvip
https://CRAN.R-project.org/package%3dvip
http://CRAN.R-project.org/package%3drms
http://CRAN.R-project.org/package%3drms
https://CRAN.R-project.org/package%3dHmisc
http://github.com/ck37/varimpact
https://CRAN.R-project.org/package%3dcaret
https://CRAN.R-project.org/package%3dcaret
https://CRAN.R-project.org/package%3dSuperLearner
https://CRAN.R-project.org/package%3dSuperLearner
http://www.R-project.org/


3216 Knee Surgery, Sports Traumatology, Arthroscopy (2020) 28:3207–3216

1 3

 39. van Os HJA, Ramos LA, Hilbert A, van Leeuwen M, van Walder-
veen MAA, Kruyt ND et al (2018) Predicting outcome of endo-
vascular treatment for acute ischemic stroke: potential value of 
machine learning algorithms. Front Neurol 9:1–8

 40. Wainberg M, Merico D, Delong A, Frey BJ (2018) Deep learning 
in biomedicine. Nat Biotechnol 36:829–838

 41. Wolpert DH (1992) Stacked generalization. Neural Netw 
5:241–259

 42. Zou H, Hastie T (2005) Regularization and variable selection via 
the elastic net. J R Stat Soc Series B Stat Methodol 67:301–320

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Yong‑Hao Pua1  · Hakmook Kang2 · Julian Thumboo3 · Ross Allan Clark4 · Eleanor Shu‑Xian Chew1 · 
Cheryl Lian‑Li Poon1 · Hwei‑Chi Chong5 · Seng‑Jin Yeo6

 Hakmook Kang 
 h.kang@vumc.org

 Julian Thumboo 
 julian.thumboo@singhealth.com.sg

 Ross Allan Clark 
 rclark@usc.edu.au

 Eleanor Shu-Xian Chew 
 eleanor.chew.s.x@sgh.com.sg

 Cheryl Lian-Li Poon 
 cheryl.poon.l.l@sgh.com.sg

 Hwei-Chi Chong 
 hwei_chi_chong@cgh.com.sg

 Seng-Jin Yeo 
 yeo.seng.jin@singhealth.com.sg

1 Department of Physiotherapy, Singapore General Hospital, 
Singapore, Singapore

2 Department of Biostatistics, Vanderbilt University Medical 
Center, Nashville, TN, USA

3 Department of Rheumatology and Immunology, Singapore 
General Hospital, Singapore, Singapore

4 Research Health Institute, University of the Sunshine Coast, 
Sunshine Coast, Australia

5 Department of Physiotherapy, Changi General Hospital, 
Singapore, Singapore

6 Department of Orthopaedic Surgery, Singapore General 
Hospital, Singapore, Singapore

http://orcid.org/0000-0003-2313-9665

	Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusions 
	Level of evidence 

	Introduction
	Methods
	Outcome
	Predictor variables
	Model development
	Logistic regression
	Random forest
	Extreme gradient boosting machine
	SuperLearner
	Model performance


	Results
	Discussion
	Limitations

	Conclusion
	Acknowledgements 
	References




