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Abstract
Purpose  The acromioclavicular ligament complex (ACLC) is the primary stabilizer against horizontal translation with the 
superior ACLC providing the main contribution. The purpose of this study was to evaluate the specific regional contribu-
tions in the superior half of ACLC, where the surgeon can easily access and repair or reconstruct, for posterior translational 
and rotational stability.
Methods  The superior half of ACLC was divided into three regions; Region A (0°–60°): an anterior 1/3 region of the supe-
rior half of ACLC, Region B (60°–120°): a superior 1/3 region of the superior half of ACLC, and Region C (120°–180°): 
a posterior 1/3 region of the superior half of ACLC. Fifteen fresh-frozen cadaveric shoulders were used. Biomechanical 
testing was performed to evaluate the resistance force against passive posterior translation (10 mm) and the resistance torque 
against passive posterior rotation (20°) during the following the four conditions. (1) Stability was tested on all specimens in 
their intact condition (n = 15). (2) The ACLC was dissected and stability was tested (n = 15). (3) Specimens were randomly 
divided into three groups by regions of suturing. Stability was tested after suturing Region A, Region B, or Region C (n = 5 
per group). (4) Stability was tested after suturing additional regions: Region A + B (0°–120°), Region B + C (60°–180°), or 
Region A + C (0°–60°, 120°–180°, n = 5 per group).
Results  The translational force increased after suturing Region A when compared with dissected ACLC (P = 0.025). The 
force after suturing Region A + B was significantly higher compared to the dissected ACLC (P < 0.001). The rotational torque 
increased after suturing Region A or Region B compared with dissected ACLC (P = 0.020, P = 0.045, respectively). The 
torque after suturing the Region A + C was significantly higher compared to the dissected ACLC (P < 0.001).
Conclusion  The combined Region A + B contributed more to posterior translational stability than Region B + C or Region 
A + C. In contrast, combined Region A + C contributed more to posterior rotational stability than Region A + B or Region 
B + C. Based on these findings, surgical techniques restoring the entire superior ACLC are recommended to address both 
posterior translational and rotational stability of the AC joint.

Keywords  Acromioclavicular joint dislocation · Acromioclavicular ligament complex · Translational stability · Rotational 
stability · Biomechanics · Cadaver study

Introduction

The best surgical procedure for acromioclavicular (AC) 
joint dislocations is still debated, and numerous variations 
of surgical procedures have been published [2]. Until 5 years 
ago, the procedures focused on coracoclavicular (CC) sta-
bilization [17–19]. However, persisting posterior instability 
has been observed after CC stabilization without AC stabi-
lization, and patients with posterior instability had substan-
tially poorer clinical results [1, 18]. Furthermore, cadaveric 
biomechanical studies have identified the acromioclavicular 
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ligament complex (ACLC) as the primary stabilizer prevent-
ing posterior translation and rotation [7–10]. Therefore, the 
recent surgical techniques have focused on both CC and AC 
stabilization [3, 6, 11, 12, 20, 21, 23].

Regarding the biomechanical role of the ACLC, Klimkie-
wicz et al. demonstrated that the superior part of the ACLC 
is the main contributor to overall ACLC restraint against 
posterior translation of the distal clavicle [15]. However, 
specific regional contributions in the superior part of ACLC 
are still unclear. Understanding the specific areal contribu-
tions for posterior stability of the ACLC’s superior half, 
where the surgeon can easily access to repair, augment, or 
reconstruct the ACLC, may help to improve the develop-
ment of surgical techniques for AC joint dislocation. The 
purpose of this study is to evaluate the different contribu-
tions of the anterior, superior, and posterior segments of the 
ACLC’s superior half for posterior translational and rota-
tional stability.

Materials and methods

Experimental design

The superior half of ACLC was divided into three regions; 
Region A (0°–60°): an anterior 1/3 region of the superior 
half of ACLC, Region B (60°–120°): a superior 1/3 region 
of the superior half of ACLC, and Region C (120°–180°): 
a posterior 1/3 region of 1/3 of the superior half of ACLC 
(Fig. 1).

Biomechanical testing was performed to evaluate the 
resistance force against passive posterior translation and 
the resistance torque against passive posterior rotation dur-
ing the following five conditions. (1) Stability was tested 
on all specimens in their intact condition (n = 15). (2) The 
ACLC was dissected and stability was tested (n = 15). (3) 

Specimens were randomly divided into three groups by 
regions of suturing (Fig. 2). Stability was tested after sutur-
ing Region A (0°–60°), Region B (60°–120°), or Region 
C (120°–180°) (Figs. 2, 3, n = 5 per group). Each region 
was sutured using four 2-0 FiberWire® (Arthrex Inc., 
Naples, FL) sutures. (5) Stability was tested after suturing 
an additional region: Region A + B (0°–120°), Region B + C 
(60°–180°), or Region A + C (0°–60°, 120°–180°) (Figs. 2, 
3, n = 5 per group).

Specimen preparation

Fifteen fresh-frozen cadaveric shoulders were analyzed in 
this study (mean age of 58.4 ± 12.9). All specimens were 
obtained from Medcure Inc. (Portland, OR). Specimen 
preparation was done in accordance with previously pub-
lished methods [3, 5, 22]. Each shoulder specimen was 
thawed overnight at room temperature and disarticulated 
at the glenohumeral joint. The clavicle and scapula were 
dissected free of all soft tissue except the ACLC, the CC 
ligaments, and the coracoacromial ligament. The scapula 
was trimmed and potted with plaster of Paris in a 7.6 cm 
(diameter) × 7.6 cm (length) section of polyvinyl chloride 
(PVC) pipe. The glenoid surface was aligned parallel to the 
floor when the PVC pipe positioned upright. The scapula 
was secured to a swivel fixture on the X–Y table of a servo-
hydraulic testing system (MTS Systems Corp). The clavicle 
was then trimmed to 13 cm and potted with bone cement in 
a 3.2 cm (diameter) × 6.4 cm (length) section of PVC pipe, 
so that its long axis was centered and ran parallel within the 
PVC pipe. This enabled clavicular fixation to the actuator of 
the MTS machine with a custom aluminum clamp. The local 
institutional review board provided approval for the study. 
The Health Center’s safety office and OSHA approved the 
purchase and disposal of cadaver specimens.

Biomechanical test setup

The pipe-cemented specimens were positioned anatomi-
cally with the scapula secured to a swivel fixture on an 
X–Y–Z table of a servohydraulic testing system (MTS Sys-
tems Corp). The clavicle side was attached to a custom 
fixture allowing anterior–posterior translation and rotation 
motion without moving the specimen. A pneumatic cylinder 
(Bimba, Monee, IL, USA) connected to 100 lb load cells 
(Futek, Irvine, CA, USA) was hooked to the custom fixture 
(parallel to the AC joint) on the clavicle side to generate 
an anterior–posterior translational force. This setup allowed 
the investigation of rotational and anterior–posterior load-
ing during the cutting procedure without repositioning the 
specimen. A displacement controlled setting was used to 
run the test.

Fig. 1   Schematic of the acromioclavicular ligament complex division 
for suturing
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Translational testing

The clavicle was translated anteroposterior with respect 
to the acromion. A linear displacement of 10 mm in the 
anterior and posterior directions was applied. This dis-
tance has been described in prior studies as native AC 
joint motion without disturbing the AC joint capsule or 
the CC ligaments [3, 4, 6]. Fifteen cycles were analyzed 
after preconditioning with five cycles of reduced distances 
(5 mm of displacement). The required force to achieve the 
designated displacement was recorded by load cells. The 
values of the last cycle were used for analysis.

Rotational testing

The attached translational actuator was released, so the pot-
ted clavicle could be fixed with its long axis in line with the 
shaft of the MTS actuator. The clavicle was rotated about 
its long axis 20° posterior and 20° anterior at a rate of 5° 
per second, as was done in a previous study [3]. Anterior 
rotation was designated as the superior aspect of the clavi-
cle moving anteriorly, and posterior rotation was designated 
as posterior movement of the superior aspect of the clavi-
cle. Ten cycles were completed after preconditioning with 
five cycles of reduced distances (10° of displacement). The 

Fig. 2   Representative pictures and schemas of suturing ACLC’s supe-
rior half. a, d, g Combinations of anterior, superior, and posterior 
views of suturing Region A (0°–60°). b, e, h Combinations of ante-

rior, superior, and posterior views of suturing Region B (60°–120°). 
c, f, i. Combinations of anterior, superior, and posterior views of 
suturing and Region C (120°–180°)
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required force to achieve the designated displacement was 
recorded by the MTS machine. The values of the last cycle 
were used for analysis.

The UConn Health Institutional Review Board (IRB) con-
firmed that the use of de-identified cadaveric specimens does 
not constitute human subject research.

Statistical analysis

Assuming a standard deviation of 30 N in translation force 
and 0.4 N-m of torque across the testing conditions with a 
correlation of 0.5 among the repeated measures We assumed 
by as. A sample size of ten specimens would provide 80% 
power at an alpha level of 0.05 to detect a 20 N difference 
in translation and a 2 N-m difference in torque. Descriptive 
statistics were calculated using mean and standard devia-
tion or frequency and proportion where appropriate. Differ-
ences in posterior translational force and rotational torque 
with different suturing conditions were analyzed with a 
one-way repeated-measure ANOVA. Following a signifi-
cant ANOVA, differences between the intact and suturing 
conditions were evaluated with Dunnett’s method for mul-
tiple comparisons. An alpha level of 0.05 was set for all 
comparisons.

Results

Posterior translational force

The resistance force against posterior translation in the 
intact condition significantly decreased after dissection of 

the ACLC (P < 0.001, Fig. 4). Suturing Region A (0°–60°), 
Region B (60°–120°), or Region C (120°–180°) yielded a 
significantly lower resistance force for posterior translation 
compared to the intact condition (P < 0.001, Fig. 4). The 
resistance forces increased after suturing Region A when 
compared with complete dissection of the ACLC (P = 0.025, 
Fig. 4).

Fig. 3   Flowchart demonstrating the tested groups and biomechanical 
testing

Fig. 4   Posterior translational force (N) during the 10  mm displace-
ment of distal clavicle with intact condition of ACLC, after dissec-
tion of overall ACLC (ACLC-), suturing Region A (0°–60°), Region 
B (60°–120°), and Region C (120°–180°) with remaining intact cora-
coclavicular ligaments. The error bars indicate the standard deviation. 
***P < 0.001 compared with the intact condition. †P < 0.05 compared 
with the dissected ACLC. #P between 0.05 and 0.1 compared with the 
dissected ACLC

Fig. 5   Posterior translational force (N) during the 10  mm displace-
ment of distal clavicle with intact condition of acromioclavicular liga-
ment complex (ACLC), after dissection of ACLC (ACLC-), suturing 
Region A + B (0°–120°), Region B + C (60°–180°), and Region A + C 
(0°–60°, 120°–180°) with remaining intact coracoid clavicular liga-
ments. The error bars indicate the standard deviation. *P < 0.05 and 
***P < 0.001 compared with the intact condition. ††P < 0.01 com-
pared with the dissection of all capsule condition
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Suturing Region A + B (0°–120°) significantly 
increased the resistance force compared to complete dis-
section of the ACLC (P = 0.004, Fig. 5). There was no 
significant difference in resistance force between the com-
plete dissection of the ACLC and suturing Region B + C 
(60°–180°) or Region A + C (0°–60°, 120°–180°) (n.s, 
respectively, Fig. 5).

Posterior rotational torque

The resistance torque against posterior rotation signifi-
cantly decreased after complete dissection of the ACLC 
(P < 0.001, Fig.  6). Suturing Region A, Region B, or 
Region C yielded a significantly lower resistance torque 
for posterior rotation compared to the intact condition 
(P = 0.006, P = 0.004, P < 0.001, respectively, Fig.  6). 
The resistance torque after suturing Region A or Region 
B increased when compared with complete dissection of 
the ACLC (P = 0.020, P = 0.045, respectively, Fig. 6).

The resistance torque after suturing Region A + C sig-
nificantly increased when compared to the completely dis-
sected ACLC (P < 0.001, Fig. 7). There were no signifi-
cant differences in resistance torque between the dissected 
ACLC and suturing Region A + B or Region B + C (n.s, 
respectively, Fig. 7).

Discussion

The most important finding of the present study was each 
segment of the ACLC’s superior has different contribu-
tions for posterior translational and rotational stability of 
AC joint. The resistance forces against posterior translation 
increased after suturing Region A and when compared with 
complete dissection of the ACLC (Fig. 4). Moreover, the 
resistance force after suturing Region A + B significantly 
increased compared to complete dissection of the ACLC. 
Furthermore, there was no significant difference in resist-
ance force between the complete dissection of the ACLC 
and suturing Region B + C and Region A + C (Fig.  5). 
Klimkiewicz et al. reported the superior part of the ACLC 
was the main contributor to the overall ACLC’s posterior 
translational stability [15]. However, there are some differ-
ences in the method of segmentation between the current 
study and Klimkiewicz’s study. The present study focused on 
the superior half of ACLC and divided it into three regions 
(Region A, B, and C), due to the clinical relevance for repair 
or augmentation. Klimkiewicz et al. sectioned the overall 
ACLC into four segments (anterior, superior, posterior, and 
inferior) with reference to clavicular anatomy. The authors 
reported that the contribution of the superior segment of 
the ACLC to posterior translational stability was statisti-
cally significant relative to all other sectioning conditions. 
Sectioning the posterior ACLC was only significant relative 
to the native condition, but not when compared with all the 
other ligaments. In an anatomical study of the AC ligament, 
Nakazawa et al. reported the ACLC is divided into two parts 

Fig. 6   Posterior rotational torque (N-m) during the 20 degree rota-
tion of distal clavicle with intact condition of acromioclavicular liga-
ment complex (ACLC), after dissection of ACLC (ACLC-), suturing 
Region A (0°–60°), Region B (60°–120°), and Region C (120°–180°) 
with remaining intact coracoclavicular ligaments. The error bars indi-
cate the standard deviation. **P < 0.01 and ***P < 0.001 compared 
with the intact condition. †P < 0.05 compared with the dissected con-
dition

Fig. 7   Posterior rotational torque (N-m) during the 20 degree rota-
tion of distal clavicle with intact condition (Intact) of acromioclav-
icular ligament complex (ACLC), after dissection of ACLC (ACLC-
), suturing Region A + B (0°–120°), Region B + C (60°–180°), and 
Region A + C (0°–60°, 120°–180°) with remaining intact coracocla-
vicular ligaments.. The error bars indicate the standard deviation. 
*P < 0.05, **P < 0.01, and ***P < 0.001 compared with the intact 
condition. †††P < 0.01 compared with the dissection of the ACLC
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(superoposterior and anteroinferior bundles) and has several 
anatomical variations (categorized into three types) [16]. 
These anatomic variations may have further contributed to 
the different results between the studies. Based on the pre-
sent findings, Region A and Region B may contribute more 
than the Region C to the resistance force against posterior 
translation.

For posterior rotational stability, we demonstrated that 
the resistant torque after suturing Region A + C signifi-
cantly increased compared to the dissected ACLC. In con-
trast, there was no significant difference in resistance torque 
between the dissection of the ACLC and suturing Region 
A + B or Region B + C. To our knowledge, this is the first 
study to analyze the regional contribution of the superior 
half of the ACLC to rotational stability. Kippe et al. com-
pared the posterior rotational torque after a Weaver–Dunn 
reconstruction to native shoulders [14]. Following the tech-
nique, which does not reconstruct the ACLC, the resistance 
torque against posterior rotation was decreased about 85% 
or more when compared with native shoulders. The present 
study also demonstrated that the resistance torque against 
posterior rotation decreased about 94% after dissection of 
the ACLC. Furthermore, the resistance force against poste-
rior translation decreased about 79% after dissection of the 
ACLC when compared to the intact condition. These find-
ings suggest that the ACLC is more important for posterior 
rotational stability than posterior translational stability.

Based on the present findings, repair or reconstruction 
of the entire superior ACLC is required to restore both pos-
terior translational and rotational stability of the AC joint. 
In chronic case, reconstruction of the entire superior ACLC 
may be needed, due to the limited healing potential of the 
acromioclavicular ligaments. Beitzel at al. biomechanically 
compared four techniques for AC reconstruction in addition 
to CC stabilization (modified anatomic CC ligament recon-
struction, intramedullary, transacromial, and 8-turn) [3]. The 
modified anatomic CC ligament reconstruction, which wraps 
the entire AC joint using a semitendinosus tendon, was the 
most stable method with regard to clavicle translation and 
rotation. However, this technique has several limitations to 
require a long tendon, tendon-to-bone attachment, and sur-
gical invasion due to access to the inferior part of the AC 
joint. Therefore, our study focused on the superior half of 
the AC joint and analyzed the individual contributions of 
different regions for posterior translational and rotational 
stability. Recently, another modified anatomic CC ligament 
reconstruction method was reported [13]. This technique 
reconstructed the superior ACLC with a semitendinosus 
tendon after CC ligament reconstruction and repaired the 
ruptured anterior and posterior ACLC with suture anchors. 
At midterm follow-up, 93% of patients had two-dimensional 
radiographic stability and three-dimensional dynamic 
clinical stability; therefore, restoring the superior ACLC 

may also optimize the clinical outcome after AC repair or 
reconstruction.

The present study has several limitations. (1) The in vitro 
nature of biomechanical evaluation can be a limiting factor 
in the application of the findings to the in vivo conditions 
of the shoulder complex. This is particularly true in the AC 
joint, with its specific 3D forces and complex contribu-
tions to multiple shoulder motions. Accurate replication of 
these forces in a cadaveric study may be difficult. To evalu-
ate changes in biomechanical behavior under translational 
and rotational stress, we used a methodology based on the 
previous descriptions [3, 9]. The major strength of this 
biomechanical setup was that all tested motions could be 
performed without changing the position of the specimens. 
Each specimen was placed and centered in the materials 
testing machine, so that all changes measured through the 
test could be compared to the native state. We thought that 
this would be necessary to detect the changes that would 
arise with each consecutive modification to the specimens. 
(2) Specimens tested were from donors with a mean age 
of 58 ± 13 years, whereas patients with AC dislocation are 
usually younger. (3) Biomechanical testing with cadaveric 
specimens does not give information on healing biology, and 
the tested biomechanical setup cannot reproduce the clinical 
situation. The clinical relevance of this study is to add the 
knowledge that each segment of the ACLC’s superior has 
different contributions for posterior translational and rota-
tional stability of AC joint and surgical techniques restoring 
the entire superior ACLC are recommended to address both 
posterior translational and rotational stability.

Conclusions

Region A + B (0°–120°) contributed more to posterior trans-
lational stability than Region B + C (60°–180°) or Region 
A + C (0°–60°/120°–180°). In contrast, Region A + C con-
tributed more to posterior rotational stability than Region 
A + B or Region B + C. Based on these findings, surgical 
techniques restoring the entire superior ACLC are recom-
mended to address both posterior translational and rotational 
stability of the AC joint.
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