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contact pressure distribution was quantified using discrete 
element analysis.
Results For the 5 and 10 mm conditions, patellar lateral 
shift decreased significantly at 0° and 20°. The 0 mm con-
dition significantly decreased lateral shift for nearly all 
flexion angles. All graft conditions significantly decreased 
lateral tilt at 0°, with additional significant decreases for the 
5 and 0 mm conditions. The 0 mm condition significantly 
increased the maximum medial pressure at multiple flexion 
angles, increasing by 57% at 30°, but did not alter the maxi-
mum lateral pressure.
Conclusions Allowing 5 to 10 mm of patellar lateral trans-
lation limits lateral maltracking, thereby decreasing the risk 
of post-operative recurrent instability. Allowing no patellar 
translation during graft tensioning reduces maltracking fur-
ther, but can overconstrain the patella, increasing the pres-
sure applied to medial patellar cartilage already fibrillated 
or eroded from an instability episode.

Keywords Patellar instability · Medial patellofemoral 
ligament reconstruction · Patellar kinematics · Contact 
pressure

Introduction

Medial patellofemoral ligament (MPFL) reconstruction 
is performed to improve patellar stability in patients with 
recurrent instability related to lateral maltracking or trauma. 
Intra-operatively, fixation points on the femur and patella 
are chosen based on an anatomometric criteria to approxi-
mate the native MPFL attachment and minimize variations 
in graft force as the knee flexes. The resting length of the 
graft is also set intra-operatively, typically allowing some 
lateral translation of the patella within the trochlear groove 

Abstract 
Purpose Graft tensioning during medial patellofemoral 
ligament (MPFL) reconstruction typically allows for lat-
eral patellar translation within the trochlear groove. Com-
putational simulation was performed to relate the allowed 
patellar translation to patellofemoral kinematics and contact 
pressures.
Methods Multibody dynamic simulation models were 
developed to represent nine knees with patellar instability. 
Dual limb squatting was simulated representing the pre-
operative condition and simulated MPFL reconstruction. 
The graft was tensioned to allow 10, 5, and 0 mm of patellar 
lateral translation at 30° of knee flexion. The patellofemoral 
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before the graft is loaded in tension to avoid overconstrain-
ing the patella. Allowing one quadrant of lateral translation 
while tensioning the graft with the knee at 30° is common 
[6, 30], although techniques have also been described that 
do not quantify lateral translation or allow less translation 
[21, 22, 33].

Biomechanical studies performed with cadavers and com-
putational models have generally shown that MPFL recon-
struction limits lateral patellar maltracking [12, 25, 27, 37]. 
Elevated levels of graft tension due to initial over tension-
ing or non-anatomic femoral fixation have been shown to 
overconstrain the patella and increase pressure applied to 
cartilage on the medial facet of the patella [1, 11, 12, 27, 
38, 39]. With the exception of one study [12], the previ-
ous studies were performed with knees that did not include 
pathology causing patellar instability. None of the previous 
studies focused on the intra-operative procedure of setting an 
allowable patellar lateral translation during graft tensioning. 
Therefore, the influence of the patellar translation allowed 
during MPFL graft tensioning on post-operative patellofem-
oral function is currently unknown.

The current study was performed to characterize how 
the lateral patellar translation allowed while tensioning an 
MPFL graft influences patellar kinematics and contact pres-
sures. Quantifying patellar kinematics and contact pressures 
allows assessment of patellar maltracking that could lead to 
instability and pressure levels that could lead to cartilage 
degradation. The study is based on dynamic simulation of 
knee squatting for knees with recurrent patellar instability, 
and includes a separate accuracy assessment for pre-opera-
tive and post-operative simulated kinematics.

Materials and methods

Nine computational models were constructed to represent 
subjects with recurrent patellar instability. The subjects 
previously participated in studies focused on computa-
tional reconstruction of in vivo knee motion [4, 10, 14]. 
Each treated subject had a history of symptomatic recur-
rent lateral patellar dislocation episodes related to trauma 
or maltracking with unsuccessful conservative treatment. 
One subject had a previous medial imbrication and lateral 
release, but was included based on the assumption that the 
medial imbrication failed with continued instability. No 
other subject had previous surgical treatment for patellar 
instability. The subjects included 7 females. The average 
age was 16 years (range: 12 to 19 years). The subjects were 
treated with MPFL reconstruction (3 subjects), tibial tuber-
osity anteromedialization (4 subjects), MPFL reconstruc-
tion combined with tibial tuberosity anteromedialization 
(1 subject), and MPFL reconstruction combined with tibial 
tuberosity anteromedialization and distalization (1 subject). 

Lateral retinacular release was performed in combina-
tion with the other procedures for four subjects. Based on 
the models developed from MRI scans, the average tibial 
tuberosity-to-trochlear groove (TT–TG) distance and lateral 
trochlear inclination were 12 mm (range 9 to 18 mm) and 
13° (range 0° to 26°), respectively. With the knees flexed to 
approximately 30°, the average Insall–Salvati index for the 
subjects was 1.3 (range 1.0 to 1.6).

Computational reconstruction of knee motion 
for accuracy assessment

Pre-operative and post-operative patellofemoral kinematics 
were characterized for each knee. For two subjects, knee 
kinematics were characterized based on dynamic CT imag-
ing (Aquilion ONE scanner, Toshiba Medical Systems) as 
subjects extended their knee against gravity [10, 14]. For the 
other seven subjects, knee kinematics were characterized 
based on MRI scans (Magnetom Skyra, Siemens) acquired 
with the knee loaded and positioned at multiple positions 
of knee flexion [4]. The flexed and loaded scans were per-
formed with a load frame applying a patient-selected force 
of 60–85 N to the foot along the axis of the scanner.

A computational model of each knee was reconstructed 
(3D Doctor, Able Software Corp and Mimics, Materialise) 
from an MRI scan of the extended and unloaded knee (3.0 T, 
proton density weighted, slice thickness ranging from 0.6 
to 1.5 mm). Models of the femur, tibia, and patella were 
also reconstructed for 3 to 5 positions spanning the flexion 
range from the CT or MRI scans acquired during knee func-
tion. A single model of the femur, patella, and tibia from 
the unloaded MRI scan was transferred to all pre-operative 
and post-operative positions using an iterative closest point 
algorithm [3]. A local coordinate system was created for the 
femur based on the transepicondylar axis and long axis, with 
similar coordinate systems created for the patella and tibia 
[10, 12], allowing characterization of knee kinematics based 
on the floating axis convention [18].

Simulation conditions

The technique for computational simulation of knee motion 
has previously been shown to produce patellar tracking pat-
terns representative of motions recorded from subjects with 
patellar instability, with root-mean-square errors for patellar 
lateral shift and tilt of 3.3 mm and 5.8°, respectively [12]. 
The models were further assessed to determine the accuracy 
of simulated changes in patellar kinematics due to patellar 
stabilization. Attachment points for each MPFL graft were 
identified on the patella and femur based on post-operative 
imaging. The graft tensioning process, in terms of the knee 
flexion angle and allowed patellar lateral translation, was 
individualized for each subject based on consultation with 
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the surgeon. For subjects treated with tibial tuberosity oste-
otomy and realignment, the post-operative orientation of the 
patellar tendon was determined from post-operative imag-
ing. For subjects treated with lateral retinacular release, the 
lateral retinaculum was not represented for the post-opera-
tive simulation.

With the kinematic accuracy for each model established, 
the influence of the MPFL graft tensioning technique on 
patellofemoral mechanics was assessed by applying loading 
and boundary conditions to represent a dual limb knee squat. 
The motion was simulated in a pre-operative condition, and 
for three graft tensioning techniques. Graft tension was set 
with the knee flexed to 30°. One patellar quadrant of lateral 
translation [6, 30] was represented by allowing the patella 
to displace 10 mm laterally from the deepest point of the 
trochlear groove with no tension in the graft (range of patel-
lar width: 36 to 43.5 mm). Grafts tensioned to allow 5 mm 
(0.5 quadrants) and 0 mm of lateral translation were also 
simulated to represent more restrictive surgical approaches.

Simulation of knee motion and patellofemoral contact

Multibody dynamic simulation of motion for knees with 
patellar instability has been described in detail previously 
[12]. Simplified Hertzian contact governs reaction forces 
developed at the patellofemoral and tibiofemoral joints [19, 
28]. Ligaments, tendons, joint capsule, and retinacular struc-
tures are represented by tension-only springs, with stiffness, 
damping, and pre-strain at full extension assigned based on 
the previous studies [2, 5, 8, 32, 36] (Fig. 1). Forces are 
applied to represent the quadriceps and hamstring muscles. 
Patellofemoral and tibiofemoral kinematics are quantified 

based on the same coordinate axes used for computational 
reconstruction of in vivo function for each knee. Force 
within an MPFL graft is determined from the springs repre-
senting the graft. Patellofemoral contact pressures are quan-
tified at knee flexion angles ≥ 15°, when the patella is within 
the trochlear groove, using a previously validated discrete 
element analysis approach [13] (Fig. 1). Discrete element 
analysis relates overlap of cartilage surfaces to contact forces 
and pressure [5], with the position of the patella iteratively 
adjusted from the position determined with multibody 
dynamic simulation to balance articular contact forces and 
moments with the forces and moments applied to the patella.

The modeling technique was further developed for the 
current study. All models were developed based on recon-
struction of structures from 3.0 T MRI scans, as opposed to 
the lower resolution MRI scans used previously. Anatomical 
structures reconstructed from the high-resolution MRI scans 
determined the shape of the cartilage surfaces, orientation 
and attachment points for the quadriceps and hamstrings 
muscles, and attachment points for the anterior and posterior 
cruciate ligaments and patellar tendon. Another update was 
representation of the residual medial retinaculum, consider-
ing rupture of the MPFL due to recurrent dislocation, with 
a spring with stiffness equal to 2 N/mm [8]. The contact 
pressure distribution was updated to balance the total articu-
lar compression force, medial/lateral force, and lateral tilt 
moment applied to the patella, as determined from discrete 
element analysis, with the corresponding patellofemoral 
contact forces and moments determined from multibody 
dynamic simulation.

The models were developed to represent the motion of 
each subject (pre-operative and post-operative accuracy 

Fig. 1  Computational model for multibody dynamic simulation for 
one knee. The model is shown for the pre-operative condition at 0° 
(a) and 50° (b) of flexion and for the 10 mm MPFL graft condition at 

0° (c) and 50° (d). The pressure distribution at 30° for the pre-opera-
tive condition is also shown (e)
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assessment) and the simulated knee squat (comparing graft 
tensioning techniques). Knee extension within the dynamic 
CT scanner (2 subjects) was simulated with the femur fixed 
in space and mass added to the tibia to represent the moment 
of the lower limb about the flexion axis [12]. The total 
quadriceps force was set to initiate and maintain extension 
from maximum flexion in the scanner (approximately 50°) 
to 0° for each knee, with the total force decreasing as the 
knee extended. For simulation of isometric knee extension 
(7 subjects), models were set at each flexion angle from the 
MRI scans, with the femur fixed in place and a force applied 
proximally at the foot to match the force applied to each sub-
ject. The quadriceps force that maintained the flexion angle 
was applied. For simulation of a dual limb knee squat with 
all models (Fig. 1), an ankle joint was represented with 3 
rotational degrees of freedom and a hip joint was represented 
allowing flexion/extension, varus/valgus rotation, and proxi-
mal/distal translation. A 200 N body weight was applied at 
the hip. The total quadriceps force increased from 42 N at 
full extension to 300 N at 50° of flexion. The distance from 
the femoral to patellar attachment of an MPFL graft typi-
cally decreases at deeper flexion angles [35, 42], unloading 
the graft. An initial hip flexion moment was applied over the 
first few degrees of flexion to initiate motion.

MPFL reconstruction was simulated with two springs 
representing a dual strand gracilis tendon graft with a total 
stiffness of 20 N/mm [31]. For representation of standard 
MPFL reconstruction (not patient-specific based on post-
operative imaging), the graft was attached at the Schöttle 
point on the femur [34] and between the medial edge of the 
VMO attachment and the medial edge of the patella [20, 
40]. The graft wrapped around the medial femoral condyle, 
with the portion from femoral attachment to the wrapping 
surface rigid.

The study was approved by the IRB’s of the Johns Hop-
kins Medical Institutions (ID #NA00022624) and Akron 
Children’s Hospital (ID #110908), where the subjects were 
treated.

Statistical analysis

Assessment of the simulated kinematics focused on patel-
lar lateral shift and tilt, as the parameters most relevant to 
patellar instability. For the accuracy assessment, each data 
point for pre-operative patellar lateral shift and tilt from 
reconstruction of in vivo motion was compared to the cor-
responding simulation data from the same knee at the same 
flexion angle, and root-mean-square errors were quantified. 
The change in kinematics from the pre-operative condition 
to the post-operative condition at the closest flexion angle 
was also compared between data from the subjects and 
simulations, with average differences and root-mean-square 
errors quantified.

For simulation of knee squatting with multiple MPFL 
conditions, patellar lateral shift and tilt, graft force, and 
maximum pressure applied to the medial and lateral facets 
of the patella were compared between the pre-operative and 
MPFL reconstruction conditions at every 5° of knee flexion 
with nonparametric repeated-measures Friedman tests. Non-
parametric analyses were used due to Shapiro–Wilk tests 
indicating that residuals from repeated-measures compari-
sons were not normally distributed. Post hoc comparisons 
were performed with a nonparametric Dunnett’s compari-
son against a control, using the pre-operative condition as 
the control for all data but the graft force, which used the 
10 mm condition as the control. Because computational pre-
cision allows quantification and ranking of small differences 
between the conditions for statistical analysis, a conservative 
level of p < 0.01 was set for significance. With 9 models, the 
study was designed for a statistical power of 0.9 based on 
an estimated effect size of 1.8 [16] for repeated-measures 
changes in patellar tracking and contact pressure related to 
elevated MPFL graft tension [12].

Results

For pre-operative motion, root-mean-square errors com-
paring simulated to subject-derived kinematics were 3.7° 
and 2.7 mm for patellar tilt and shift, respectively. For dif-
ferences between pre-operative and post-operative motion, 
root-mean-square errors were 4.8° and 2.9 mm for patel-
lar tilt and shift, respectively. The average (± standard 
deviation) kinematics changes from pre-operative to post-
operative motion were a 2.5° ± 4.1° decrease in tilt and a 
1.4 ± 3.8 mm decrease in shift for the subject-derived kin-
ematics, compared to a 2.3° ± 5.9° decrease in tilt and a 
2.4 ± 4.8 mm decrease in shift for the simulated motions.

For simulated knee squatting, the graft force increased 
and patellar lateral shift and tilt decreased as the amount of 
lateral translation allowed during graft tensioning decreased 
from 10 to 0 mm. The graft tension tended to be largest at 
low flexion angles (Fig. 2). For the 10 and 5 mm conditions, 
the graft force was approximately 0 N at 50° of flexion. For 
the 0 mm condition, the graft force increased significantly 
at 20°, 30°, 35°, and 40°. For the 10 and 5 mm conditions, 
the graft only significantly decreased patellar lateral shift at 
0° and 20° of flexion (Fig. 3). The 0 mm condition signifi-
cantly decreased lateral shift for all flexion angles except 15° 
and 25°. The trends were similar for patellar tilt, although 
the change in patellar tilt for the 0 mm condition was only 
significant at 0°, 5°, and 15° (Fig. 4).

For the simulated pressure distribution, the graft only 
influenced the maximum pressure applied to medial car-
tilage. The maximum lateral pressure tended to exceed 
the maximum medial pressure and was not significantly 
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influenced by any of the graft conditions (Fig. 5). The 0 mm 
condition significantly increased the maximum medial pres-
sure from 30° to 40° (Fig. 6).

Discussion

The most important finding of the present study was that 
allowing up to one quadrant of patellar lateral translation 
while tensioning an MPFL graft limits lateral maltracking 

without overconstraining the patella. For simulated knee 
squatting, allowing one quadrant of lateral translation while 
setting the graft tension at 30° limited lateral patellar track-
ing. Reducing the allowable patellar translation during graft 
tensioning by 50% further decreased lateral tracking. Allow-
ing no lateral translation decreased lateral tracking even fur-
ther, with significant changes compared to the pre-operative 
condition at nearly all flexion angles, but also increased the 
maximum pressure applied to medial cartilage. Although the 
maximum medial pressure still tended to be lower than the 

Fig. 2  Average (± standard deviation) graft force for the MPFL graft 
conditions allowing 10, 5, and 0  mm of lateral patellar translation 
during graft fixation. Open symbols represent data points that are sig-
nificantly (p < 0.01) different from the 10 mm MPFL graft condition

Fig. 3  Average (± standard deviation) patellar lateral shift for the 
pre-operative condition and MPFL graft conditions allowing 10, 5, 
and 0  mm of lateral patellar translation during graft fixation. Open 
symbols represent data points that are significantly (p < 0.01) different 
from the pre-operative condition

Fig. 4  Average (± standard deviation) patellar lateral tilt for the pre-
operative condition and MPFL graft conditions allowing 10, 5, and 
0 mm of lateral patellar translation during graft fixation. Open sym-
bols represent data points that are significantly (p < 0.01) different 
from the pre-operative condition

Fig. 5  Average (± standard deviation) maximum lateral pressure for 
the pre-operative condition and MPFL graft conditions allowing 10, 
5, and 0 mm of lateral patellar translation during graft fixation
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maximum lateral pressure, the increase is a concern due to 
medial cartilage fibrillation and erosion caused by contact 
between the medial facet of the patella and the lateral con-
dyle of the femur with recurrent instability [24, 29]. Previous 
computational simulation [11, 12] and in vitro experimen-
tal studies [1, 27, 38, 39] have shown that elevated levels 
of graft tension can overconstrain the patella and increase 
cartilage pressures. The previous studies focused on malpo-
sitioning of the graft attachment on the femur or magnitude 
of applied graft tension, as opposed to the current approach 
simulating variations in the intra-operative graft tensioning 
strategy with knees being treated for recurrent instability.

Loads carried by the MPFL graft and the resulting influ-
ence on patellar kinematics depend on graft isometry for 
a normally tracking patella, the level of lateral maltrack-
ing, and varying anatomical constraints as the patella enters 
the trochlear groove. Patellar lateral tracking for the knee 
squatting motion was typically largest with the knee in full 
extension, and decreased as the patella entered the troch-
lear groove, as noted when characterizing patellar tracking 
based on reconstruction of in vivo motion [4, 10]. Therefore, 
graft forces and the influence on patellar kinematics tend 
to be largest at low flexion angles. In addition, for a nor-
mally tracking patella, the previous studies have indicated 
that the length of the MPFL tends to decrease beyond 30° 
to 50° of flexion [35, 42], also contributing to the decrease 
in graft force with increasing flexion noted for the current 
study. When a graft helps the trochlear groove capture the 
patella, increased articular constraints can influence patel-
lar tracking, as indicated by lower average lateral patellar 
shift and tilt values for the 5 and 10 mm graft conditions 

than for the pre-operative condition at deeper flexion angles 
with the grafts unloaded. For the 0 mm graft condition, the 
grafts were in tension from 30° to 50° of flexion due to the 
patella tracking more laterally during squatting than for the 
unloaded condition for which the graft length was set.

The current study further established the multibody 
dynamic simulation technique for producing patellar track-
ing patterns typical of patients with patellar instability. With 
the improved representation of knee anatomy based on high-
resolution imaging, the accuracy assessment of pre-operative 
motion provided root-mean-square errors of 2.7 mm and 3.7° 
for patellar shift and tilt, respectively, which is an improve-
ment compared to the previous values of 3.3 mm and 5.8° 
for patellar lateral shift and tilt [12]. Simulated changes in 
kinematics due to surgical stabilization were assessed for 
accuracy for the first time. The simulations replicated the 
subject-derived trends for decreases in patellar lateral shift 
and tilt with root-mean-square errors of 2.9 mm and 4.8°, 
respectively. The discrete element analysis technique, which 
has been previously validated against in vitro experimental 
measurements of the patellofemoral pressure distribution 
[13], was updated to more closely align the pressure distri-
bution with the patellofemoral reaction forces and moments 
obtained from multibody dynamic simulation. The simula-
tion technique was also advanced to represent knee squat-
ting, which is more representative of in vivo function than 
the previous unresisted knee extension.

Several anatomical factors can contribute to patellar 
instability, resulting in diverse patellar tracking patterns for 
unstable knees. The predominate anatomical contributors 
to recurrent patellar instability are trochlear dysplasia, a 
lateralized tibial tuberosity, and patella alta [7]. Published 
outcomes studies for MPFL reconstruction typically include 
a limited range of these pathological conditions [43]. Troch-
lear dysplasia and a lateralized tibial tuberosity have been 
specifically correlated with lateral patellar tracking based 
on computational reconstruction of in vivo motion [4, 14]. 
Multiple tracking patterns have been identified for recurrent 
instability, ranging from the patella tracking along the center 
of the trochlear groove to the patella maltracking laterally 
throughout motion [41]. Instability can occur due to con-
sistent lateral maltracking or primarily with traumatic epi-
sodes. The nine models used for the current study also vary 
in pathologic anatomy and tracking patterns. The ranges for 
the Insall–Salvati index, TT–TG distance, and lateral troch-
lear inclination show the variation in pathologic anatomy. 
The tracking variations between knees are demonstrated by 
residuals from repeated-measures comparisons that were 
not normally distributed, leading to use of a conservative 
p value of 0.01 to avoid overstating significant differences 
between conditions of MPFL reconstruction. While the 
aggregated data are relevant to the influence of graft tension-
ing approaches on patellar mechanics, future studies should 

Fig. 6  Average (± standard deviation) maximum medial pressure for 
the pre-operative condition and MPFL graft conditions allowing 10, 
5, and 0 mm of lateral patellar translation during graft fixation. Open 
symbols represent data points that are significantly (p < 0.01) different 
from the pre-operative condition
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more specifically relate the anatomical and tracking patterns 
of individual knees to the variations caused by MPFL recon-
struction to help surgeons optimize MPFL reconstruction 
techniques for individual patients. In addition, techniques 
to simulate more traumatic loading conditions need to be 
developed to evaluate MPFL reconstruction for knees with 
nearly normal tracking patterns during simulated squatting.

Limitations of the modeling technique should be noted. 
While high-resolution imaging of the knees with instabil-
ity improved representation of knee anatomy, many proper-
ties of the knees are still generalized based on previously 
published data, rather than individualized for the subjects. 
Generalized properties include elastic properties and resting 
lengths for springs representing ligaments, tendons and reti-
nacular structures, and applied muscle forces. The assumed 
properties emphasize the importance of the updated accu-
racy assessment. Graft attachments and properties do not 
account for graft elongation or tunnel widening [21] that can 
occur post-operatively. The data also specifically apply to 
tensioning a hamstrings tendon graft at 30° of knee flexion, 
while some studies described tensioning at higher or lower 
flexion angles [9, 15, 26, 44] and other graft options, such 
as the quadriceps tendon [17, 23], are available.

Conclusion

The current computational simulation of dynamic knee 
squatting indicates that tensioning a MPFL graft while 
allowing 0.5 to 1 patellar quadrant of lateral translation at 
30° generally improves post-operative knee function. The 
approach limits lateral maltracking without overconstrain-
ing the patella. Limiting lateral maltracking can reduce the 
risk of patellar instability following MPFL reconstruction. 
Allowing no patellar lateral translation while tensioning 
the graft more dramatically limits lateral maltracking, but 
can also overconstrain the patella, including increasing the 
pressure applied to medial patellofemoral cartilage. If the 
medial cartilage is fibrillated or eroded due to the previ-
ous instability episodes, the increased pressure could lead 
to patellofemoral pain. Additional investigations are needed 
to evaluate options for MPFL reconstruction as a function 
of anatomy and pre-operative tracking of individual knees.
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