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are also discussed. Surgical restoration of a more physi-
ologically sound knee joint may be essential to solving the 
osteoarthritis dilemma. Innovative rehabilitative strate-
gies and outcome measurement methodologies using more 
holistic and clinically relevant measurements that closely 
link biomechanical and neurosensory characteristics of 
physiological ACL function are discussed. Greater consid-
eration of  task-specific patient physical function and psy-
chobehavioral links should better delineate the true efficacy 
of all ACL surgical and non-surgical interventions.

Level of evidence IV.

Keywords  Proprioception · Neuroanatomy · Repair 
biology · Neuromuscular control · Therapeutic exercise

Introduction

The anterior cruciate ligament (ACL) and posterior cruci-
ate ligament (PCL) function with the collateral ligaments 
[1–6] and meniscocapsular tissue in close synchrony with 
natural joint arthrology as part of a knee capsuloligamen-
tous (CL) system. The ACL and PCL exist in the intercon-
dylar space helping control knee motion at six degrees of 
freedom [7, 8]. The cruciate ligaments control tibial rota-
tion relative to the femur in subtle balance with CL tissues, 
menisci, collateral ligaments [9], condylar geometry, and 
joint surface contact. This system provides non-contractile 
joint stability, and through mechanoreceptors embedded 
in collagen CL matrices, transmits neurosensory informa-
tion to the spinal cord and brain for precise neuromuscular 
responses [10–13].

Abstract  The cruciate ligaments are components of the 
knee capsuloligamentous system providing vital neuro-
sensory and biomechanical function. Since most historical 
primary ACL repair attempts were unsuccessful, recon-
struction has become the preferred surgery. However, an 
increased understanding of the efficacy of lesion-site scaf-
folding, innovative suturing methods and materials, and 
evolving use of biological healing mediators such as plate-
let-rich plasma and stem cells has prompted reconsidera-
tion of what was once believed to be impossible. A growing 
number of in vivo animal studies and prospective clinical 
studies are providing increasing support for this interven-
tion. The significance of ACL repair rather than reconstruc-
tion is that it more likely preserves the native neurosensory 
system, entheses, and ACL footprints. Tissue preservation 
combined with restored biomechanical function increases 
the likelihood for premorbid neuromuscular control system 
and dynamic knee stability recovery. This recovery should 
increase the potential for more patients to safely return to 
sports at their desired intensity and frequency. This current 
concepts paper revisits cruciate ligament neurosensory and 
neurovascular anatomy from the perspective of knee cap-
suloligamentous system function. Peripheral and central 
nerve pathways and central cortical representation mapping 
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Lesions to the ACL are common [14] and remain puz-
zling [15, 16]. Following ACL injury, surgery has tra-
ditionally focused on reconstruction [16, 17]. Although 
this practice has displayed reasonable efficacy, long-term 
patient outcomes are often lacking in terms of neuromuscu-
lar control, dynamic knee stability, return to sports success, 
and the prevention of early knee osteoarthritis (OA) [16, 
18–22]. More natural knee biomechanics can be restored 
with an anatomical double-bundle ACL reconstruction than 
with a non-anatomical, single trans-tibial tunnel approach 
[23–29]. Current ACL reconstruction practices, however, 
are better at restoring biomechanical than neurosensory 
knee function.

A growing emphasis is being placed on primary ACL 
repair or remnant-preserving reconstruction methods [30, 
31]. Remnant tissue may enhance reconstructed or repaired 
ACL re-vascularization, stability, and proprioception 
[32–35]. Restoration of non-impaired neurosensory signals 
to the brain sensory cortex may facilitate the motor plan-
ning centre to more effectively regulate neuromuscular 
function [36–38]. Associated with this lies the potential 
to more effectively restore balanced hip, knee and ankle 
neuromuscular contributions to composite lower extrem-
ity extensor moments, primarily through more normalized 
quadriceps femoris function [39, 40].

What historically was considered either an ineffective 
procedure [17], or an exclusive intervention for paediat-
ric clients post-insertion avulsion [41] is now being used 
to treat athletically active patients of widely varying ages 
with acute ACL lesions [31, 41–44]. The complete ACL 
insertional remnant debridement that enables precise graft 
placement, and then drilling through the entheses for recon-
struction, creates a structure that differs greatly from the 
natural ligament. Solely focusing on ACL biomechanics 
during surgery may also contribute to an under appreciation 
for concomitant CL injuries and neurosensory impairments 
to synergistic tissues [9, 45, 46]. Healing that culminates 
in residual knee laxity, and/or poorly organized, weakened, 
or lesser quality collagen fibre type or orientation may be 
directly related to impaired mechanoreceptor function.

Limited evidence suggests that ACL reconstruction and 
rehabilitation effectively restores neurosensory or neuro-
muscular function to premorbid levels [47, 48]. Associated 
with this, knee OA rates remain high [19, 21], and less than 
optimal outcomes exist for patients who desire to partici-
pate in intense athletic activities [16, 18, 39, 49, 50]. To 
date, a more mechanocentric ACL reconstruction rationale 
has taken precedence over attempting to re-establish normal 
ACL neurosensory or neuromuscular functions. This cur-
rent concepts paper revisits cruciate ligament neurosensory 
and neurovascular anatomy from the perspective of knee 
CL system function. Peripheral and central afferent–effer-
ent pathways are described based on contemporary brain 

function mapping. The tissue preservation provided by 
native ACL repair may have greater neuromuscular control 
system recovery potential and, therefore, dynamic knee sta-
bility restoration that more closely matches premorbid lev-
els than ACL reconstruction [51]. This potential increases 
the likelihood that athletically active patients would be bet-
ter able to safely return to intense, high-frequency athletic 
movements while avoiding knee re-injury, contralateral 
knee injury, or early-onset knee OA.

Native cruciate ligament anatomy

The level of scrutiny given to the dimensions, orientation, 
and location of the native ACL or graft has led to its being 
described over time as a strand, a bundle, more than one 
bundle, or a ribbon [24, 34, 52–55]. This attention has 
largely focused on optimizing ACL biomechanical func-
tion through more precise insertional footprint restoration 
[54, 56], and more anatomic bone tunnel placements. Few 
studies have attempted to better delineate the neurosensory 
anatomy of this region, or the vascularity that could poten-
tially facilitate a more favourable ACL healing response 
following repetitive strain-induced microtrauma [57]. An 
improved understanding of these characteristics is impor-
tant when considering the efficacy of ACL repair rather 
than reconstruction for some patients [51].

The enthesis is the region in which a tendon, ligament, 
or joint capsule attaches to bone [58]. Benjamin et al. [58, 
59] suggested that entheses are best understood by con-
sidering ligament insertions not solely as focal attachment 
sites, but as parts of an “enthesis organ complex”. Ultra-
sound and MRI imaging suggest that entheses help dis-
sipate bony interface stress concentrations away from the 
insertion sites [58, 59]. The ACL insertions form a simple 
enthesis organ with an articular cartilage/fibrocartilage cov-
ering, adjacent subchondral bone, and the intervening knee 
joint cavity. When stress is dissipated away from a bony 
insertion because of effective enthesis function, pathologic 
changes may occur at or adjacent to the ACL insertions. 
Much remains to be learned about the potential for better 
replicating natural enthesis organ function post-ACL repair, 
compared to reconstruction.

Native neurovascular cruciate ligament anatomy

The major vascular contributions to the native ACL and 
PCL occurs at the proximal and distal ends, with minimal 
central vascularization [60, 61]. Blood supply is primarily 
provided by middle genicular artery branches which arise 
from the popliteal artery, penetrate the caudal joint capsule, 
and pass craniodistally to the fossa intercondylaris, running 
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cranially between the cruciate ligaments. Cruciate ligament 
blood supply is primarily of soft tissue origin with negligi-
ble osseous contributions. Blood supply is also provided by 
the medial and lateral genicular arteries, the infrapatellar 
fat pad, the synovial membranes that ensheath the cruciate 
ligaments and extensive extra- and intra-ligamentous anas-
tomoses (Fig. 1).

The ACL and PCL insertions are also neurosensory 
critical areas [11, 13, 62–75] with high concentrations 
of Pacinian (rapid movement), Ruffinian (stretch), Golgi-
like (tension) mechanoreceptors, and free nerve endings 
(pain) [63, 65, 66, 76]. This complex population of ACL, 
PCL, CL and meniscal mechanoreceptors provides the 
central nervous system with information on knee posi-
tion, movement, and noxious events [11, 70, 77–79]. In 
addition to transmitting afferent neural signals, nerve 
branches, primarily from the posterior articular nerve, 
regulate cruciate ligament vascular dilation [13, 52]. The 
main articular nerve bundles are located at the stiffer, 
femoral end of the cruciate ligaments in association 
with mechanoreceptors that are highly sensitive to sub-
tle movement positioning errors [13, 72, 74, 80, 81]. The 
middle third of the cruciate ligaments has lower mecha-
noreceptor density [11, 69, 76, 82]. Other nerves contrib-
ute cruciate ligament afferent fibres to a variable extent. 
Axons radiate toward the centre of the cruciate liga-
ments from the richly vascular, peripheral synovium [13, 
75]. Within the cruciate ligaments, most nerves course 
along the epi- and endoligamentous blood vessels in the 
inter-fascicular areolar spaces. As per Hilton’s Law [83], 
nerves that innervate knee region muscles contribute sen-
sory branches to adjacent knee CL tissues [13, 46, 71, 
83]. Intramuscular articular nerves occur more frequently 

in muscles above the knee joint than below it, and are 
more common in extensor than flexor muscles [76]. 
These articular nerve dispositions are extremely variable 
between individuals and no consistent pattern has been 
identified.

A cruciate ligament-mediated neuromuscular reflex 
can help protect the knee from injury at motion extremes 
[10, 13, 69, 70, 74, 84, 85]. Through this reflex, the cru-
ciate ligament sensory system modifies adjacent muscle 
stiffness to increase dynamic knee stability [10, 11]. This 
is not conscious perception, but rather it represents a cen-
tral and peripheral nervous system-mediated reaction to 
mechanically evoked sensory signals. Even moderate cru-
ciate ligament stretching may induce major neuromus-
cular joint stiffness and intersegmental lower extremity 
coordination changes [10, 11]. Neuromuscularly mediated 
dynamic knee stability reduces CL laxity and increases 
extrinsic knee joint resistance to de-stabilizing move-
ments. This process becomes impaired with the interrup-
tion of afferent impulses from injured CL structures. Loss 
of joint mechanoreception is part of the degenerative knee 
OA process [86]. Any combination of repetitive or high-
load tibiofemoral joint rolling, rocking, and translational 
movements may impair cruciate ligament, meniscus and 
CL tissue function. Localized, primary CL microtrauma 
may not initially appear to be clinically significant, but 
with repetitive, progressively larger lesions, or with sud-
den rupture, biomechanical and neurosensory functions are 
likely compromised in direct relationship to lesion severity 
and chronicity [11, 72]. Poorly understood functional sig-
nificance, path intricacy and network variability has led to 
ACL reconstruction procedures not routinely attempting to 
preserve ligament neurosensory function [87].

Fig. 1   The knee organ includes 
intricate vascular anastomoses 
and cruciate ligament neural 
branches in addition to its 
multiple “bundle” or functional 
“ribbon” morphology
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Knee capsuloligamentous stability, 
mechanoreception, and lesion progression

Variable CL structures neutralize forces resisting knee lax-
ity at different positions [88, 89]. If unrestricted, increased 
knee flexion is accompanied by increased tibial internal 
rotation. As the knee flexes, the cruciate ligaments wrap 
upon each other, and spiral upon themselves. Higher cru-
ciate ligament strain limits the magnitude of tibial inter-
nal rotation on the femur. The cruciate ligaments become 
primary CL restraints to excess movement if there is loss 
of collateral ligament support. Joint compression and neu-
romuscular activation greatly assist the joint stability pro-
vided by CL tissues. The cruciate ligaments sequentially 
tighten through full knee flexion–extension in direct rela-
tionship to their anatomic locations and orientations within 
the joint. Different fibres within both cruciate ligaments are 
stressed with the multi-axial stresses of normal knee func-
tion and range of motion. Adjacent intra- and peri-articular 

tissues act in synchrony as motion constraints in various 
movement planes (Fig. 2a–c).

Progressive mechanical overload weakens the crimped 
collagen fibril pattern observed in seemingly healthy cru-
ciate ligaments and further tensile loading causes fascicle 
disruption. Excessive collagen remodelling predisposes the 
cruciate ligaments to increased laxity and neurosensory 
impairment. Joint inflammation and ischemia further con-
tribute to matrix changes and to the neurovascular mecha-
nisms that may be linked to the pathophysiology of cruciate 
ligament disease [13, 52, 61]. Blood supply to the cruciate 
ligament core is already marginal and tissue hypoxia asso-
ciated with micro-injury further weakens the ligament mid-
substance decreasing the possibility of any healing bridge 
formation across the injury site [52, 61]. Because healthy 
cruciate ligaments are enveloped in a protective synovium 
layer, they are extra-synovial. Therefore, the collagen tissue 
that contributes to their biomechanical strength is normally 
obscured from immunologic surveillance. However, when 

Fig. 2   a In conjunction with 
natural joint arthrology and 
peripheral capsuloligamentous 
tissues, the ACL, PCL and 
menisci form an intricate bio-
mechanical and neurosensory 
organ with reciprocating cruci-
ate and capsuloligamentous 
tension that occurs with normal 
knee motion. b Shaded regions 
represent increased tissue ten-
sion in the anteromedial ACL 
bundle, anterolateral ligament, 
lateral collateral ligament, 
arcuate ligament complex, 
posterior oblique ligament, and 
anterolateral PCL bundle as 
the knee moves from relative 
extension-external rotation to 
90° flexion-internal rotation. 
c Shaded regions represent 
increased tissue tension in the 
medial collateral ligament, the 
posterolateral ACL bundle, the 
arcuate ligament complex, and 
the posteromedial PCL bundle 
as the knee moves from relative 
flexion-internal rotation to −20° 
extension-external rotation
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this synovial layer is violated as with injury, the exposed 
collagen may act as a self-antigen, counteracting any tissue 
healing response. When this occurs, seemingly isolated and 
uniplanar micro-traumatic cruciate ligament lesions may 
progress to more multi-planar, multi-directional, macro-
traumatic lesions and generalized knee joint impairments 
or sudden failure. This, in combination with CL injury 
may impair both biomechanical and neurosensory knee 
function.

Capsuloligamentous system (somatosensory 
afference)

The posterior articular nerve transmits signals to the pos-
terior tibial and sciatic nerves before synapsing at the lum-
bar dorsal root ganglions entering the spinal cord between 
lumbar vertebral level 4 and sacral vertebral level 3 (Fig. 3) 
[90, 91]. Axons then ascend the spinal cord within the fas-
ciculus gracilis (dorsal columns) and synapse at the nucleus 
gracilis in the caudal medulla before traversing across the 
arcuate fibres and ascending up through the brainstem and 
synapsing within the somatosensory cortex of the brain.

The ACL: brain linkage

Somatosensory information from the knee is integrated 
with information from the adjacent lower extremity, other 

body regions, and exteroreceptors (visual, auditory, ves-
tibular systems) to generate a detailed, multi-modal central 
or “cortical” representation map [92]. Studies of systemic 
neurophysiological dysfunction and central nervous system 
reorganization associated with peripheral joint injury is a 
growing and rapidly changing research area [86, 93–101]. 
New discoveries in this area are occurring at a rapid rate, 
and innovative measurement methodologies are becoming 
more clinically accessible and relevant.

Capsuloligamentous system and neuromuscular 
control (efference)

The brain cortex motor region creates a motor plan or 
program designed to optimize the efferent response 
directly based on the aggregate afferent information that is 
received. In addition to motor signals transmitted from the 
primary motor cortex, the premotor cortex provides modu-
latory, efferent signal refinement while the supplementary 
motor area supports postural control, bilateral movement 
coordination, and movement sequence control [92, 102]. 
Motor signals are transmitted from the primary motor cor-
tex (pyramidal cells in layer V) descending through the 
posterior limb of the internal capsule, coursing midline to 
the medullary pyramids, descending via the cortico-spinal 
tract, and synapsing with lower motor neurons in the ante-
rior horn of the spinal cord (Fig. 4). Motor signals are then 
transmitted from lumbar vertebral level 2 to sacral vertebral 

Fig. 3   The neurosensory system transmits afferent information from the knee to the primary and secondary somatosensory cortex located in the 
posterior parietal region of the brain
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level 2 to provide motor function to the knee region and 
adjacent regions beyond the scope of this review.

ACL‑brain linkage impairment

With progressive biomechanical and neurosensory 
impairments, the sensory cortex of the brain receives 
vastly different afferent transmissions from the knee. In 
receiving altered afferent contributions, the sensory cor-
tex transmits less accurate three-dimensional knee posi-
tion and/or movement information to the motor cortex. 
Because of this, the central representation or “cortical 
map” of afferent neurosensory signals transmitted to the 
sensory cortex changes, sharing vastly different afferent 
transmissions with the motor cortex [38, 103, 104]. With 
these changes, there may be a greater tendency for the 
neuromuscular system to evoke maladaptive compensa-
tions throughout both the involved and the contralateral 
lower extremities [39, 95–97, 101, 105, 106]. Absent or 
significantly altered neurosensory signals from the knee 
likely propagate a modified motor plan that may bypass 
or otherwise not focus as strictly on knee region contri-
butions. In the presence of impaired afferent feedback, 
the modified motor plan likely places greater reliance on 
afferent information from adjacent, intact neurosensory 
joints such as the hip and ankle-subtalar joint complex, 
tending to upregulate more proximal composite lower 

extremity neuromuscular function through the hip and 
perhaps also more distally through the ankle/subtalar 
joints. These motor plan modifications enable continued 
function; however, they also contribute to the develop-
ment of compensatory movement patterns [36, 37, 106]. 
These compensations may become manifest in the modi-
fied kinematic, kinetic, and EMG characteristics asso-
ciated with imbalanced hip–knee–ankle/subtalar joint 
function. Reduced knee afference, particularly from the 
injured ACL, produces a concomitant decrease in quadri-
ceps femoris and gastrocnemius fast twitch muscle fibre 
volume and neuromuscular activation [14, 39, 107–109] 
in addition to decreased hamstring muscle group acti-
vation responsiveness [110]. Associated with this, fast 
twitch, power generating quadriceps femoris and gas-
trocnemius muscle fibres atrophy and a functional bias is 
directed toward greater activation of more postural slow 
twitch muscle fibres to enable continued performance of 
less demanding movements in the presence of chronic 
knee laxity and impaired CL neurosensory acuity [14, 
108, 109, 111]. In the absence of optimal quadriceps fem-
oris and gastrocnemius fast twitch muscle fibre function, 
hip extensor/external rotator neuromuscular activation 
may be upregulated to increase the direct control of fron-
tal plane hip position and the indirect control of trans-
verse plane knee internal–external rotation through the 
long axis of the femur, thereby increasing indirect control 
of sagittal plane knee flexion–extension positioning [39, 

Fig. 4   The neuromotor system transmits efferent information from the primary motor cortex, to the knee region and adjacent lower extremity 
musculature. The premotor cortex and supplementary motor area provide associated modulatory functions
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112]. Soleus muscle activation may be similarly upreg-
ulated to dynamically control long axis tibial rotation 
through the ankle and subtalar joints.

ACL repair versus reconstruction

The reconstructed ACL no longer transmits neurosensory 
information to the brain in any way similar to its premor-
bid state, representing a severely sensory compromised or 
“dead” zone to the sensory cortex. No matter what graft 
type, placement, fixation or drilling method, ACL or PCL 
reconstruction restores biomechanical function much more 
closely than neurosensory function. Even the fully remod-
elled ACL or PCL graft never restores native neurosensory 
tissue characteristics [113]. An accurate analogy might be 
that the knee surgeon generally performs effective carpen-
try (restored biomechanical function); however, no elec-
trician (restored neurosensory function) has been hired 
to complete the job. Because of this difference there is a 
growing movement to more closely restore the natural ACL 
or PCL insertional enthesis, and to preserve the proximal 
and distal mechanoreceptor-rich regions of remaining ACL 
or PCL remnants and their associated neurosensory proper-
ties (particularly on the femoral side) [7, 30, 45, 114, 115]. 
The primary issue with current ACL reconstruction meth-
ods may not be the few millimetres of residual laxity, the 
couple degrees of impaired proprioception, or perceived 
function survey point deficits, as much as it may be the 
lack of central representation or “cortical mapping” that 
is normally provided by the healthy ACL to the brain sen-
sory cortex [36, 37, 103, 104]. By preserving more natural 
entheses, native mechanoreceptor dense tissues and exist-
ing neurosensory structures (thereby reducing central rep-
resentation deficits [103, 104]), the repaired ACL has the 
potential to better match premorbid physiology [116–118]. 
Post-ACL injury bone mineral density (BMD) decreases 
throughout the traumatized lower extremity  and this 
decrease is most apparent in the ACL injury region [119, 
120]. Studies suggest that BMD improves following ACL 
reconstruction but never returns to the pre-injury condition 
[120]. From a BMD, neurosensory and neuromotor per-
spective, ACL injury creates somewhat permanent effects. 
Subchondral bone injury is a known precursor to the articu-
lar cartilage apoptosis that precedes knee OA.

Biologic ACL repair mediation

Diverse biologic mediator use such as platelet-rich 
plasma (PRP) [121, 122], and stem cells [123] to enhance 
ACL healing is increasing despite limited scientific 

evidence. This trend is occurring in direct association 
with a growing appreciation for lesion healing poten-
tial, preserving both natural ACL mechanoreceptor and 
enthesis function [51, 116]. Some have recommended 
ACL repair augmentation with collagen-coated suture, 
submucosa, or magnesium ring scaffolding [9, 46, 124, 
125]. The knowledge base regarding biologically medi-
ated tissue healing enhancement has prompted a surgi-
cal management “pendulum swing” away from a solely 
mechanocentric focus of ACL reconstruction to greater 
consideration of a biocentric repair approach [126, 127]. 
Provided it can adequately simulate non-impaired biome-
chanical function, the more intact neurosensory system of 
a repaired ACL may enable quicker, more precise neu-
romuscular activation responses, more robust fast twitch 
muscle fibre viability, joint position sense and kinesthesia 
[39, 96, 122].

When scaffolding materials are used, it is important 
to discern the true balance between the support provided 
by the healing ACL tissue versus the scaffold material, 
and whether or not this will change over time. Permanent 
scaffold material may stress shield the repaired ACL. 
The end goal for bracing or scaffolding use should be to 
eventually restore natural ACL biomechanical and neu-
rosensory physiological function. The potential for more 
natural physiological load transference with surgical 
repair may eliminate the reliance on large diameter bone 
tunnels, autograft harvest, and the use of large, perma-
nent fixation devices such as screws and buttons. In com-
bination with mechanoreceptor and enthesis preservation 
and biologically mediated tissue healing, use of smaller 
diameter bone channels and fixation devices [125] for 
ACL repair may become more feasible surgical options.

As knee surgeons develop improved ACL reconstruc-
tion or repair methods, they should direct greater atten-
tion to restoring the physiological function of all knee 
tissues. Longitudinal BMD studies that provide evidence 
of more effective osseous and osteochondral remodelling 
for a given ACL repair or reconstruction method would 
suggest superior physiological load transfer through and 
neurosensory signals from the surgical knee. Rehabilita-
tion strategies should likewise select movement task chal-
lenges that blend appropriate biomechanical loads and 
neurosensory stimulation in a manner that better facili-
tates tissue healing, remodelling, physiological, and psy-
chobehavioral (increased self-efficacy, decreased kine-
siophobia) function at key recovery time periods. This 
represents a major shift in ACL injury management phi-
losophy and recovery expectations. Much remains to be 
determined about appropriate patient selection, and long-
term outcome efficacy; however, several recent clinical 
ACL repair studies have shown promising early results 
[42–44, 128–130].
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Motor learning and dynamic knee stability

Preservation of mechanoreceptor dense ACL regions, 
natural footprints and entheses [58, 59, 131–134], syno-
vial membrane neurovascularity, and the intricate ACL 
neural network provides the surgeon with many reasons 
to approach ACL repair or reconstruction from a tissue 
preservation perspective [135]. The motor learning that 
occurs as patients perform directional change and sud-
den acceleration or deceleration movements promotes the 
development of efficient motor plans that are more adapt-
able to instantaneous and often chaotic neuromuscular 
control system and dynamic knee joint stability needs. 
The motor learning process finetunes motor plan selec-
tion and execution with improved adaptability and effi-
ciency. Ideally, the selected primary motor plan decreases 
intersegmental lower extremity movement variability and 
knee-specific movement constraint, while also restor-
ing movement task performance variability that better 
matches premorbid function [112, 136–138].

The brain has a tremendous capacity for positively 
influencing physical function [18, 92, 139] and much of 
this capacity is largely untapped by the medical, surgi-
cal and rehabilitation communities who provide care to 
patients following ACL injury, repair, or reconstruction 
[39, 139]. Fisher et  al. [140] used transcranial magnetic 
stimulation (TMS) motor-evoked potentials to measure 
brain activation as healthy subjects performed targeted 
gluteus maximus muscle  training exercises. In less than 
1  week, improved corticomotor excitability and inhibi-
tory processes were observed, suggesting a strong thera-
peutic exercise-corticoplasticity influence.

The goal of ACL repair or reconstruction should not 
solely be to alleviate knee joint instability.   Rather, the 
goal should also be to re-establish the natural biomechan-
ical and neurosensory function that in combination with 
effective rehabilitation motor learning restores physi-
ological ACL  function for neuromuscular control and 
dynamic knee joint stability purposes. Much remains to 
be learned about the true impact of ACL neurosensory 
and biomechanical impairment on brain function. Obtain-
ing a better understanding of BMD changes post-injury, 
surgery, and rehabilitation, and focused research on 
sensorimotor cortical integration may provide the most 
revealing information about the true capacity   for ACL 
repair to more effectively re-establish physiological func-
tion. Improving this understanding will help make thera-
peutic exercise movement task selection more precise, 
develop more physiologically and psychologically sound 
evidence-based rehabilitation programs [18, 39], and 
implement innovative, clinically applicable measurement 
strategies that better validate the patient’s true ability to 

safely return to intense athletic activities at a high fre-
quency without reduced performance capability.

The path to improved future patient outcomes

Historically, knee surgeons and rehabilitation clinicians 
have focused primarily on reducing knee laxity and nor-
malizing quadriceps femoris and hamstring muscle group 
strength post-ACL surgery [98]. Identification of direct 
ACL load–thigh muscle tone relationships has set the stage 
for an evolving focus on peripheral and central neural influ-
ences on physiological knee function [79, 105, 141–146]. 
Sensorimotor cruciate ligament attributes are more suscep-
tible to injury than their biomechanical properties [147]. 
Research has shown that direct electrical stimulation to a 
healthy ACL activates a hamstring reflex [110, 147–151]. 
Both in vivo animal [149, 152] and human [153–155] stud-
ies have identified likely permanent protective neuromuscu-
lar reflex impairments over varying time periods following 
ACL reconstruction. These deficiencies may be primarily 
due to cortical sensorimotor impairments rather than the 
complete absence of ACL-neuromuscular reflexes [47, 149, 
153].

The ACL injury research evolution has progressed 
to directly measuring brain cortex sensorimotor charac-
teristics [156], changes in patient psychobehaviors [18], 
and changes in intersegmental joint movement coordina-
tion variability and knee joint constraint properties [43, 
136–138, 157]. Using functional MRI, Shanahan et  al. 
[86] reported that subjects with knee OA had more ante-
rior brain cortical representation loci, had poorer knee task 
performance, and substituted ankle for knee motor cortex 
representations more than a healthy control group. Pietro-
simone et al. [158] used  transcranial magnetic stimulation 
(TMS) to compare vastus medialis active motor thresh-
old, Hoffman reflex:muscle response ratio (H:M ratio), 
and voluntary activation differences between patients at 
48.1 ± 36 months post-ACL reconstruction (BPTB or ham-
string autografts) and a healthy control group. The active 
motor threshold was higher in the injured than in the unin-
jured lower extremity of the ACL reconstructed group and 
it was also higher than the matched lower extremity of 
the control group. The H:M ratio was bilaterally higher in 
the ACL reconstructed group compared with the control 
group. They concluded that higher involved side vastus 
medialis activation thresholds among ACL reconstructed 
patients represented post-surgical corticomotor deficits, 
while higher bilateral H:M ratios represented a strategy 
to increase reflex excitability. In a similar study, Kuenze 
et al. [96] identified quadriceps femoris function and corti-
cal excitability measurement asymmetries between patients 
at 31.5 ± 23.5  months (range = 7–80  months) post-ACL 
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reconstruction using hamstring or BPTB autografts and 
a healthy control group. They concluded that measuring 
these asymmetries post-ACL reconstruction is an essen-
tial step to better understanding long-term self-reported 
function impairments and the increased rate of subse-
quent knee injury. Ward et  al. [159] used TMS to assess 
corticomotor excitability related to rectus femoris func-
tion among subjects at 69.5 ± 42  days post-ACL injury 
compared to a healthy control group. They found that the 
cortical silent period (measure of sub-clinical motor sys-
tem disturbance) was longer at the injured side of the ACL 
injury group compared to the uninjured side. Baumeister 
et al. [141] used EEG to compare force sensation and cor-
tical activation between patients at 12 ± 4.7  months post-
ACL reconstruction using quadrupled hamstring autografts 
and healthy control group subjects as they attempted to 
reproduce 50% of a maximal voluntary quadriceps femo-
ris isometric contraction. The ACL reconstructed group 
had increased anterior cingulate brain cortical activity 
and higher frontal Theta power when the surgical side 
attempted force reproduction, suggesting proprioceptive 
impairment. In a case–control study, Grooms et  al. [95] 
used brain function MRI during knee flexion–extension to 
compare a patient post-ACL reconstruction using a BPTB 
autograft with a healthy, control subject. Measurements 
were taken after return to sports (10  months post-injury), 
26 days prior to sustaining a contralateral ACL injury. The 
ACL-injured patient had bilaterally increased motor plan-
ning, sensory processing, and visual motor control brain 
cortex area activation compared to the control subject. The 
authors concluded that altered neurophysiological function 
may have contributed to the primary knee injury, and that 
bilateral neuroplasticity post-ACL injury was associated 
with increased bilateral knee injury risk. Using EMG and 
TMS methods, Lepley et al. [97] compared the quadriceps 
femoris cortico-spinal excitability and spinal-reflex excit-
ability of patients before and after ACL reconstruction 
(BPTB or hamstring autograft) compared to a healthy con-
trol group. Patients had decreased bilateral spinal-reflex 
excitability compared to the control group before surgery 
and at 2 weeks post-surgery. Patients also had higher active 
motor thresholds at 6  months post-surgery in both lower 
extremities. They concluded that rehabilitation should tar-
get spinal-reflex excitability early post-ACL reconstruction 
and cortico-spinal excitability later.

To achieve better outcomes [49, 50], future research 
needs to improve how to match the individual patient to 
a specific procedure (conservative care, partial repair, 
full repair, partial reconstruction, full reconstruction) and 
rehabilitation progression [34, 135, 160]. Remnant typ-
ing [115], mechanoreceptor viability assessments [161], 
neurosensory recovery potential determination [95, 97] 
and scaffold support augmentation needs [116–118, 127] 

will help determine repair viability. In addition to restor-
ing peak lower extremity strength–power [40, 121, 162], 
and improving thigh and calf girth (fast twitch muscle fibre 
integrity) [107, 162], verification of more normal sensori-
motor brain communication [36, 37, 159] and sensory–vis-
ual aspects of motor function and motor learning adapta-
tions [39, 94, 140, 163, 164] during therapeutic exercise 
performance will become essential elements of outcome 
assessment. Neurosensory and psychobehavioral aspects 
of recovery [18, 22, 100, 165] including improved dynamic 
knee joint constraint and more natural motor control vari-
ability [43, 136–138] must be restored. Long-term, longi-
tudinal measurements of these important recovery factors 
will better elucidate the most effective path to complete 
functional recovery and validate the true efficacy of ACL 
injury care.

Conclusion

Surgical restoration of a more physiologically sound knee 
joint may be essential to solving the osteoarthritis dilemma. 
Innovative rehabilitative strategies and outcome measure-
ment methodologies using more holistic and clinically rel-
evant measurements that closely link biomechanical and 
neurosensory characteristics of physiological ACL function 
with task-specific patient physical function and psychobe-
havioral factors should better delineate the true efficacy of 
all ACL surgical and non-surgical interventions.
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