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full weightbearing, significantly less acquired laxity was 
observed for the patellar tendon/semitendinosus graft pair 
(2.38 mm) compared to the Achilles/anterior tibialis pair 
(4.85 mm, p = 0.04), but a significant difference was not 
observed compared to the QT/semitendinosus graft pair 
(3.91 mm, n.s.). There were no significant differences in 
the ultimate loads between any of the graft pairs.
Conclusions Simulated early range of motion and early 
partial weightbearing did not result in clinically signifi-
cant acquired graft laxity in common graft options utilized 
for DB-PCLR. However, simulated full weightbearing did 
result in clinically significant acquired graft laxity, and 
therefore, early rehabilitation protocols should avoid imple-
menting full weightbearing that could contribute to graft 
failure.

Keywords Double-bundle posterior cruciate ligament 
reconstruction · Rehabilitation · Allograft · Autograft · 
Weightbearing · Range of motion

Introduction

Historically, non-weightbearing and early immobilization in 
extension with limited prone range of motion post-operative 
rehabilitation protocols following posterior cruciate ligament 
(PCL) reconstructions have been advocated to protect the PCL 
graft from the posteriorly directed forces of gravity and the 
hamstrings [8, 36, 46]. Although these relatively conservative 
rehabilitation protocols have been implemented, the outcomes 
with regard to objective anteroposterior laxity with longer-
term follow-up of single-bundle PCL reconstructions (SB-
PCLRs) have revealed continued laxity compared to the con-
tralateral knee of 4–6 mm in most studies [22, 26, 47]. Noting 
that a complete PCL tear is considered present with 8 mm of 

Abstract 
Purpose The purpose of this study was to determine the 
biomechanical effects of simulated immediate motion and 
weightbearing during rehabilitation on different double-
bundle posterior cruciate ligament reconstruction (DB-
PCLR) graft options.
Methods  Nine each of commercially prepared (allograft) 
Achilles tendon allografts, fresh-frozen (autograft) bone-
patellar tendon-bone grafts, and fresh-frozen quadriceps 
tendon grafts were paired with commercially prepared 
anterior tibialis allografts, fresh-frozen semitendinosus 
grafts, and fresh-frozen semitendinosus grafts, respectively. 
Graft pairs were loaded to simulate early range of motion 
on a stationary bicycle, partial weightbearing (30 %), and 
full weightbearing.
Results  Acquired laxity (displacement, mm) between 
graft pairs was not significantly different during simu-
lated early range of motion. However, during simulated 
partial weightbearing, the median acquired laxity of the 
patellar tendon/semitendinosus pair (1.06 mm) was sig-
nificantly less than that of the quadriceps tendon/semiten-
dinosus (1.50 mm, p = 0.01) and Achilles/anterior tibi-
alis (1.44 mm, p = 0.003) graft pairs. During simulated 
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increased posterior tibial translation compared to the contralat-
eral knee [24], it is concerning that between 50 and 75 % of 
this diagnostic measurement remains as residual PCL laxity. 
In an attempt to more accurately recreate native knee anatomy 
and kinematics and potentially decrease the likelihood of the 
development of unwanted anteroposterior laxity, anatomic 
double-bundle PCL reconstructions (DB-PCLRs) have been 
increasingly advocated [43, 51].

There is still some debate over the benefits of recon-
structing both bundles of the PCL due to conflicting biome-
chanical [6, 11, 28, 38, 44, 50] and clinical evidence [11, 
17, 48]. The roles of the two bundles of the PCL have been 
elucidated, and many authors have demonstrated that both 
the anterolateral bundle (ALB) and the posteromedial bun-
dle (PMB) are functionally important and likely codomi-
nant to both anteroposterior stability and rotation through-
out knee motion [19–21, 27, 51]. Additionally, Spiridonov 
et al. [43] have reported improved subjective outcomes 
and objective stability utilizing a DB-PCLR and a tradi-
tional rehabilitation protocol. Post-operatively, all patients 
were non-weightbearing for 6 weeks. Their physical ther-
apy regimen emphasized immediate quadriceps activation 
and prone knee flexion to 90 degrees. All patients were 
also managed with a dynamic PCL functional brace post-
operatively. Unlike traditional single-bundle techniques, 
concordance was predictably achieved in both subjective 
outcomes and objective stability. The potential benefits of 
immediate mobilization have also been demonstrated in 
the laboratory setting for various ligaments and showed 
improved mechanical and structural properties of the 
medial collateral ligament with mobilization [52, 53] and 
improved clinical outcomes following ACL reconstruction 
[23]. Moreover, the effects of a more aggressive post-oper-
ative rehabilitation protocol on a larger overall DB-PCLR 
graft volume that is more anatomic are unknown and merit 
further investigation.

The purpose of this study was twofold: (1) to determine 
whether a loading protocol designed to simulate an early 
range of motion and weightbearing rehabilitation protocol 
leads to acquired graft laxity and (2) to determine whether 
the laxity in the current, most commonly utilized recon-
struction allograft options is comparable to readily avail-
able autograft options. It was hypothesized that there would 
be no clinically significant increase in the acquired laxity of 
either autograft or high-quality allograft options commonly 
used in DB-PCLRs due to simulated early knee range of 
motion and weightbearing.

Materials and methods

Allografts commonly used in PCL reconstructions were 
obtained from a commercially prepared source (AlloTrue, 

Allosource, Centennial, Colorado). Nine Achilles tendons 
(median age 57 years, range 49–61) and 9 anterior tibialis 
tendons (median age 51 years, range 21–65) were the allo-
grafts utilized in this study. Autografts potentially available 
for PCL reconstructions were harvested from fresh-frozen 
cadaveric specimens to simulate the use of autograft tis-
sues. These grafts consisted of 9 bone-patellar tendon-
bone (BTB) grafts (median age 56 years, range 48–65), 
9 quadriceps tendon (QT) grafts (median age 61 years, 
range 48–65), and 18 semitendinosus grafts (median age 
62 years, range 48–65).

Graft preparation

The calcaneal bone blocks of the Achilles grafts were 
trimmed to create bone plugs that were 11 mm in diameter 
and 25 mm in length, and the tendon was sized, if neces-
sary, to pass through a tunnel diameter of 11 mm. Simi-
larly, QT grafts and BTB grafts were trimmed to the same 
dimensions to fit through an 11-mm sizing block. All sem-
itendinosus and anterior tibialis grafts were doubled and 
sized to pass through a 7-mm tunnel. Grafts sized to 11 mm 
and those sized to 7 mm were intended to replicate the 
anterolateral and posteromedial bundles, respectively, of a 
double-bundle PCL reconstruction construct.

Both the bone plugs and soft tissue ends of the various 
grafts were then fixed into rigid polyurethane foam blocks 
(Pacific Research Laboratories, Sawbones, Vashon Island, 
Washington) in clinically relevant reconstruction pairs 
(Table 1). Polyurethane foam blocks were chosen as a sur-
rogate for human bone to allow for uniform modelling of 
the viscoelastic properties, strength, stiffness, and pullout 
testing of the chosen graft pairs to be conducted independ-
ent of potentially varying bone material properties and 
geometry shown to be present in cadaveric bone [12, 41]. 
Cancellous bone ranges in volumetric density between 0.09 
and 1.26 g/cm3 (5.6–78.7 pcf) [42], and cortical bone den-
sities have been reported between 2.0 and 2.2 g/cm3 (125–
137 pcf) [7, 14]. Therefore, polyurethane blocks measuring 
6 cm × 6 cm with a core of 20 pcf (0.32 g/cm3) foam lami-
nated with a 1.5-mm layer of 50 pcf (0.8 g/cm3) were cho-
sen to mimic the cortical and cancellous layers of human 
bone in a young athletic population with high bone mineral 
density [1, 2, 32, 33]. Both polyurethane densities chosen 
were greater than those previously reported in graft fixation 
research [4, 42] to replicate the population most likely to 
undergo PCLR [43] as opposed to a “worst-case scenario” 
of osteopenic bone.

Tunnel and graft sizes were chosen to be consistent with 
the technique for anatomic DB-PCLR described by Spiri-
donov et al. [43] and further validated by Wijdicks et al. 
[51]. Interference screw fixation was chosen for all inter-
faces to ensure consistency among graft pairs (Table 1). 
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The ALB and PMB were first fixed in their “femoral” tun-
nels with a bone bridge gap distance of 3 mm [3, 43], and 
then, a second polyurethane testing block (“tibial” side) 
was clamped at a separation distance of 35 mm to replicate 
the native length of the PCL [37]. A graft tensioning device 
(Arthrex, Naples, Florida) was then used to independently 
tension each graft to 20 N, and the grafts were secured to 
the “tibial” block. Independent tensioning at a constant 
distance was performed to ensure that both bundles expe-
rienced equivalent fixation tension. Screw sizes were deter-
mined through pilot testing to ensure a balance of adequate 
fixation and to minimize the risk of graft laceration/ampu-
tation and are noted in Table 1.

Testing protocol

After initial graft tensioning and fixation, the polyure-
thane blocks were secured between custom loading fix-
tures attached to the actuator of a dynamic tensile test-
ing machine (Instron E10000, Norwood, Massachusetts; 
Fig. 1). Measurement error of the testing machine was 
certified by Instron to be less than or equal to ±0.01 mm 
and ±0.3 % of the indicated force. Eight of nine graft pairs 
of each group were then subjected to an identical progres-
sive cyclic uniaxial loading protocol. The loading protocol 
was developed to simulate the maximal forces the PCL 
could encounter at time zero with both a progressive range 
of motion and partial (30 %) and full weightbearing. Cyclic 
load values were based on estimates of the maximal poten-
tial posterior tibiofemoral shear forces reported during vari-
ous activities. The initial cyclic loading phase simulated the 
forces of immediate range of motion on the PCL as pre-
viously demonstrated on a cycle ergometer to simulate the 
use of a stationary bicycle [9]. Posterior tibiofemoral shear 
forces were estimated to reach 0.05 times body weight 
during use of a standardized cycle ergometer [9]; hence, a 

50 N force was applied for 600 cycles at 1 Hz (0.05 times 
body weight force of a 70-kg adult for 10 min of standard-
ized ergometer cycling at 120 W and 60 rpm).

Previous reports have also demonstrated that maximal 
posterior tibiofemoral shear forces may reach approxi-
mately 275 N during normal gait on level ground (0.4 
times body weight force [30, 31] of a 70-kg adult). This 
estimate was used to establish the maximum load for par-
tial (30 %) and full weightbearing, and a cyclic loading 
protocol with incrementally increasing forces followed 

Table 1  Graft pairs, bone tunnel sizes, and interference screw fixation sizes/types

Femoral notch Tibial plateau

Anterolateral bundle Posteromedial bundle

Graft Tunnel size 
(mm)

Interference screw 
(mm)

Graft Tunnel 
size 
(mm)

Interference 
screw (mm)

Tunnel size 
(mm)

Interference 
screw (mm)

Achilles allograft 11 7 × 25 titanium Anterior tibialis 
allograft

7 7 × 25 
biocomposite

12 11 × 28 
biocomposite

Quadriceps tendon autograft 11 7 × 25 titanium Semitendinosus 
autograft

7 7 × 25 
biocomposite

12 11 × 28 
biocomposite

Bone-patellar tendon-bone 
autograft

11 7 × 25 titanium Semitendinosus 
autograft

7 7 × 25 
biocomposite

12 9 × 25 titanium

Fig. 1  Dynamic uniaxial tensile testing set-up. A schematic represen-
tation of the testing set-up showing grafts attached to polyurethane 
blocks by interference screw fixation and secured between custom 
loading fixtures which were attached to the actuator and base of a 
dynamic tensile testing machine
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the cycle ergometer simulation. The number of cycles for 
the simulated partial and full weightbearing loading peri-
ods was based on pedometer data for the maximal steps 
a patient undergoing knee reconstruction might take daily 
in the first six post-operative weeks—approximately 3500 
steps [40]. Therefore, paired graft constructs were sub-
jected to cyclic loading over 3 phases at 1 Hz between 
10 N and a progressively increasing maximum load that 
was incremented from 50 N (simulated range of motion 
cycling without resistance = phase 1) to 85 N (simulated 
partial weightbearing = phase 2) and to 275 N (simu-
lated full weightbearing = phase 3) at cycle numbers 600, 
4100, and 7600, respectively (Fig. 2). Displacement (mm), 
stiffness (N/mm), and the elastic limit (N; i.e. the load at 
which there is change from elastic to permanent deforma-
tion of the graft pairs [13]) for each of the constructs were 
continuously monitored and reported. After the first three 
loading phases, testing concluded with a pull to failure 
at 20 mm/min to determine the ultimate load (N) of each 
graft pair (phase 4). One additional non-cyclically loaded 
graft pair from each group was also pulled to failure at 
20 mm/min to corroborate the load versus displacement 
curve of each construct.

Statistical analysis

Displacement, stiffness, elastic limit, and ultimate load 
were summarized for each construct group with medians, 
minima, and maxima. Each group of graft pairs was com-
pared to one another, and differences were assessed using 
the Kruskal–Wallis test and Dunn’s test for post hoc com-
parisons. Assuming 8 specimens per group and an α = 0.05 
for nonparametric, two-tailed, pairwise comparisons, 
an effect size of d = 1.55 is detectable with 80 % power. 
Adjusted p values <0.05 were considered significant. All 
statistical analyses were performed using IBM SPSS Statis-
tics, version 20 (Armonk, New York).

Results

Displacement

Acquired laxity (displacement, mm) between graft pairs 
was not significantly different during simulated early 
range of motion (phase 1; concluded at cycle 600), and 
the median and maximal displacement for all of the pairs 
were less than 0.9 and 1.4 mm, respectively (Table 2). Dur-
ing simulated partial weightbearing (phase 2; concluded at 
cycle 4100), the median acquired laxity of the BTB/sem-
itendinosus pair (1.06 mm) was significantly less than the 
QT/semitendinosus (1.50 mm, p = 0.01) and Achilles/ante-
rior tibialis (1.44 mm, p = 0.003) graft pairs. The maximal 
acquired laxity during phase 2 for the BTB/semitendinosus, 
QT/semitendinosus, and Achilles/anterior tibialis pairs was 
1.85, 2.50, and 2.37 mm, respectively.

During simulated full weightbearing (phase 3; con-
cluded at cycle 7600), significantly less acquired laxity 
was observed with the BTB/semitendinosus graft pair 
(2.38 mm) compared to the Achilles/anterior tibialis pair 
(4.85 mm, p = 0.04), but a significant difference was not 
observed compared to the QT/semitendinosus graft pair 
(3.91 mm, n.s.) or between the QT/semitendinosus and 
the Achilles/anterior tibialis pairs (p = 1.000; Table 2). 
The maximal acquired laxity during phase 3 for the 
BTB/semitendinosus, QT/semitendinosus, and Achilles/
anterior tibialis pairs was 3.44, 15.29, and 20.95 mm, 
respectively.

Stiffness and pull‑to‑failure measurements

All stiffness and pull-to-failure data are contained in 
Table 2. The BTB/semitendinosus construct was stiffer 
than the Achilles/anterior tibialis pair throughout the test-
ing protocol and stiffer than the QT/semitendinosus pair 
at the start of phase 3 (p = 0.03) and during the pull to 
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Fig. 2  Graphical representation of the cyclic loading protocol. Phase 
1 simulated the forces of immediate range of motion on the PCL dur-
ing stationary cycling: a 10–50 N force was applied for 600 cycles 
(i.e. 120 W and 60 rpm). Phase 2 simulated the forces of partial 
(30 %) weightbearing on the PCL during one post-operative day: a 
10–85 N force was applied for 3500 cycles. Phase 3 simulated the 
forces of full weightbearing on the PCL during one post-operative 
day: a 10–275 N force was applied for 3500 cycles. Testing con-
cluded with a pull to failure (Phase 4) at 20 mm/min where the elastic 
limit load (N) and ultimate load (N) of each of the graft pairs were 
determined
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failure (p = 0.02). There were no significant differences 
in the elastic limits or ultimate loads between any of the 
graft pairs. Furthermore, the elastic limits of all the graft 
pairs were greater than the forces applied to simulate early 
range of motion activities including cycle ergometry (50 N; 
phase 1), partial weightbearing (85 N; phase 2), and full 

weightbearing (275 N) (phase 3; Fig. 3). The non-cyclically 
loaded graft pairs of each type that were only subjected 
to pull-to-failure testing also demonstrated similar elastic 
modulus curves to the cyclically loaded constructs (Fig. 3). 
The mechanisms of failure and frequencies are given in 
Table 3.

Table 2  Biomechanical properties of common double-bundle posterior cruciate ligament reconstruction grafts

n.a., not applicable; this indicates that there was no significant difference among graft types based on overall Kruskal–Wallis test, and thus, no 
post hoc tests were performed

n.s., not significant; this indicates a non-significant post hoc group comparison (adjusted p value >0.05)

Group A—BTB/ST = Bone-patellar tendon-bone/semitendinosus “autograft” pair

Group B—QT/ST = Quadriceps tendon/Semitendinosus “autograft” pair

Group C—ACH/AT = Achilles tendon/Anterior tibialis “allograft” pair

PTF pull to failure

Loading phase Cycle Median (min, max) Group comparisons 
(p values)

BTB/ST (A) QT/ST (B) ACH/AT (C) A–B A–C B–C

Cumulative displacement (mm) Phase 1 1 0.46 [0.35, 0.62] 0.46 [0.35, 0.74] 0.61 [0.41, 0.78] n.a. n.a. n.a.

600 0.68 [0.51, 1.11] 0.82 [0.55, 1.33] 0.87 [0.72, 1.27] n.a. n.a. n.a.

Phase 2 4100 1.06 [0.81, 1.85] 1.50 [1.00, 2.50] 1.44 [1.13, 2.37] 0.006 0.003 n.s.

Phase 3 7600 2.38 [1.81, 3.44] 3.91 [3.19, 15.29] 4.85 [2.77, 20.95] n.s. 0.044 n.s.

PTF – 6.16 [4.94, 7.77] 11.13 [7.35, 33.41] 10.23 [6.11, 42.20] 0.006 0.024 n.s.

Stiffness (N/mm) Phase 1 1 56 [46, 59] 50 [38, 58] 40 [37, 52] n.s. 0.011 n.s.

600 85 [75, 100] 78 [66, 91] 71 [52, 85] n.s. 0.040 n.s.

Phase 2 601 96 [84, 108] 86 [73, 101] 77 [62, 93] n.s. 0.040 n.s.

4100 111 [97, 129] 100 [78, 115] 96 [67, 113] n.a. n.a. n.a.

Phase 3 4101 163 [135, 183] 125 [85, 160] 124 [96, 146] 0.030 0.036 n.s.

7600 183 [138, 194] 171 [126, 188] 158 [89, 184] n.a. n.a. n.a.

PTF – 209 [140, 249] 134 [25, 186] 147 [2, 201] 0.016 0.014 n.s.

Elastic limit (N) PTF – 760 [339, 980] 629 [479, 816] 549 [421, 722] n.a. n.a. n.a.

Ultimate load (N) PTF – 833 [361, 1133] 723 [499, 1031] 566 [489, 765] n.a. n.a. n.a.
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Discussion

The most important finding of this study was that common 
DB-PCLR grafts did not acquire clinically significant lax-
ity as a result of a simulated rehabilitation protocol repre-
sentative of early range of motion on a stationary bicycle 
and partial weightbearing. In contrast, during simulated 
full weightbearing, clinically significant differences in 
the median and maximal acquired laxity were observed 
between graft options. These findings biomechanically 
validate the caution implemented with traditional rehabili-
tation protocols that avoid immediate full weightbearing 
following DB-PCLR; nonetheless, partial weightbearing 
may be a safe alternative for early rehabilitation. The BTB/
semitendinosus graft pair exhibited the least acquired graft 
laxity under all loading conditions including simulated 
full weightbearing. However, during loading phases 1 and 
2 (simulated early range of motion on a stationary bicycle 
and partial weightbearing, respectively), significant differ-
ences between the graft options were either not observed or 

not clinically significant. Additionally, there was no differ-
ence in the ultimate loads between the allograft (e.g. Achil-
les/anterior tibialis) and autograft (e.g. BTB/semitendino-
sus and QT/semitendinosus) construct options.

The in vitro tensile properties of single-bundle graft 
options for cruciate ligament reconstruction have been well 
documented [15, 34, 54, 55], while the tensile properties 
of common graft construct combinations used for DB-PCL 
reconstruction have not. In this study, the ultimate fail-
ure load of each construct (lowest median = 566 N) was 
much greater than the forces encountered with weightbear-
ing and range of motion (full weightbearing ~275 N [29, 
30]). Additionally, there were several consistent findings 
with pull-to-failure testing: the graft pairs most commonly 
failed at the bone–graft interface, the BTB/semitendino-
sus graft pair demonstrated the greatest stiffness, and the 
anticipated ultimate loads of the graft constructs (based on 
previous studies which reported tensile properties of the 
graft bundles in isolation [15, 34, 54, 55]) were not consist-
ently reached. This likely indicates that interference screw 

Table 3  Mechanism of failure 
for each specimen

Graft pair Location of graft failure Mechanism of graft failure

Quadriceps/semitendinosus

Tibial interface

 Semitendinosus 2/9

 Both 4/9

Femoral interface

 Semitendinosus 1/9

 Both 1/9

Midsubstance

 Quadriceps 1/9

Bone-patellar tendon-bone/sem-
itendinosus

Tibial interface

 BTB 1/9

 Both 1/9

Femoral interface

 BTB 5/9

 Semitendinosus 1/9

Polyurethane block breakage

 1/9

Achilles/anterior tibialis

Tibial interface

 Achilles 1/9

 Anterior tibialis 1/9

 Both 1/9

Femoral interface

 Achilles 4/9

 Anterior tibialis 1/9

Midsubstance

 Both 1/9
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fixation was superior for grafts containing bone plugs ver-
sus soft tissue grafts and that partial graft laceration in this 
model of dense bone may have been a contributing factor to 
graft failure and slippage, as previously reported [39, 49].

The level of evidence supporting different recommenda-
tions for rehabilitation following PCLR is lacking rigorous 
scientific basis. Rehabilitation protocols have largely been 
based on level 4 and expert opinion data following SB-
PCLRs [8, 10, 25, 36] and on the premise that early range 
of motion is more likely to be associated with inferior sta-
bility outcomes. However, many authors have implemented 
these conservative immobilization protocols, and subopti-
mal stability has still been reported [26, 47]. Consequently, 
others have reported the requirement for manipulation 
under anaesthesia and/or lysis of adhesions for stiffness in 
patients utilizing post-operative immobilization [29]. The 
potential benefits of immediate mobilization have been 
demonstrated in the laboratory setting for various ligaments 
and showed improved mechanical and structural proper-
ties of the medial collateral ligament with mobilization 
[52, 53] and improved clinical outcomes following ACL 
reconstruction [23]. Although the dynamic function of the 
quadriceps musculature is protective of the healing PCL 
graft [36, 46], quadriceps inhibition is common following 
knee trauma and surgery [16]. Rehabilitation exercises that 
result in earlier reversal of quadriceps inhibition are poten-
tially desirable assuming concomitant graft stretching can 
be avoided. The results of the current study demonstrate 
the cyclic forces placed on a PCL graft simulating early 
range of motion on a stationary bicycle and partial weight-
bearing do not result in clinically relevant laxity (displace-
ment). Therefore, a more progressive but protected early 
rehabilitation protocol following DB-PCLR is not likely to 
result in additional joint laxity [35, 43] and may also lead 
to improved patient outcomes [23].

This study was not without limitations. A simulated 
in vitro biomechanical testing model substituting polyure-
thane foam for bone was utilized. The polyurethane foam 
was chosen because it was believed to more consistently 
mimic the cortical and cancellous layers of human bone in 
a young athletic population with high bone mineral densi-
ties [1, 2, 32, 33]. While the synthetic foam was success-
ful in providing homogeneity of material characteristics, 
the results may not translate perfectly to the time zero 
in vivo environment. Furthermore, the results of this study 
are representative of a time zero, in vitro biomechani-
cal model, and the effect of biological healing was cor-
respondingly unable to be studied. Additionally, uniaxial 
testing is unable to simulate the 6 degrees of freedom of 
natural knee kinematics; therefore, the results obtained 
by this study may not yield a complete understanding 
of the effects of an aggressive rehabilitation protocol on 
the grafts in patients. Although the constructs were not 

preconditioned prior to testing, sub-millimetre (~0.5 mm) 
elongation was observed during the first cycle of loading 
for all groups and therefore likely did not affect the cyclic 
elongation behaviour of the constructs. In addition to the 
inability to load the grafts at different knee flexion angles, 
tissue–tunnel interactions throughout the flexion arc are 
also not accounted for, especially the potential for PCL 
graft abrasion by the tibial tunnel aperture, or the so-called 
killer turn [5, 18, 45]. Furthermore, a uniform method of 
PCLR graft fixation (interference screws) was utilized. As 
such, the use of soft tissue bone staples or fixation screws 
and washers for the soft tissue grafts could have resulted in 
different displacement and strength measurements. Never-
theless, this study presents a detailed and consistent bio-
mechanical evaluation of common allograft and autograft 
options for DB-PCLR.

Conclusions

This study demonstrated that incrementally increased 
cyclic forces of simulated early range of motion on a sta-
tionary bicycle and partial weightbearing were unlikely 
to lead to acquired laxity in common graft pairs used for 
DB-PCL reconstruction. Additionally, a clinically rel-
evant difference did not exist between the tensile prop-
erties of simulated common autograft and high-quality 
commercially prepared allograft PCL constructs at cyclic 
loads up to partial weightbearing. However, simulation of 
immediate full weightbearing following DB-PCL recon-
struction may lead to clinically significant acquired graft 
laxity; therefore, early rehabilitation protocols should 
avoid implementing full weightbearing. In order to exam-
ine and improve early outcomes following PCL recon-
struction, a prospective randomized trial of a traditional 
rehabilitation protocol versus an early range of motion 
and progressive weightbearing rehabilitation program is 
recommended.
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