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3° internal rotation and 3° external rotation were produced 
and retropatellar pressure distribution was measured with a 
pressure-sensitive film. The kinematics of the patella and 
the femorotibial joint were recorded with an ultrasonic-
based motion analysis system.
Results  Retropatellar peak pressure decreased signifi-
cantly from 3° internal rotation to neutral position and 3° 
external rotation of the tibial component (8.5  ±  2.3 vs. 
8.2 ±  2.4 vs. 7.8 ±  2.5  MPa). Regarding knee kinemat-
ics femorotibial rotation and anterior–posterior translation, 
patella rotation and tilt were altered significantly, but rela-
tive changes remained minimal.
Conclusion  Changing tibial rotation revealed a high in 
vitro influence on retropatellar peak pressure. We recom-
mend the rotational alignment of the tibial component to 
the medial third of the tibial tuberosity or even more exter-
nally beyond that point to avoid anterior knee pain after 
TKA.
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malalignment · Retropatellar pressure · Tibial component · 
Knee kinematics · Anterior knee pain

Introduction

Since decades, total knee arthroplasty (TKA) is the surgical 
therapy of choice for advanced-stage knee osteoarthritis [2, 
6]. Although continuous improvements concerning surgical 
technique, implant design and materials have been made, 
there are still up to 18 % of unsatisfied patients after TKA 
[11, 28, 41]. Besides the patient expectations, the extent of 
information given to the patient, preoperative functional 
status and extra-articular causes, there are also several sur-
gical factors of influence for the outcome of TKA [1, 29]. 

Abstract 
Purpose  Although continuous improvements have been 
made, there is still a considerable amount of unsatisfied 
patients after total knee arthroplasty (TKA). A main rea-
son for this high percentage is anterior knee pain, which is 
supposed to be provoked by post-operative increased ret-
ropatellar peak pressure. Since rotational malalignment of 
the implant is believed to contribute to post-operative pain, 
the aim of this study was to examine the influence of tibial 
component rotation on knee kinematics and retropatellar 
pressure.
Methods  Eight fresh-frozen knee specimens were tested 
in a weight-bearing knee rig after fixed-bearing TKA under 
a loaded squat from 20° to 120° of flexion. To examine tib-
ial components with different rotations, special inlays with 
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In addition to instability, polyethylene (PE) wear and asep-
tic loosening, anterior knee pain is the main surgical reason 
for post-operative pain [38, 40]. The incidence of peripatel-
lar complications after TKA is up to 12 % [7]. Post-oper-
ative increase in the retropatellar pressure is supposed to 
provoke post-operative patella problems [12, 20, 37].

PE wear, loosening and instability are influenced by 
altered knee kinematics after TKA [24, 42]. Rotational 
malalignment of the implant is suspected to contribute to 
post-operative pain, excessive PE wear, loosening, instabil-
ity and patellar maltracking as well as increased retropatel-
lar pressure [9, 18, 22, 35]; especially, internal rotational 
error of the tibial component often comes along with espe-
cially anterior pain after TKA [27].

In vitro studies with cadaver knee specimens are a well-
known method to analyse altered knee kinematics after 
TKA and implications on retropatellar pressure distribution 
[4, 10, 16, 39, 42]. There are studies confirming the posi-
tive effects of external rotation of the femoral component 
in terms of reducing retropatellar peak pressure and repro-
ducing more natural kinematics of the patella [25, 36], but 
there is not much literature concerning the influence of tib-
ial rotation on the kinematics of the patella [3, 26].

In terms of the rotation of the tibial component, it is 
believed that the best position may be achieved orientat-
ing the rotation to the medial border or the medial third of 
the tibial tuberosity [19, 23]. Even though there are several 
clinical studies suggesting a better outcome with the tibial 
component placed at medial part of the tibial tuberosity or 
even rotated externally beyond that point, there is a lack of 
cadaver studies examining the exact influence of the tibial 
component rotation on retropatellar pressure and kinemat-
ics in TKA. Therefore, the aim of this study was to evaluate 
the influence of tibial component rotation on retropatellar 
pressure and kinematics of the TKA using cadaver speci-
mens mounted on a special knee rig. Tibial component 
rotation was simulated with a particular technique with spe-
cially produced inlays by the manufacturer to allow analys-
ing even small amounts of component rotation in between 
the same specimen. Since increased retropatellar pressure 
is supposed to provoke anterior knee pain, the results of 
this study can give guidance of tibial component alignment 
intraoperatively.

Materials and methods

Eight fresh-frozen human knee specimens [age 
58.9 ± 11.7 years (range 47–82); 3 female, 5 male; height: 
176.9 ± 5.9 cm; weight: 81.5 ± 10.6 kg] were used for the 
experiments. Knees with serious valgus or varus deformity 
(≥10°) were excluded. The specimens were resected 20 cm 
proximal and 15 cm distal to the joint line. The soft tissue 

surrounding the knee joint (including capsule, ligaments 
and tendons) was preserved. Afterwards, the fibula head was 
fixed to the proximal tibia using a 4.5-mm screw, and metal-
lic finger traps (Bühler-Instrumente Medizintechnik GmbH, 
Tuttlingen, Germany, Fig. 1) were connected to the tendons 
and fixation augmented using suture material (FibreWire, 
Arthrex, Munich, Germany) [35]. At the end, the tibia and 
the femur were embedded into metallic pots with epoxy cast-
ing resin (Rencast FC53, Huntsman, Basel, Switzerland).

For the evaluation of the degree of osteoarthritis and 
to exclude knees with serious deformities, X-rays in ante-
rior–posterior, sagittal and sunrise view were taken before 
implantation. The same X-rays were taken after TKA to 
ensure the correct implantation of the prostheses.

Implantation

For this in vitro study, a fixed-bearing, cruciate-retaining 
TKA (Columbus CR Aesculap, Tuttlingen, Germany) was 
chosen. Columbus knee system is a knee system which 
is on the market since 2003 with approximately 185,000 
implantations and currently still used for total knee replace-
ment [14]. The femoral component is a multi-radius design 

Fig. 1   Prepared knee specimen with miniature transmitters of femur, 
patella and tibia mounted in the knee rig



2397Knee Surg Sports Traumatol Arthrosc (2016) 24:2395–2401	

1 3

with a relatively small dorsal femoral radius. The short 
posterior condyles enable high flexion up to 140°. The 
trochlea of the femoral component has a valgus direction 
of 7°, with an elevated antero-lateral femoral design to pre-
vent patella luxation. The implantation was performed by 
the first author A.S. under supervision of the senior author 
A.F. using a subvastus approach to the knee and a tibia first 
technique for ligament balancing. According to the study of 
Lützner et  al. [23], all tibial components were aligned to 
the medial third of the tibial tuberosity. In advance, the tib-
ial tuberosity was divided into three parts, and the borders 
were marked with a surgical pen.

To achieve different rotations of the tibial component, 
different inlays using the CAD-data of the prosthesis and 
CAD-Software (Catia V5 R19, Dassault Systems, France) 
were constructed. Additional to the regular inlay (defined 
as neutral position), two variations with 3° of internal and 
external rotation were produced out of PE by the manufac-
turer (Fig. 2). This way, the articular surface of the inlays 
remained unchanged. With these variations, it was possible 
to examine the influence of different tibial rotations by only 
changing the inlays.

Biomechanical test setup

For the measurement of the retropatellar pressure distribu-
tion, the patella remained unresurfaced; only existing oste-
ophytes on the circumference were removed. A pressure-
sensitive film (K-Scan 4000, Tekscan Inc., Boston, USA) 
was sutured to the retropatellar surface using subcutane-
ous 1.0 suture material. To stabilise the attachment and to 
avoid shear forces, a 0.125-mm Teflon tape (PTFE-tape) 
was glued on the sensor before suturing. The sensor film 
has a total number of 572 sensels (62 sensels per cm2) with 
a maximum pressure of 1,500 PSI (~10 MPa). For calibra-
tion of the sensor, a two-point load, as recommended by the 
manufacturer, was applied using a material testing machine 
(Z010, Zwick, Ulm, Germany). The patella ridge was land-
marked on the sensor film for orientation and the following 
pressure distribution analysis.

The specimens were mounted on a 6° of freedom (DOF) 
knee rig [35, 36]. For the measurements, a loaded squat 
from 20° to 120° of flexion and back to 20° of extension 
was induced with a constant velocity of 3°/s by a linear 
drive (Driveset M150, Systec GmbH, Muenster, Germany). 
The position of the knee and the axial femorotibial rota-
tion was measured by two angle sensors (8820 Burster, 
Gernsbach, Germany) in the upper “hip assembly” and the 
lower “ankle assembly”. The quadriceps muscle force was 
simulated by another linear drive (Driveset M180, Systec 
GmbH, Muenster, Germany) and measured by a force sen-
sor (8417-6002 Burster, Gernsbach, Germany) installed 
near the tendon. We restored the quadriceps muscle vectors 
anatomically: the rectus muscle was orientated to the femur 
shaft, vastus lateralis to the greater, vastus medialis to the 
lesser trochanter. Further muscles (medial vastus, lateral 
vastus, semitendinosus and biceps femoris muscle) were 
simulated using for each a 2-kg weight. In this constel-
lation, the ground reaction force was measured under the 
“ankle assembly” by a six DOF force moment sensor (FN 
7325-31 FGP Sensors, Cedex, France).

The two linear drives were controlled by a self-pro-
grammed LabVIEW code (Version 8.6, National Instru-
ments, Austin, Texas, USA) on a personal computer using 
Real-Time and PID-Control Packages to achieve a constant 
ground reaction force of 50 N.

For recording of knee kinematics, an ultrasonic-based 
3-dimensional motion analysis system (Zebris CMS 20, 
Isny, Germany) was used. Three miniature transmitters 
each were attached to the femur, the patella and the tibia 
(Fig.  1), providing the determination of the rotation and 
translation of the femur, the patella and the tibia with an 
accuracy of 0.1° and 0.1  mm. For the kinematics of the 
patella, the definitions of Bull et  al. [8] (flexion, rotation, 
tilt and shift) were used (Fig.  3). Sufficient measurement 
reliability for kinematics and retropatellar pressure was 
assured by test–retest analysis; accuracy of the measure-
ment system has been described in a former study [35]. 
This study was approved by the ethical committee of Uni-
versity of Munich (LMU).

Fig. 2   a CAD-data of the inlay 
(sagittal, top and posterior 
view), b Top view of the three 
different inlays of a right knee 
in neutral, 3° internal rotation 
and 3° external rotation
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Statistical analysis

Results for absolute values were presented in 
mean  ±  standard deviation. To compare different tibial 
rotations, the measured parameters were modelled using 
mixed-effect model with random intercept per knee speci-
men. Fixed effects were included in the model by the 
cosine of the flexion angle (FA in radian), the squared 
cosine of the FA, the cubed cosine of the FA, the different 
tibial rotations (external/neutral/internal) as well as flex-
ion/extension of the knee. For this model, the results were 
displayed as regression coefficient with 95  % confidence 
interval. Analyses were performed using SPSS software 
(SPSS release 21.0, IBM, New York, USA). p < 0.05 was 
considered statistically significant.

Results

According to mixed-effect model, alteration of the rota-
tion of the tibial component had a significant influence on 
the mean retropatellar peak pressure after TKA (Table 1). 

In neutral position, the retropatellar peak pressure was 
8.2 ± 2.4 MPa. 3° of internal tibial rotation led to a clear 
increase in retropatellar peak pressure (8.5  ±  2.3  MPa), 
while 3° external rotation revealed a pronounced decrease 
in pressure (7.8  ±  2.5  MPa) (p  <  0.01). Regarding the 
pressure distribution, the peak pressure was located at the 
medial part of the patella ridge (Fig. 4). The highest peak 
pressure differences were measured in high flexion angles 
(>80°). Quadriceps muscle force and ground reaction force 
did not alter significantly (Table 1).

Regarding the influence on the kinematic of the patella, 
there was a significant difference in patella rotation [rota-
tion at 120° of flexion: neutral (3.1°  ±  7.2°), internal 
(3.3° ± 7.2°), external (3.0° ± 7.2°) (p = 0.04) and patella 
tilt; tilt at 120° of flexion: neutral (4.1° ±  8.3°); internal 
(4.0°  ±  8.3°); external (4.3°  ±  8.4°) (p  =  0.02)]. The 
changes in patella flexion and patella shift were not signifi-
cant (Table 1).

Different rotations of the tibial component not only had 
an influence on the patella, there was also a significant alter-
ation on the kinematics of the femorotibial joint (Table 1). 
3° internal rotation of the tibial component led to a higher 

Fig. 3   Definition of patella 
kinematics (flexion, rotation, tilt 
and shift), lateral on the right 
side

Table 1   Regression coefficients out of the mixed-effects model analysis, mean and 95 % confidence interval are shown

Parameter 3° internal rotation 0° neutral 3° external rotation Significance level

Quadriceps muscle force −7.8 N (−14.9 N; −0.7 N) 0 N 5.5 N (−10.2 N; 4.0 N) n.s.

Ground reaction force 0.2 N (−0.3 N; 0.6 N) 0 N −0.03 N (−0.4 N; 0.4 N) n.s.

Femorotibial rotation (+internal) 1.2° (0.9°; 1.45°) 0° 0.2° (−0.1°; 0.5°) p < 0.01

Translation of the femur (+anterior) −0.9 mm (−1.4 mm; −0.5 mm) 0 mm 0.4 mm (0.00 mm; 0.9 mm) p < 0.01

Patella flexion −0.03° (−1.9°; 1.9°) 0° −0.1° (−2.0°; 1.8°) n.s.

Patella rotation (+lateral) 0.2° (0.0°; 0.4°) 0° −0.04° (−0.2°; 0.1°) p = 0.04

Patella tilt (+lateral) −0.1° (−0.3°; 0.16°) 0° 0.2° (0.02°; 0.5°) p = 0.02

Patella shift (+lateral) −0.01 mm (−0.2 mm; 0.2 mm) 0 mm −0.1 mm (−0.2 mm; 0.1 mm) n.s.

Retropatellar peak pressure 0.2 MPa (0.04 MPa; 0.4 MPa) 0 MPa −0.3 MPa (−0.4 MPa; −0.10 MPa) p < 0.01
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posterior translation of the femur. The opposite effect was 
seen using the inlay with 3° external rotation. Posterior trans-
lation of the femur at 120° of flexion was in neutral rota-
tion −5.0 ± 3.9 mm, in internal rotation −5.6 ± 5.1 mm, in 
external rotation −4.9 ± 4.6 mm (p < 0.01).

Discussion

The most important finding of the present study was a sig-
nificant influence of the rotation of the tibial component on 
retropatellar peak pressure. Looking at the pressure distri-
bution, especially the peak pressure, on the medial part of 
the patella ridge was reduced by external rotation of the tib-
ial component. This in vitro tendency might support clini-
cal studies revealing less anterior knee pain after TKA with 
external rotation of the tibial component [23, 27]. Even 
though the mixed-effect model revealed a significant differ-
ence with alteration of only 3°, there is no threshold for the 
amount of reduction of retropatellar peak pressure and an 
effect on clinical symptoms like anterior knee pain. There 
are no standard guidelines for the rotational placement of 
the tibia component in TKA [19, 23, 32], and in clinical 
situations, malrotations of the tibial component are often 
much higher [13, 23]. Even if there would be a uniform 
ideal rotational position, it is hardly possible to place the 
tibial component within a range of 3° with conventional or 
patient-specific instrumentation or even computer-assisted 
surgery [15, 30, 33].

Even though there were significant differences regard-
ing the regression coefficients of patella tilt and patella 
rotation between internal and external rotation of the tibial 
component, the influence on patella kinematics was rather 
marginal. The relatively small alteration of the patella rota-
tion and patella tilt might not have a clinical impact. The 
alterations of the patella flexion and patella shift were even 
smaller and not significant.

A comparison with former in vitro studies examining 
the influence of tibial component rotation on patella kin-
ematics is difficult due to different experimental set-ups [3, 
26]. But in both referenced studies, the alteration of patella 
tilt, shift and rotation were also only marginal. Regarding 
external rotation of the tibial component, Anglin et al. [3] 
also found the tendency of a more lateral patella tilt in knee 
flexion compared with the position in extension.

The influence of the rotation of the tibial compo-
nent on the kinematics of the femorotibial joint was also 
rather small. With internal rotation of the tibia, there was 
slightly more posterior translation of the femur, but a clini-
cal impact of this difference is rather unlikely. The same 
applies for the femorotibial rotation. The difference of the 
mean values between 3° internal and 3° external rotation of 
the tibial component was statistically significant. Probably 
due to the low constraining force between the femur and 
tibial component in the used CR prosthesis, a rotation of 
the tibial component did not lead to a highly altered femo-
rotibial rotation.

Comparing former in vitro studies with this experimen-
tal setup is complex, because different specimens with 
anatomical variability of the patella were used [35, 36]. 
But there seems to be a higher influence of the tibial rota-
tion compared with the femoral rotation concerning ret-
ropatellar peak pressure. In a former  study of Steinbrück 
et  al. [36], the alteration of the femoral compartment of 
3° internal rotation produced an increase in maximum ret-
ropatellar peak pressure of 0.01 MPa, and using the vari-
ant with 3° external rotation caused a decrease of 0.1 MPa 
compared with the neutral rotation. Compared with these 
data, 3° internal rotation of the tibial component led to a 
higher increase in the maximum retropatellar peak pres-
sure by 0.2 MPa, as well as 3° external rotation revealed a 
higher decrease by 0.5 MPa. In the range of ±3° of rotation 
alteration, the influence on the maximum retropatellar peak 
pressure was five times higher for the tibial component 

Fig. 4   Retropatellar pressure distribution in a flexion angle of 100° for different rotations of the tibial component. Patella ridge is dotted in grey
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compared with the femoral component (0.7 vs. 0.1 MPa). 
Only further external rotation of the femoral component 
by 6° caused a distinct decrease in mean retropatellar peak 
pressure of 1.1 MPa.

This study has a number of limitations to be considered. 
One limitation lies within the variety of the tibial tuberos-
ity [17]. Especially in knees with varus deformity, the tibial 
tuberosity is not a reliable rotational landmark for the tibia 
component [5, 31]. On the other hand, Lawrie et  al. [21] 
are certifying a good reliability of the tibial tuberosity on 
the flexion–extension axis. In our study, we used the tib-
ial tuberosity for orientation since it is the main rotational 
landmark in clinical practice of TKA [23]. To reduce the 
amount of variety, specimens with serious valgus or varus 
deformity (≥10°) were excluded.

A challenge of all in vitro studies using cadaver speci-
mens is the limited acquisition of samples. We tested all 
modifications of implantation in between one specimen, 
and due to paired observations, statistical significance is 
supported, although a higher number of specimens might 
have supported our results substantially. Due to techni-
cal reasons, it was only possible to produce altered inlays 
with 3° of internal or external rotation. In clinical situa-
tions, malrotations of the tibial component are often much 
higher [13, 23]. Another limitation with in a knee rig study 
lies within the constriction of simulation to a loaded squat. 
Many activities of daily living like walking, climbing stairs 
or rising from a chair cannot be simulated with this rig. But 
parts of the results may be transferred to in vivo activities.

Finally, these achieved results only apply for TKA with 
fixed-bearing inlays. The results cannot be transferred 
to TKA with mobile bearing inlays or rotation platform, 
because these inlays adjust independently to the rotation of 
the tibial component.

The results of our study highlight the importance of 
tibial component alignment especially in knee arthroplasty 
with fixed bearing. In patients with unexplained knee pain 
after TKA, a vast internal tibial malrotation should be radi-
ologically excluded [27, 34].

Conclusion

A significant reduction of retropatellar pressure by rotat-
ing the tibial component externally could be confirmed by 
this in vitro study, while knee kinematics remained almost 
unchanged. Wide internal rotation of the tibial component 
should be avoided intraoperatively and might cause anterior 
knee pain according to clinical studies.
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