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ligaments and tibiofemoral motion during knee flexion. 
The models shifted the joint line by 3 and 5 mm both proxi-
mally and distally from the anatomical level. The data were 
captured from full extension to flexion 135°.
Results  The elevated joint line revealed a relative increase 
in distance between ligament attachments for both collat-
eral ligaments in comparison with the anatomical model. 
Also, tibiofemoral movement decreased with an elevation 
in the joint line. Conversely, lowering the joint line led to 
a significant decrease in distance between ligament attach-
ments, but greater tibiofemoral motion.
Conclusion  Elevation of the joint line would strengthen 
the capacity of collateral ligaments for knee motion con-
straint, whereas a distally shifted joint line might have the 
advantage of improving tibiofemoral movement by slack-
ening the collaterals. It implies that surgeons can appro-
priately change the joint line position in accordance with 
patient’s requirement or collateral tensions. A lowered joint 
line level may improve knee kinematics, whereas joint line 
elevation could be useful to maintain knee stability.
Level of evidence  V.

Keywords  Joint line · Collateral ligament · Length 
change · Total knee arthroplasty · Knee kinematics

Introduction

Total knee arthroplasty (TKA) has been demonstrated 
excellent longevity, but clinical scores after TKA are not 
equivalent to patient satisfaction [35]. With pain relief, 
patients may expect to increase their activity levels of daily 
living [17, 46]. Nevertheless, TKAs had exhibited poor 
kinematics [5, 8, 29] and an inadequate flexion range [15, 
38] when compared with the natural knee. Knee kinematics 

Abstract 
Purpose  The primary intent of total knee arthroplasty is 
the restoration of normal knee kinematics, with ligamen-
tous constraint being a key influential factor. Displacement 
of the joint line may lead to alterations in ligament attach-
ment sites relative to knee flexion axis and variance of liga-
mentous constraints on tibiofemoral movement. This study 
aimed to investigate collaterals strains and tibiofemoral 
kinematics with different joint line levels.
Methods  A previously validated knee model was 
employed to analyse the change in length of the collateral 
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after TKAs is heavily dependent on a complicated interac-
tion between passive soft tissue restraint, implant design, 
component alignment, muscle force, and the joint line (JL) 
[4, 33, 41, 45, 47]. This study explored the influence the 
variation of the joint line has on soft tissue tension and tibi-
ofemoral motion during knee flexion.

The lateral collateral ligament (LCL) and the medial col-
lateral ligament (MCL) are not only major stabilizers of knee 
varus/valgus rotation but the MCL also resists tibial rotation 
and anterior–posterior translation [12, 16]. Therefore, altera-
tion of the collateral ligaments’ function may affect knee 
movements and subsequent range of motion after TKA. In 
the work of Amis and Zavras [2], it was revealed that the 
change in length of the cruciate ligaments was significantly 
related to the location of the ligament’s femoral attachment 
site relative to knee flexion axis. If the JL level of TKA is 
shifted proximally or distally, it alters the knee flexion axis 
relative to the location of the collateral ligaments’ femoral 
attachment sites. Changes in joint line can probably cause 
varied lengthening or shortening of the collateral ligaments 
during knee flexion [6]. Thus, the constraint of the collateral 
ligaments on tibiofemoral movements might be affected, 
resulting in different TKA kinematics.

Precise restoration of the joint line is difficult to achieve 
during operation. Surgeons may have to accept slight joint 
line change and it is, therefore, important to know the 
effects of small variations in joint line on the TKA bio-
mechanics. Although one study reported kinematic behav-
iour and soft tissue elongations after TKA [14], there has 
been little biomechanical analysis of the influence the joint 
line variation has on the knee kinematics or the collater-
als strains. This study aimed to quantify the tibiofemoral 
motion and length change patterns in the collaterals.

For in vivo studies, it is difficult to clarify the influential 
factors due to multiple variables that cannot be controlled 
including patient-specific variation, surgical technique, 
or implant design. Computational models, however, can 
be used to control all variables and assess the influence 
of selected parameters. This study employed a validated 
computer knee model to understand how displacement of 
the JL affects the distance between the femoral and tibial 
attachment sites and subsequent tibiofemoral motion dur-
ing knee flexion. It was hypothesized that JL variation and 
the accompanying change in the location of femoral col-
lateral attachment sites relative to knee flexion axis affect 
the change in length of the collateral ligaments and signifi-
cantly influences knee kinematics.

Materials and methods

A dynamic multibody model of a replaced posterior-sta-
bilized knee [21, 30] was utilized to calculate the change 

in length of the collateral ligaments during knee flexion 
(Fig. 1). The model comprised of a femur, tibia, fibula, and 
patella with implants and surrounding soft tissues, includ-
ing collateral ligaments, quadriceps muscle, and patellar 
ligament. The MCL was divided into anterior (AMCL), 
oblique (OMCL), and deep bundles (DMCL), while the 
LCL was modelled as single bundle. Each fibre bundle was 
represented by nonlinear tension-only springs with refer-
ence strains and stiffness [1]:

where εj is the strain of the j th element, K1j and K2j are 
the stiffness of the element for the parabolic and linear 
regions, respectively, and L0j and Lj are its current and slack 
lengths, respectively. The linear range threshold is specified 
as ε1 = 0.03.

Quadriceps muscle, a dominant actuator during knee 
bending, and patellar ligament were modelled as two bun-
dles with force–length relationships in accordance with 
Piazza and Delp [36]. Furthermore, in order to simulate the 
wrapping of the quadriceps tendon around femoral troch-
lea [44], each quadriceps tendon bundle was divided into 
two spring elements in series and connected by beads [26]. 
Solid to solid contact was then defined between the bead 
and the femoral component.

A line linking the flexion facet centres of the femo-
ral condyle which acted as a reliable axis to describe 
kinematics [25] was designated as femoral flexion axis. 
The flexion facet centres were in compliance with the 

F =







0 εj ≤ 0

K1j(Lj − L0j)
2

0 < εj ≤ 2ε1
K2j[Lj − (1+ ε1)L0j] εj ≥ 2ε1

Fig. 1   Dynamic knee model developed in our previous publication 
[21, 30]. The femur was driven to rotation about the flexion axis. The 
tibia was free except for the flexion–extension. A ground reaction 
force was applied to the distal tibia during knee flexion
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condylar radii of the femoral component. Knee flexion 
was ascribed to the femur via femoral flexion axis to 
simulate the lunging movement, whereas the tibia was 
unconstrained except in flexion–extension. An average 
ground reaction force of 1,100 N (about 1.5 times body 
weight) [9] was applied through the tibia. Solid to solid 
contacts were then modelled between femoral and tibial 
components and between the femoral component and 
the unresurfaced patella. The friction coefficient of the 
metal-to-polyethylene articulation was designated as 0.04 
[13], and the patella-to-metal interface was assumed to 
be frictionless.

Two further assumptions were included in the 
dynamic knee model. First, the ground reaction force 
vector always acted in the proximal direction. This 
assumption was considered acceptable for the purpose 
of investigating variations in the joint line although the 
direction of ground reaction force would change during 
normal knee flexion [31]. Second, flexion of the femur 
was dependent on a fixed axis which was determined 
from the flexion facet centres of femoral condyles [23]. 
All degrees of freedom of the tibia were unconstrained 

except in flexion. This assumption was also reason-
able because the design of the prosthetic components 
was symmetrical about medial and lateral tibiofemoral 
articulations.

For joint line variation, the displaced distance of 3 and 
5  mm from the anatomical level was designated because 
a mild JL shift did not influence clinical outcomes [7, 37, 
39]. For JL proximalization, tibial and femoral components 
were elevated and the insert was thickened to fill the gap 
caused by component translation (Fig.  2a). Distalization 
of the JL was also simulated by shifting prosthetic compo-
nents inferiorly (Fig. 2b). Total five different JL positions 
were investigated in this study. Regardless of how the com-
ponents were translated, the patella position and ligament 
length in full knee extension remained unchanged in all 
simulations.

A 0–135° of knee flexion was simulated referring to the 
claimed ROM of the TKA system. To assess the change in 
length of each bundle of the MCL and LCL, the distance 
between femoral and tibial insertion sites was recorded 
every 15° during flexion. The change in this distance rela-
tive to extended knee (0°) was calculated and expressed 

Fig. 2   Joint line was shifted 
with a 3 mm and b 5 mm both 
proximally and distally
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as a percentage of the length at full extension. The change 
in the length of ligament insertions with different JL posi-
tions was compared with that of the anatomically recon-
structed knee. In addition, to acquire kinematics data, a 
Cartesian coordinate system was established by the lon-
gitudinal axis (z, internal and external rotation axis), the 
mediolateral axis (y, flexion and extension axis), and the 
anteroposterior axis (x, varus and valgus rotation axis; 
Fig. 2). Anteroposterior femoral translation was measured 
in x direction through medial and lateral condyle’s flexion 
facet centres relative to their original positions. Internal 
and external tibial rotations were measured in z direction 
on the local coordinate system of the tibia relative to the 
local coordinate of the femur. All analyses were carried 
out by MSC.ADAMS (MSC Software Corporation, Santa 
Ana, CA).

Results

Change in length of collateral ligaments

Lateral collateral ligament

For all JL levels, the distance between insertions in the 
LCL remained approximately constant at initial flexion 
angles; however, obvious changes occurred during high 
knee flexion (Fig. 3). Overall, elevation of the JL generated 
an increase in ligament length, whereas it was reduced with 
JL distalization. At 135° of flexion, the difference of LCL 

length as compared to the anatomically reconstructed knee 
is shown in Table 1 for all JL positions.

Medial collateral ligament

Similarly, joint line proximalization extended the distance 
between femoral and tibial attachment sites during knee 
flexion, while a decreased ligament length for a lowered JL 
(Fig. 4). In detail, although lowering the JL led to shorten-
ing of the distance between the attachments, the AMCL and 
the DMCL remained above the distance at full extension 
(Fig. 4a, b). However, beyond 105°, the OMCL was shorter 
than at full extension even with an elevated JL (Fig.  4c). 
Table 2 shows the difference of MCL length at flexion 135° 
in comparison with the anatomically reconstructed knee.

Tibiofemoral movement

Initial engagement of the post-cam occurred at 80° of knee 
flexion in the anatomical JL model. Post-cam engagement 
in 3 and 5 mm elevated models occurred at flexion angle of 
92° and 100°, respectively, whereas it was 78° and 73° in 
the models with a 3 and 5 mm lowered JL.

Lateral condyle translation

Before post-cam engagement, lateral femoral condyle of all 
models moved forward (Fig.  5a). The amount of anterior 
movement of the lateral condyle was increased with low-
ering of the JL position. Maximal anterior translation of 
the lateral condyle was 5.7 mm when the JL was lowered 
by 5 mm. Thereafter, the lateral condyle moved backward. 
Posterior condyle translation was increased dramatically 
with greater knee flexion.

Medial femoral translation

For all models, the medial condyle displayed a similar pat-
tern of movement with that of lateral condyle (Fig. 5b). It 
also moved forward before post-cam engagement, whereas 
the medial condyle rolled backward as the femoral cam 
contacted with the tibial post. Similarly, the more the JL 
was lowered, the greater the magnitude of medial condyle 
translation.

Tibial rotation

Internal tibial rotational angle increased following knee 
flexion in all models before post-cam engagement (Fig. 5c). 
At 75° of flexion, internal tibial rotation of the anatomi-
cally reconstructed knee reached 7.7°, whereas the model 
with a 5 mm lowered JL displayed the least tibial rotation 
of 5.1°. With higher flexion angles, the amount of internal 

Fig. 3   Length change pattern in the LCL from full extension to 135° 
of knee flexion for different joint line positions. (JLP joint line proxi-
malization, JLD joint line distalization)

Table 1   Difference of LCL length for all JL levels in comparison 
with anatomically reconstructed knee at 135° of flexion

+ increase, − decrease, JLP joint line proximalization, JLD joint line 
distalization

JLP_5 mm JLP_3 mm JLD_3 mm JLD_5 mm

Difference +18.1 % +12.8 % −10.3 % −20.5 %
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tibial rotation decreased sharply for all JL positions. How-
ever, rotation increased after post-cam disengagement, 
especially when the JL was moved distally.

Discussion

The most important finding of the current study was that 
the lowered JL shortened the distance between collateral 

ligament attachments following knee flexion, whereas a 
greater tibiofemoral movement was observed. Conversely, 
an elevated JL produced a lengthening of the collateral lig-
ament and less tibiofemoral motion.

Issues regarding knee kinematics after TKA have been 
of great concern. Numerous studies have investigated the 
effects of the prosthetic design features on knee motion in 
order to restore normal knee kinematics [29, 34, 43]. Nev-
ertheless, the magnitude of the normal tibiofemoral move-
ment was only partially recovered. This study discovered 
an alternative treatment, shifting the JL, which changed the 

Fig. 4   Length change patterns in a anterior, b deep, and c oblique 
bundles of the MCL from full extension to 135° of knee flexion for 
different joint line positions. (JLP joint line proximalization, JLD 
joint line distalization)

Table 2   Difference of MCL length for all JL levels in comparison with anatomically reconstructed knee at 135° of flexion

+ increase, − decrease, JLP joint line proximalization, JLD joint line distalization

JLP_5 mm (%) JLP_3 mm (%) JLD_3 mm (%) JLD_5 mm (%)

Difference in AMCL +4.89 +2.45 −3.99 −5.97

Difference in DMCL +3.69 +0.47 −4.36 −4.79

Difference in OMCL +22.57 +13.43 −19.46 −31.35

Fig. 5   a Lateral, b medial condyle translation, and c tibial rotation 
against flexion angle in different models. (+ anterior, − posterior)
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constraint of the collaterals during knee flexion to enhance 
tibiofemoral movement.

The change in distance between ligament attachments 
with variations in the joint line could be explained from 
the relative position between the condylar centre and the 
ligament attachment site. From the sagittal view, a change 
in the JL level would simultaneously translate the condy-
lar centres of the femoral component. Elevation of the JL 
caused a proximal shift of the condylar centre, locating it 
closer to the ligament attachment. Oppositely, lowering 
the JL translated the condylar centre distally (Fig. 6). Dur-
ing knee flexion, the elevated JL maintained a proximal 
displacement of the ligament attachment site, thus further 
increasing the length of the ligament. Lowering the JL pro-
duced a distal shift of the attachment sites, which reduced 
the DI.

Lowering the JL maintained a constant LCL length 
before 60° of flexion, but the length decreased significantly 
after 60°. However, there was a 5 % pre-strain in the LCL at 
full knee extension [1]. The LCL still elongated for a 3-mm 
lowering of the JL, while it was slackened with a 5-mm 
lowering during knee flexion. For the MCL, the AMCL 
was stretched with knee flexion although the lowered JL 
reduced the distance between the attachments. Maximum 
elongation of the AMCL with 3- and 5-mm lowering of 
the JL was 10.4 and 9.4 %, respectively. Even taking into 
account the 6 % reduction in length at full extension [1], 
the AMCL still had the ability to constrain tibiofemoral 
motion. The DMCL remained taut after lowering the JL by 
3 and 5 mm. In addition, the OMCL was still stretched dur-
ing low flexion due to a 3.1 % pre-strain [1].

Overall, lowering the JL decreased the distance between 
ligament attachments, resulting in ligament laxity. Several 
literatures showed that hyper-laxity of the ligament result-
ing from unbalanced flexion and extension gaps or substan-
tial ligament release due to considerable joint deformity 
caused instability in flexion and posterior subluxation of 

the tibia. Some cases of subluxation were induced by using 
a total condylar knee prosthesis, which is designed without 
a mechanism for substituting cruciate ligaments [22, 40]. 
Others occurred with posterior-stabilized knee prostheses, 
but the tibial subluxation was mainly attributed to preop-
erative valgus knee with increased Q angle, preoperative 
patellar instability, or inadequate lateral release [32]. For 
a varus-deformed knee, the release side is the medial col-
lateral, whereas the LCL, a passive stabilizer of posterior 
tibial movement [19], is generally designated as a reference 
for ligamentous balance. Our results revealed that a 3-mm 
lowering of the JL retained the LCL function as a poste-
rior stabilizer, avoiding tibial subluxation. Furthermore, 
this mild JL variation did not influence clinical outcomes 
[7, 37, 39].

Therefore, appropriately lowering the JL could enhance 
tibiofemoral movement without compromising joint sta-
bility. This implies that this procedure is advantageous in 
improving high knee flexion. Specifically, the tibial insert 
of most contemporary TKA designs is concave in shape, 
and the articular surface is deeply dished in the coronal 
plane. This geometry could produce a greater constraint 
to femoral rollback and axial tibial rotation. In order to 
allow more relative movement between the femur and the 
tibia, a slightly loose ligament during knee flexion might 
be necessary to accommodate greater translation and rota-
tion. Numerous investigations also suggested a lax knee 
joint can improve the range of flexion [3, 10]. In a clini-
cal study with bilateral TKAs, patients preferred the laxer 
knee and felt more comfortable [28]. In addition, weight-
bearing, high-flexion activities such as kneeling and squat-
ting necessitate more than 20° of internal tibial rotation and 
the joint stiffness will increase with muscle contractions. 
On the other hand, a non-weight-bearing posture of cross-
legged sitting requires 33° of tibial rotation [18]. Releasing 
the ligamentous constraint through a properly lowered JL 
may be suggested to improve tibial rotation, which helps 

Fig. 6   Diagram showing 
the relative position between 
the condylar centre and the 
ligament attachment site with 
different joint line position. 
(sign: CC-condylar centre; Star-
ligament insertion)
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knee flexion. However, it should be noted that over-internal 
rotation and rollback may cause excessive tightening in the 
iliotibial band and subsequent anterolateral knee pain [20].

As for JL elevation, the results exhibited that it further 
increased the distance between ligament attachments. König 
et  al.’s study [27] also presented similar change in length 
of the collateral ligaments when the JL was moderately 
elevated. Considering that collateral ligaments are taut in 
knee extension, it is expected that further increased ligament 
length would lead to high motion constraints to the knee 
joint. The additional stretch in ligaments could also increase 
soft tissue tension, contributing to internal loading of the 
tibiofemoral joint, which has been correlated with wear of 
the polyethylene insert after TKA [11]. Jeffcote et al. [24] 
revealed an increased tibiofemoral force with a 2-mm proxi-
mal shift of components. Furthermore, the knee is exposed 
to considerable loading during daily activities [42, 48]. Any 
raised internal forces may result in overloading of the tibi-
ofemoral joint, jeopardizing the polyethylene insert.

Some limitations of the present study should be consid-
ered. First, this study utilized a specific posterior-stabilized 
knee prosthesis which is not representative of contempo-
rary TKA designs. However, we believe that the results are 
not unique to this specific design. Second, a cruciate-retain-
ing knee prosthesis was not included in the current study. 
Further study of the effect of JL variation on the posterior 
cruciate ligament is needed. Third, all components included 
in this model were designated as rigid bodies, and thus, the 
results cannot reflect the influence of material properties on 
knee motion. Fourth, surrounding soft tissues were mod-
elled with nonlinear behaviour, and their properties were 
simulated with simple force elements, and thus, the biolog-
ical conditions may not be adequately represented. Obvi-
ating these limitations, the current study provides instruc-
tions for surgical treatment to help improve knee motion.

This work provides certain instructions for surgeons 
regarding their day by day clinical practice. It is suggested 
that surgeons could properly adjust the joint line position 
according to patient’s demands. A lowered joint line level 
might be advantageous for young patients or the popula-
tions who expect to increase their activity levels of daily 
living. On the other hand, once excessive collateral liga-
ment laxity resulting from considerable knee deformity 
is recognized, an orthopaedic surgeon could augment the 
joint line with the goal of achieving knee joint stability.

Conclusion

A lowered JL reduced the distance between ligament 
attachments, relieving ligamentous constraint, while an ele-
vation of the JL further strengthen the function of the col-
lateral ligaments during knee flexion. A lowered JL had the 

advantage of enhancing tibiofemoral movement. However, 
elevation of the JL may not be allowed after TKA because 
it would induce catastrophic complications.
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