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Abstract

Purpose Osteochondral defects (i.e., defects which affect

both the articular cartilage and underlying subchondral

bone) are often associated with mechanical instability of

the joint and therefore with the risk of inducing osteoar-

thritic degenerative changes. This review addresses the

current surgical treatments and most promising tissue

engineering approaches for articular cartilage and sub-

chondral bone regeneration.

Methods The capability to repair osteochondral or bone

defects remains a challenging goal for surgeons and

researchers. So far, most clinical approaches have been

shown to have limited capacity to treat severe lesions.

Current surgical repair strategies vary according to the

nature and size of the lesion and the preference of the

operating surgeon. Tissue engineering has emerged as a

promising alternative strategy that essentially develops

viable substitutes capable of repairing or regenerating the

functions of damaged tissue.

Results An overview of novel and most promising os-

teochondroconductive scaffolds, osteochondroinductive

signals, osteochondrogenic precursor cells, and scaffold

fixation approaches are presented addressing advantages,

drawbacks, and future prospectives for osteochondral

regenerative medicine.

Conclusion Tissue engineering has emerged as an

excellent approach for the repair and regeneration of

damaged tissue, with the potential to circumvent all the

limitations of autologous and allogeneic tissue repair.

Level of evidence Systematic review, Level III.

Keywords Osteochondral defect � Tissue engineering �
Biomaterials � Stem cells � Growth factors � Regenerative

medicine

Introduction

Articular cartilage is a specialized tissue that plays a very

important role in the natural joints [65], it increases joint

congruence, it protects the subchondral bone from high

stresses, and it reduces friction at the edge of long bones [91].

Cartilage response to injury does not follow the typical

necrosis, inflammation, repair and scar tissue remodeling

cascade of events, as it lacks vascularization. Cartilage

lesions are therefore usually irretrievable, due to the avas-

cular nature of this tissue and consequent lack of access to a

pool of potential reparative cells and growth factors [94].

Osteochondral lesions, which involve both the articular

cartilage and the subchondral bone, typically lead to the

formation of fibrocartilage that has different biomechanical

properties from the native hyaline cartilage and does not

protect the subchondral bone from further degeneration

[76]. This process involves both repaired and adjacent
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native tissues leading to the insurgence of severe pain, joint

deformity, and loss of joint motion. Osteochondral defects

typically require surgical procedures [83]. A brief

description of the current surgical treatments used will be

made, followed by an exhaustive overview of innovative

tissue engineering approaches for the regeneration of

osteochondral lesions.

Current surgical treatments

Currently, for the treatment of osteochondral lesions

\2.5 cm2, mostly the techniques of Joint Debridement,

Microfracture, and Mosaicplasty have been used, the

choice of which to use depending on several factors, e.g.,

size of lesion, availability of particular treatment, the age

and requirements of the patient [33, 46].

Joint Debridement eliminates debris from the joint space

or joint surface only to alleviate pain [43, 87] and, in

clinical, is usually associated with bone marrow stimula-

tion technique, or microfracture. Bone marrow stimulation

consists in penetration of the subchondral bone and release

of progenitor cells from the bone marrow cavity into the

defect. Such progenitor cells originate cells resembling

morphologically the chondrocytes and that produce a

fibrocartilaginous cartilage. Mosaicplasty, also called

autologous osteochondral grafts, removes cylindrical plugs

of hyaline cartilage with underlying subchondral bone from

an unaffected area and implants them into the chondral

defect, prepared with perpendicular edges of normal car-

tilage around, to create a ‘‘mosaic’’ pattern [34].

For osteochondral lesions [2.5 cm2, cells with chon-

drogenic potential and osteochondral allografts have been

used. Autologous Chondrocytes Implantation (ACI) con-

sists in the isolation of chondrocytes from a small cartilage

piece harvested from a low-weight-bearing area of the knee

joint, their expansion in vitro for 2–3 weeks and trans-

plantation into the chondral defect and covering with a

periosteal patch usually from the upper tibia surface. The

introduction of matrix-associated ACI (M-ACI) is the first

ever application of tissue engineering in orthopedic sur-

gery; it minimizes donor site morbidity associated with

periosteum harvesting and prevents cell de-differentiation

[4, 31, 68]. Various scaffolds are available for clinical use,

but there are only a few technical reports about arthro-

scopic M-ACI in the literature [54, 67, 95].

Recently, 53 patients with ostheochondral defects were

treated with M-ACI and after 1 year, Magnetic Resonance

Imaging (MRI) revealed a completely repaired defect with

slight subchondral bone abnormality in 38 cases. A 5-year

follow-up revealed a complete integration with the sur-

rounding native cartilage with no detachment or bone

marrow edema in 15 out of 17 patients [97].

Osteochondral allografts are often indicated as a rescue

treatment in post-traumatic situations after periarticular

fracture in lesions in which there is a significant bony

deficit and also after failure of other techniques [48].

Each of the above-mentioned methods has shown to have

limited success in particular focusing on long-term repair,

and they are usually limited to small lesions. Currently,

when articular cartilage is severely damaged and it is

combined with lower limb malalignment, periarticular

osteotomies are the most widely used treatment methods.

If varus or valgus alignment occurs, the limb is realigned

to transfer joint load away from the damaged cartilage

surfaces. Procedures result in long-term pain relief but

overloading of the unaffected compartments implies its

progressive degeneration over several years leading to

complete joint failure [9]. For severe degeneration of the

joint, this is replaced by a total prosthetic joint typically

made up of metallic alloy combined with polyethylene liner

and cup, components that suffer high wear and corrosion

and at the same time are still much stiffer than cartilage, so

that shock absorption, lubrication, and deformation prop-

erties are lacking in the artificial joints. Detailed limitations

of the current surgical strategies for osteochondral regen-

eration have been recently reviewed [29].

Tissue engineering in the orthopedic field

In the last few decades, tissue engineering has emerged as a

promising alternative multi-disciplinary approach for the

repair and regeneration of damaged tissue. Making joint of

the latest developments in materials science, engineering,

chemistry, and cell biology applied to medical science, it

aims at restoring both function and mechanical properties

of native articular cartilage and subchondral bone. Within

osteochondral tissue engineering, different approaches

have been followed but the best results will probably be

achieved by the combination of 1. Osteochondroconductive

scaffolds, 2. Osteochondroinductive signals, 3. Osteo-

chondrogenic precursor cells, 4. Suitable fixation. A

description of the most recent approaches in osteochondral

tissue engineering for each topic will be presented.

Osteochondroconductive scaffolds

Tissue engineering requires a tissue-conductive system in

order to mimic the 3D environment of the extracellular

matrix (ECM), provide structural support to the regener-

ated and surrounding tissues, and provide an increased

surface area to volume ratio for cellular migration, adhe-

sion, and differentiation [11]. Note that the cellular growth

and subsequent tissue regeneration depend in part on the
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characteristics and porosity of the scaffold. It must be

biodegradable and biocompatible, and it must present a

suitable fixation to the defect site, facilitate cell attachment,

regulate cell expression, and promote the supply of nutri-

ents and growth factors [26]. In order to control and direct

cell behavior, a well-defined biomimetic environment,

which surrounds the cells and promotes specific cell

interactions, is necessary. Scaffold properties depend pri-

marily on the nature of the biomaterial and the fabrication

process. The nature of the biomaterial has been the subject

of extensive studies including different materials such as

natural, synthetic materials, ceramics or composite of these

compounds.

Natural materials provide a more physiological envi-

ronment for cell adhesion and proliferation and may be

further divided into protein-based matrices such as colla-

gen and fibrin, and carbohydrate-based matrices such as

alginate, agarose, chitosan, and hyaluronan [75–77].

Natural materials are biocompatible, biodegradable, and

they have the ability to mimic certain aspects of native

ECM, thus facilitating cell adhesion, migration, differen-

tiation, and ECM deposition. However, natural materials

have several disadvantages such as immunogenecity, dif-

ficulty in processing, and a potential risk of transmitting

animal-originated pathogens [57]. Moreover, despite the

biocompatibility, these materials are mechanically weak

and undergo rapid degradation upon implantation if not

cross-linked with appropriate chemical reagents [57].

Synthetic materials have been used extensively in tissue

engineering both in vitro and in vivo due to their easy

molding characteristics, relatively easy production and the

ability to control dissolution and degradation [11]. The

most popular biodegradable synthetic polymers include

poly(a-hydroxy acids), especially poly(lactic acid) (PLA),

poly(glycolic acid) (PGA) and their co-polymers (PLGA),

poly(e-caprolactone) (PCL), poly(propylene fumarate)

(PPF), poly(dioxanone) (PDO) [65]. Although synthetic

materials are biocompatible, they do not have natural sites

for cell adhesion and these often need to be added. Further,

their in vivo degradation by a hydrolytic reaction causes a

local reduction in pH and possible inflammation response

[26].

Ceramics, such as hydroxyapatite (HA) or other calcium

phosphate ceramics (including tricalcium phosphate, TCP)

or bioactive glasses are known to promote, when implan-

ted, the formation of a bone-like apatite layer on their

surfaces [7, 70]. They have been investigated extensively

during the last decades and are widely used for bone

replacement, due to their osteoconductivity and high bio-

compatibility, also associated with stem cells therapy [66].

The main purpose for osteochondral tissue engineering

is to recreate a more biomimetic scaffold combining syn-

thetic materials with cell-recognition sites of naturally

derived materials [7, 69, 92]. In addition, looking to the

architectures of native tissues, novel graded scaffolds

represent the challenge for osteochondral defect treatment.

In fact, bone and cartilage have complete different prop-

erties. For bone, mechanically stiff biomaterials with

options for medium perfusion and vascularization are

required to support cell expansion, as well as the produc-

tion of bone matrix rich in type I collagen and HA. By

contrast, native cartilage matrix consists of an avascular

highly hydrated proteoglycan hydrogel embedded into a

type II collagen network.

Although several studies focus on the design and opti-

mization of a stratified osteochondral graft with biomimetic

multi-tissue regions, only few show good results in

experiments in vivo. Here, some encouraging examples are

mentioned.

A multi-phased scaffold of agarose hydrogel and sintered

microspheres of PLGA-bioactive glass composite has

showed in vitro a controlled chondrocyte and osteoblast

culture on each scaffold region, resulting in the formation of

three distinct yet continuous regions of cartilage, calcified

cartilage, and bone-like matrices [45]. Very recently, a poly

vinyl alcohol/gelatin-nano-hydroxyapatite/polyamide6

(PVA-n-HA/PA6) bilayered scaffold seeded with induced

bone marrow stem cells (BMSCs) showed ectopic neocar-

tilage formation in the PVA layer and reconstitution of the

subchondral bone, confined within the n-HA/PA6 layer,

when implanted into the rabbit muscle pouch for up to

12 weeks [82]. A biphasic scaffold combining hyaluronic

acid and atelocallagen for the chondral phase and combining

HA and b-TCP for the osseous phase has proved to be

effective for repairing osteochondral defects, when implan-

ted in the knee joint of a porcine model [41]. Another

biphasic scaffold based on collagen-glycosaminoglycan and

nano calcium phosphate has been developed to mimic the

composition and structure of articular cartilage on one side,

subchondral bone on the other side and the continuous,

gradual soft interface between these tissues. The different

properties of the osseous and cartilaginous compartments

seem promising but, as far as we know, this scaffold has not

yet been tested in a biological system [36].

Very recently, a 3D biomimetic scaffold (MaioRegen,

Fin-Ceramica Faenza S.p.A., Italy) was obtained by nucle-

ating type I collagen fibrils with HA nanoparticles, in two

configurations, bi- and tri-layered, to reproduce, respec-

tively, chondral and osteochondral anatomy [52]. This

scaffold has been tested in chondral defects and deep

osteochondral defects made in the metacarpal bone of two

adult horses and treated, respectively, with the chondral and

osteochondral grafts. Results showed that the growth of

trabecular bone in the osteochondral lesion was evident and

newly formed fibrocartilaginous tissue was present [53]. The

same scaffold has also been tested in the femoral condyles of
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sheeps and 6 months after surgery, histologic and gross

evaluation of specimens showed good integration of the

chondral surface and significantly better bone regeneration

[51]. The same scaffold has been used already in an early

stability clinical trial on 13 patients with 15 large degener-

ative chondral lesions: four at the medial femoral condyle,

two at the lateral femoral condyles, five at the patellas, and

four at the trochleas. The mean size of the defects was

2.8 cm2 and MRI evaluation at short-term follow-up has

demonstrated good stability of the scaffold without any other

fixation device and the histological analysis showed the

formation of subchondral bone without the presence of

biomaterial and the cartilage repair tissue appeared to be

engaged in an ongoing maturation process [52]. Presently, an

extensive clinical trial is ongoing involving eleven European

centers and 150 patients (http://clinicaltrialsfeeds.org/

clinical-trials/show/NCT01282034).

Osteochondroinductive signals

Induction of osteochondral tissue formation refers to the

capacity of many physiological stimuli to stimulate stem

cells or immature bone/cartilage cells to grow and mature,

forming healthy tissue. Most of these stimuli are protein

molecules (e.g., growth factors and cytokines). Much

interest has centered on a group of proteins called Bone

Morphogenetic Proteins (BMPs), which have a powerful

effect in stimulating new bone/cartilage formation, but they

are not the only option for osteochondroinduction [71, 86].

Many other growth factors are now known to have specific

effects on the cell growth, migration, and development.

Some of the factors that are most likely to have clinical

value in the future are as follows: Epidermal Growth Factor

(EGF), Platelet-Derived Growth Factor (PDGF), Fibroblast

Growth Factors (FGFs), Parathyroid Hormone-Related

Peptide (PTHrp), Insulin-like Growth Factors (IGFs),

Transforming Growth Factor-Beta (TGF-b), and Vascular

Endothelial Growth Factors (VEGFs) [26, 47, 89]. Several

of these are under active investigation, though none of

these works have yet advanced to the point of offering

these as routine treatment options to patients. As an

example, a recent study has infused a composite scaffold of

PCL and HA with TGF-b3 and transplanted into the rabbit

condyle. 3–4 weeks after, all rabbits resumed weithbearing

and locomotion. After 4 months, these scaffolds were fully

covered with hyaline cartilage in the articular surface, with

uniformly distributed chondrocytes in a matrix with col-

lagen type II and aggrecan and recruited roughly 130%

more cells into the regenerated articular cartilage than did

scaffolds that had not been loaded with TGF-b3, which

instead had only isolated cartilage formation, with reduced

thickness and density [56].

The method by which a growth factor is released can

have a significant effect on therapeutic efficacy because the

dose and spatio-temporal release of such agents at the

lesion site is crucial for achieving a successful outcome.

Common growth factors delivery methods involve sys-

temic administration or direct injection into the defect site

close to or in direct contact to the scaffold [57]. However,

as a result of the short half-life of many inductive proteins,

this method requires very high doses for therapeutic effect

and still may not permit the necessary concentration of the

factor to be maintained for the appropriate period of time

[38].

Different strategies have been developed to create a

controlled release, even if success has been restricted by

problems of dosage, lack of full activity of recombinant

factors and the inability to sustain the presence of the factor

for an appropriate length of time [73]. Moreover, spatially

controlled delivery of growth factors in the scaffold is

crucial for engineering composite tissue structures, such as

osteochondral constructs [98]. One of the most common

methods of creating controlled growth factors and/or drug

delivery is to utilize the physical properties of the scaffold

material to regulate the amount of factor released. The

target growth factor is mixed with the scaffold precursors

during fabrication. In such systems, the properties of the

scaffold, such as pore size or cross-linking density, regulate

release by diffusion. For instance, BMP-2 and TGF-b1-

loaded PLGA microspheres were utilized with a gradient

scaffold fabrication technology to produce microsphere-

based scaffolds containing opposing gradients of these

signals. This scaffold, seeded with stem cells, has shown

good osteochondral tissue regeneration [19]. Hydrogel

scaffolds, based on the polymer oligo(poly(ethylene gly-

col) fumarate), consisting of two layers: a bone-forming

layer and a cartilage-forming layer loaded with TGF-b1

encapsulated into gelatin microparticles. This approach

exerts some effect on cartilage quality in the defect area in

a rabbit model and demonstrates the exciting potential of

these polymer-based hydrogels as carriers of bioactive

agents for tissue repair [37]. In another study, BMP-2 and

IGF-I were incorporated in PLGA and silk fibroin micro-

spheres and an arginate gel was fabricated with micro-

spheres incorporated as gradient. Silk microspheres were

more efficient in delivering BMP-2, probably due to sus-

tained release of the growth factor. This microsphere/

scaffold system presents a novel opportunity for the spatial

control delivery of multiple growth factors in a 3D culture

environment [98].

Localized gene-therapy approaches to the delivery of

inductive factors may circumvent limitations of direct

protein delivery. Delivery of genes encoding the inductive

factors allows sustained and localized protein production

and can be used for either short-term (e.g., transient
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transfection of cells) or long-term (e.g., retroviral trans-

duction) delivery [13, 14, 63, 78]. In either case, gene

delivery takes advantage of the protein synthesis machin-

ery of the cells to produce the specific bioactive factor.

However, the cell colonization of the scaffold remains a

tight problem for tissue regeneration in large defect cases.

Recently, the usage of superparamagnetic nanoparticles

(MNPs) for biological and medical purposes has been

increasing and their biocompatibility is validated by sev-

eral studies [44, 81, 90]. MNPs are unique in their reaction

to magnetic force and these properties have been already

used in the last decade for in vitro and in vivo applications

(e.g., hyperthermia, contrast agent for MRI, magnetic drug

delivery), whereas only few authors proposed approaches

for tissue engineering [1, 2, 32]. Considering the employ-

ment of a magnetic field for targeted therapy, some limi-

tations are evident in clinical application. In fact, since the

magnetic gradient decreases with the distance to the target,

the main limitation of magnetic drug delivery relates to the

strength of the external field that can be applied to obtain

the necessary magnetic gradient to control the residence

time of MNPs in the desired area or which triggers the drug

desorption [22, 39]. The limits inherent to the use of

external magnetic fields can be circumvented by means of

internal magnets located in the proximity of the target by

minimally invasive surgery [79, 80]. Recently, very inno-

vative tissue engineering approaches with pioneering

magnetic scaffolds for osteochondral defect have been

developed [8, 93]. Under an external magnetic field, the

magnetic moment of the proposed scaffolds enables them

with the fascinating possibility of being continuously

controlled and reloaded from an external supervising center

with tissue growth factors. The scaffolds will work like a

fixed ‘‘station’’ that offers a long-living assistance to

implanted tissue engineering constructs, providing a unique

possibility to adjust the scaffold activity to the personal

needs of the patient, overcoming the present difficulties of

magnetic guiding. Nanomagnetic targeting represents a

promising strategy to guide and accumulate growth factors,

drug doses and cells in the scaffold with gradient, and

reduce their loss and undesired side effects.

Osteochondrogenic precursor cells

Since only living cells can make tissue, the success of any

grafting procedure is dependent on having enough tissue-

forming cells in the area. In some situations, the healthy

tissues around the graft site will contain a sufficient number

of tissue-forming cells. However, in many clinical settings,

the number of bone/cartilage-forming cells in the sur-

rounding tissues may be limited. Areas of scarring, previ-

ous surgery or infection, tissue gaps, and areas previously

treated with radiation therapy are all likely to be deficient

in tissue-forming cells.

ACI and M-ACI have been successfully clinically

applied to treat focal post-traumatic lesions of the knee

joint (see section ‘‘Current surgical treatments’’). Despite

promising clinical results, the use of chondrocytes may be

troublesome due to the requirement of large numbers of

chondrocytes to fill large defect volumes and dedifferen-

tiation of cultured chondrocytes in vitro. Moreover, the

harvest of cartilage for a cartilage biopsy includes two

separate operations and presents limitations associated with

donor site morbidity [68, 99].

Enormous expectations are associated with stem cells

with regard to cell therapy and tissue engineering. Mes-

enchymal stem cells (MSCs), defined as self-renewal,

multi-potent progenitor cells with the capacity to differ-

entiate into several distinct mesenchymal lineages, repre-

sent a promising cell source for treating osteochondral

defects [3]. They are also known as marrow stromal cells or

mesenchymal progenitor cells [12].

Numerous studies have been performed to investigate and

improve the in vitro chondrogenesis process (by the use of

various growth factors) and potential therapeutic use of

MSCs [17, 59]. MSCs from bone marrow can be injected into

a graft site or mixed with other components as a composite

graft. However, there is limited evidence that scaffold

techniques result in homogeneous distribution of cells [42].

Furthermore, the cell yield for bone marrow harvest is rela-

tively small because only 10 to 25 ml of bone marrow can be

obtained from humans [40]. A second source of autologous

stem cells is the periosteum, but the harvest is invasive and

moreover yields a paucity of cells [88].

MSCs derived from the Synovial Membrane (SM) are

attracting considerable attention, since they apparently

have great chondrogenic potential [16]. The SM is com-

posed of a cellular lining layer adjacent to the joint cavity

and a supportive layer that merges with the fibrous layer

of the joint capsule. A small SM biopsy represents an

easily accessible source of autologous MSCs in the con-

text of an explorative or therapeutic arthroscopy. SM-

derived cells from adult human donors of various ages can

be expanded in vitro over at least 10 passages maintaining

their multi-lineage differentiation potential. They may

play a role in the regenerative response during arthritic

diseases and are promising candidates for developing

novel cell-based therapeutic approaches for post-natal

skeletal tissue repair. In fact, when grown in monolayers,

the synovial cells exhibited a fibroblast-like phenotype

[96], but when cultured in a 3D alginate system, they

underwent an immediate chondrogenic switch, even in the

absence of growth factors [55]. A very recent study has

shown the potential use of SM-derived cells as a cell

source for cartilage tissue engineering. Cells were seeded
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into clinically relevant agarose hydrogel scaffolds, and

they received TGF-b3 for the first 21 days. The constructs

exhibited good mechanical and biochemical properties

comparable to native tissue [85].

An alternative source of stem cells is adipose tissue. The

adipose tissue contains a large number of stromal stem

cells and is an abundant, easily accessible and reproducible

cell source for musculo-skeletal regenerative medicine

applications [27, 58]. Adipose stem cells (ASCs) have been

reported to differentiate along different lineages, including

bone, cartilage, fat, muscle, and nerve [84, 101]. Moreover,

ASCs have been shown to be immunoprivileged [30] and

appear to be more genetically stable in long-term culture

compared to BMSCs [15]. Although ASCs are widely used

as seeding cells for osteochondral tissue engineering

studies [21, 35, 74], several challenges remain before ASCs

can be used in everyday clinical practice. Indeed, at pres-

ent, chondrogenesis and osteogenesis occur slower respect

to adipogenesis and also the cell yields are still low, despite

these differentiation protocols including several factors

similar to the adipogenesis protocols [60]. Any improve-

ment in these differentiation timeframes will make ASCs

more attractive for tissue engineering purposes.

The Umbilical Cord Blood (UCB) has been used as a

further alternative source of MSCs [64]. The blood

remaining in the umbilical vein following birth contains a

rich source of hematopoietic stem and progenitor cells

and has been used successfully as an alternative alloge-

neic donor source to treat a variety of pediatric genetic,

hematologic, immunologic, and oncologic disorders [10,

28]. Moreover, UCB-derived stem cells showed to have

more chondrogenic potential in vitro than the bone mar-

row MSC based [6]. Cultured in a defined chondrogenic

medium supplemented with TGF-b, UCB-derived stem

cells present expression of genes typical of cartilage and

production of cartilaginous ECM after 2–3 weeks, so that

they are becoming an attractive cell source also for car-

tilage tissue engineering [25]. In addition, UCB-derived

stem cells form cartilage and/or bone tissue when com-

bined with different material. Human UCB cells-loaded

calcium phosphate ceramic cylinders were implanted in a

critical size bone defect in rats. After 12 weeks, a clear

bony reconstitution was observed [50]. The same authors

proved also the chondrogenic potential of UCB cells by

seeding them into gelatin sponges and implanting them in

nude mice; after 3 weeks, the implanted cells demon-

strated strong chondrogenic differentiation [50]. In

another study, UCB-derived cells were seeded onto PGA

scaffolds and maintained in a rotating bioreactor with

serum-free medium supplemented with TGF-b1. After

12 weeks, the constructs exhibited chondrogenic differ-

entiation displaying histological and functional properties

of native cartilage tissue [24].

Suitable fixation

Failure to regenerate the intricate tissue-to-tissue interface

has been reported to compromise graft stability and long-

term clinical outcome, consequently, the biological fixation

or integrative repair of tissues remain a significant clinical

challenge [23, 61, 62]. The limited number of publications

regarding scaffold fixation is an indication of the lack of

attention in this area even if this is a critical step in tissue

regeneration.

A significant barrier to clinical translation is how to

achieve biological fixation, functional integration, and how

to prevent micromotion at the interfaces of the tissue-

engineered orthopedic grafts, be it bone, ligaments or

cartilage, either with each other and/or with the host

environment [72].

At present, in the treatment of small osteochondral

lesions, most surgeons do not use any fixation system, the

stability of the scaffold being granted only by the fibrin clot

and by the congruency between the prepared lesion site and

the geometry of the scaffold or they use biocompatible glues

(e.g., fibrin glue) as an adjuvant treatment to enhance the

scaffold fixation. Recently, several studies have shown that

biocompatible glues do not improve the fixation compared

with the press-fit technique only [5, 20, 49]. Fibrin glue

preserves the scaffold integrity compared with other more

invasive fixation methods but shows less adhesion of the

scaffold to the cartilage or chondral bone [5].

Suturing of cartilage grafts may cause difficulty in fix-

ation and cartilage may shift and the operation procedure

becomes longer. Multiple suture may cause fracture of the

cartilage and may lead to resorption in postoperative period

[18].

The pin fixation and the transosseous fixation technique

have been proposed as alternatives to the conventional

suture method [100]. They have been shown significantly

higher ultimate failure load, yield load and stiffness than

the classic suture technique for the fixation of bioabsorb-

able scaffolds. At the same time, the results have shown

that the material properties of the scaffold have a strong

influence on the biomechanical tests; therefore, the results

cannot be transferred to the fixation of other matrices.

A different approach using Butyl 2-Cyanoacrylate as

cartilage adhesive was proposed to facilitate matrix

placement because it bonds strongly and immobilizes

easily cartilage grafts [18]. Although it should be easy to

apply, biodegradable and should establish a strong and

flexible band, this technique is not diffused in clinical

applications.

Interdisciplinary approaches that involve materials

research and surgical technique development are manda-

tory to lead to optimal scaffold fixation with limited

damage to the scaffolds.
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An innovative fixation approach based on magnetic

forces firmly holding the scaffold in the implanted position

is coming out from a new project conception. The fasci-

nating possibility to achieve efficient scaffold fixation via

magnetic forces may provide a very elegant and simple

solution to the problems of fixation that many devices

present. To reach this aim, magnetic scaffolds are devel-

oped and under investigation to verify biocompatibility

both in vitro and in vivo [8, 93]. These scaffolds should be

enabled by a magnetization, sufficient to activate an

attractive force toward selected fixating magnetic objects.

Conclusion

Tissue engineering aims to recreate the native environment

to promote the appropriate cell behavior for tissue regen-

eration. The design of tissue engineering strategies for

osteochondral lesions is in increasingly expansion but so

far few of the approaches developed was effectively

brought to the clinic due to the complexity of the tissue to

be regenerated.

Having in mind the challenge to treat ever bigger and

complex defects, it is mandatory to be able to control the

3D variable geometry of the articular surface, considering

the proportions between bone and cartilage thickness and

variation in the curvature radius of the articular surface but

also the micro and nanoscale arrangement of cells and

ECM within the tissue. In the future, multi-disciplinary

osteochondral tissue engineering technology should pro-

vide the means to mimic the complex cascade of tissue

regeneration in each region of the joint. The development

of osteochondroconductive scaffolds, able to be fixed in

order to avoid micromotion at the graft-tissue interfaces,

together with osteochondroinductive signals and osteo-

chondrogenic precursor cells are the main promising

peculiarities necessary to restore function and mechanical

features of the osteochondral tissue.
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