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Abstract Increased patellofemoral contact pressure was

described after total knee arthroplasty (TKA). Aim of this

in vitro study was to compare the influence of a posterior

stabilized (PS) design in comparison to a cruciate retaining

(CR) design on patellofemoral contact pressure. Patel-

lofemoral area contact pressure, peak contact pressure and

the centre of pressure motion were determined in eight

fresh frozen human cadaveric specimens using a Tekscan

sensor (K-Scan 4000). A robotic knee simulator was used

simulating an isokinetic knee extension cycle from 120� of

flexion to full extension. All knees were tested in a first test

cycle after implantation of a CR design and in a second test

cycle after replacement by a PS design, both using a

11 mm PE inlay (Genesis II, Smith & Nephew, Memphis,

TN, USA). The patella remained unresurfaced. A paired

sampled t test to compare mean values (significance,

P B 0.05) was used for statistical analysis. After implan-

tation of the PS design, average patellofemoral area

contact pressure was significantly lower (P B 0.006)

compared with the CR design (PS: 3.58 ± 1.25 MPa; CR:

4.31 ± 1.40 MPa). Accordingly, average patellofemoral

peak contact pressure decreased significantly (P B 0.02)

with the PS design (6.12 ± 2.37 MPa) in comparison with

the CR design (7.17 ± 2.41 MPa). On average, the centre

of pressure motion was more physiological with the PS

design compared to the CR design over the complete

extension cycle. However, this was not significant. In

conclusion, the data suggest less patellofemoral contact

pressure of a posterior stabilized TKA design in compari-

son to a cruciate retaining design.
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Introduction

Total knee arthroplasty (TKA) has traditionally been used

as an effective treatment for osteoarthritis (OA), relieving

pain and restoring function of these patients. However, a

considerable amount of patients are dissatisfied with their

knee arthroplasty [40]. Anterior knee pain after TKA is one

of the most common patient complaints leading to revision

procedures [1, 7, 8, 29]. Surgical technique and prosthesis

design are considered the most important factors affecting

the extent of this problem [1, 29, 38]. The bearing surface

forces and contact patterns generated at the patellofemoral

joint are altered after TKA compared to the normal knee

[27, 41]. In this context, increased patellofemoral contact

pressures after TKA are held responsible for anterior knee

pain [18, 31, 42].

In the knee, the posterior cruciate ligament (PCL) is the

only isolated ligament that provides initial restraint against

anterior posterior translation of the tibia at all angles of

flexion undergoing a complex twisting motion [12, 19].

Furthermore, the PCL plays an important role in the

control of the medial contact point during flexion [30, 32].
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To restore the normal function of the PCL after TKA,

however, remains difficult. The use of a cruciate retaining

(CR) TKA was shown to result in more clinical and

radiological laxity [13, 14, 46]. In a fluoroscopic analysis,

subjects having a posterior cruciate substituting (posterior

stabilized—PS) TKA were observed having greater and

more consistent posterior femoral rollback of the lateral

condyle (but less in magnitude than in normal knees), less

paradoxical anterior sliding of the femur and more normal

tibiofemoral axial rotation patterns than those determined

for subjects having a CR TKA [14, 16, 46, 47]. This was

attributed to engagement of the femoral component cam

with the tibial post. However, both posterior cruciate

retaining and posterior cruciate substituting TKAs have

shown good or excellent scores at mid- and long-term

follow-up [6, 20].

Little is known about the influence of the use of a CR or

PS design on patellofemoral contact pressure and kine-

matics with a potential effect on anterior knee pain. The

purpose of this in vitro study was to compare the influence

of different prosthesis designs (PS vs. CR) on patellofe-

moral contact mechanics.

Materials and methods

Eight fresh frozen cadaveric knee specimen (7 male,

1 female; mean age 76 ± 10 years) from donors, who

consented in writing during their lifetime to the use of their

body for research and education were tested in an iso-

kinetic extension test in an in vitro simulation initially

published by Stukenborg-Colsman et al. and Ostermeier

et al. [37, 43]. This simulation allows approximation of

loadings close to the magnitude of the physiological forces

and moments about the knee.

The specimens were frozen directly after harvest to

-20�C, and subsequently thawed for 24 h at room tem-

perature before preparation and testing. The knees were

transected approximately 30 cm proximal and distal to the

knee joint line. Skin and subcutaneous tissue were removed

preserving the articular capsule, ligaments, and tendons. In

each testing condition, the tibia was attached to the simu-

lator at mid-length by means of a linear-rotational bearing,

which permitted axial sliding and turning as well as rota-

tion transverse to the axis of the tibia. The bearing in turn

was attached to a swing arm, which allowed varus–valgus

rotation. The weight of the swing arm itself with the

mounted knee specimen was equalised by a counter-

weight, the load measuring sensor of the swing arm itself

was self weight compensated. The swing arm was equipped

with a strain-gage based load measuring device, which

allowed the extending moment applied to the tibia to

be monitored continuously. Movement of the tibia was

generated by the coordinated activation of three hydraulic

cylinders, one to simulate variable quadriceps muscle

force, the second to simulate a constant 100 N flexion force

of the hamstrings during the extension cycle, and the third

cylinder to apply an external flexion moment. Quadriceps

force was transmitted through a special clamp, which was

attached on the quadriceps tendon. Hamstring force was

divided evenly between the clamps attached to the biceps

femoris muscle on the lateral and the gracile and semi-

menbranosus muscle on the medial side. An isokinetic

extension cycle with an angular velocity of 10�/s was

simulated between 120� knee flexion and full extension

using an extension moment of 31 Nm which represents a

physiological extension moment, flexion angle was mea-

sured by an electronic goniometer attached to the swing

arm with an accuracy and repeatability of 0.1� at a sam-

pling frequency of 10 Hz [37, 43].

Patellofemoral contact pressures were evaluated using a

33 9 22 mm electronic pressure sensitive film (K-Scan

4000, Tekscan, Boston, USA) as described previously [35].

The pressure films were first preconditioned ten times

by repeated loading and unloading to 1,500 N, and sub-

sequently calibrated according to the manufacturer’s

guidelines with a two-point method at 1,000 and 1,500 N

load levels which were applied on the entire area of the

pressure film in a material testing device (Minibionix 858,

MTS Corporation, Minneapolis, USA). Using the recorded

pressure distribution and the load on each ‘‘sensel’’, the

pressure calibration was computed by the software (Tek-

scan� software v4.23, Tekscan, Boston, USA). A 0.1 mm

Teflon film was glued on the sensor to allow stable suture

fixation. The sensor was attached to the unresurfaced patella

by silicone glue and sutured to the patella surrounding soft

tissue by 1–0 sutures [35]. Area contact pressure (ACP) and

peak contact pressure (PCP) were evaluated. In addition, the

centre of pressure as the geometric centre of the loaded

pressure area was used to follow patellar tracking during the

extension cycle.

The knees were operated according to the Genesis II

system (Smith & Nephew, Memphis, TN, USA). An

intramedullary alignment rod was referenced for the

femoral resection. Tibial reference was taken from the

compartment that showed more wear and 11 mm were

resected applying an extramedullary alignment rod. Bal-

ancing and alignment was checked using a spacer block.

The patella remained unresurfaced.

Patellofemoral pressures of all knees were recorded in a

first test cycle after implantation of a cruciate-retaining

(CR) design and in a second test cycle after replacement by

a posterior stabilized (PS) design, both with an 11 mm PE

inlay.

Mean, median and standard deviation values were

evaluated using SPSS 11.0 (SPSS Inc., Chicago, IL). For
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statistical analysis, a paired sampled t test to compare mean

values (significance, P B 0.05) was used.

Results

Continuous data were obtained at every trial. The highest

mean area contact pressures (ACP) and peak contact

pressures (PCP) were observed at deep flexion (Figs. 1, 2;

Tables 1, 2). Mean patellofemoral ACP and PCP decreased

with extension in both testing conditions (Figs. 1, 2).

Whereas obtained pressure values remained relatively

constant between 120� and 90� flexion as well as PCP

between 60� and 0� and ACP between 40� and 0�, a con-

tinuous decrease was observed between 90� and 60� (PCP)

and between 90� and 40� (ACP), respectively.

Considering the complete extension cycle from 120�
to 0�, average ACP was significantly lower (P B 0.006)

after implantation of the posterior stabilized design (PS)

compared with the cruciate retaining (CR) design (PS

3.58 ± 1.25 MPa, CR 4.31 ± 1.40 MPa). Accordingly,

average PCP decreased significantly (P B 0.02) with the

PS design (6.12 ± 2.37 MPa) in comparison with the CR

design (7.17 ± 2.41 MPa). Mean values were 15–21%

lower with a PS design compared to the CR design over the

complete extension cycle (Tables 1, 2).

During the extension cycle, the mean centre of patellar

pressure was initially medialised in deep flexion degrees in

both the testing conditions followed by a lateralization from

approximately 80�–100� flexion to full extension (Fig. 3).

On average, lateralization was less with the PS design

compared to the CR design over the complete extension

cycle (120�: -3.1 ± 0.7 mm; 80�: -0.5 ± 1.7 mm; 40�:

-1.5 ± 1.3 mm; 0�: -2.4 ± 1.0 mm). The mean centre of

patellar pressure of the CR design remained relatively con-

stant during the extension cycle between 90� and 25� with an

obvious proximalisation in the last 25� to extension. An

apparent distalisation in deep flexion degrees, relatively

constant position between 100� and 50� and a following

considerable proximalisation to full extension was observed

with the PS design (Fig. 3). On average, the position of the

mean centre of patellar pressure of the PS design was more

proximal than with the CR design (120�: -2.9 ± 0.5 mm;

80�: -0.4 ± 2.5 mm; 40�: -2.2 ± 0.5 mm; 0�: -2.9 ±

0.8 mm). However, these observations were not significantly

different.

Discussion

The extensor mechanism and the patella are one of the

most frequent causes for complications after TKA reasons

leading to revision procedures [1, 7, 8, 29, 39]. To resur-

face or not to resurface the patella has been the major

discussion to address the problem of anterior knee pain in

recent years [23]. However, other factors for being asso-

ciated with anterior knee pain as abnormal rotational

placement of the tibial and femoral components and design

features have also to be considered [2, 11, 22, 28, 29, 38].

Whether the posterior cruciate ligament should be

retained or resected has been the subject of argument for

many years. We investigated the influence of the use of a

CR or PS design on patellofemoral contact pressure and

kinematics over a full extension cycle of the knee after

TKA in vitro. The applied method is well established and

numerous publications have resulted from the previously

described setup [34, 35, 42].

Patella kinematics are altered after TKA, quite possibly

due to changes in the bearing surface forces generated

at the patellofemoral joint [27, 41]. Low patellofemoral

pressure was considered to be advantageous as high pres-

sures might be accountable for anterior knee pain [18, 31,

42]. The setup described in this study measures dynamic

changes of patellofemoral pressure in a constant moment

extension cycle at 31 Nm. The ratio of forces between

patellar tendon and quadriceps tendon varies significantly

Fig. 1 Patellofemoral area contact pressure after implantation of a

cruciate retaining (CR) versus a posterior stabilized (PS) TKR from

120� knee flexion to full extension

Fig. 2 Patellofemoral peak contact pressure after implantation of a

cruciate retaining (CR) versus a posterior stabilized (PS) TKR from

120� knee flexion to full extension
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with the flexion angle [25]. Among other things, the ratio is

determined by the relative position of load and lever arms

to each other [26]. The patella is considered to serve as a

linkage for the lever arm over the knee joint. Changes of

anteroposterior stability and of the position of the tibia

directly influence the relative length of the lever arms and

thus transmitted forces and patellofemoral pressure.

Our results suggest significantly lower mean area and

peak contact pressures with a PS design compared to the

CR design after TKA over an extension cycle from 120�
flexion to full extension. Area contact pressure values

measured with the PS design were comparable as measured

in intact knees in the same testing setup [35]. Thus, contact

pressures with a CR design were increased compared to

intact conditions which is consistent with reports from the

literature [17, 31, 42]. Patellofemoral forces have been

experimentally estimated using three-dimensional fluoro-

scopic kinematic analysis in the patellofemoral joint in

vivo. Findings suggested significant kinematic differences

between cruciate retaining and posterior stabilized arthro-

plasties with a greater and more consistent posterior

femoral rollback and less paradoxical anterior sliding of

the femur for subjects having a posterior stabilized TKA

[14, 16, 46, 47]. These findings along with our results are

consistent with the conclusion of a finite element model by

D0Lima et al. [11] to get better insight into the effects of

design parameters on patellofemoral forces and on local

contact stresses. The model supported the hypothesis

that femoral rollback reduces patellofemoral pressure by

improving the efficiency of the extensor mechanism.

Table 1 Mean area contact

pressures at different testing

conditions [Mean ± SD

(Median, Range)]

Testing

position

Testing

condition

Mean area contact pressure (MPa) Mean difference

to CR (%)

P value

0� CR 3.78 ± 1.59 (3.56, 1.62–6.70)

PS 2.99 ± 1.10 (3.12, 1.63–4.74) -21 B0.02

40� CR 3.70 ± 1.05 (3.62, 2.06–5.48)

PS 3.04 ± 1.36 (3.27, 1.24–5.28) -18 B0.05

80� CR 4.83 ± 1.48 (4.77, 2.39–7.36)

PS 3.96 ± 1.46 (4.21, 2.08–6.54) -18 B0.03

120� CR 5.00 ± 1.71 (4.79, 2.21–7.98)

PS 4.26 ± 1.52 (3.81, 2.88–7.48) -15 B0.05

Table 2 Mean peak contact

pressures at different testing

conditions [Mean ± SD

(Median, Range)]

Testing

position

Testing

condition

Mean peak contact pressure (MPa) Mean difference

to CR (%)

P value

0� CR 6.28 ± 2.78 (5.75, 3.09–11.93)

PS 5.00 ± 2.67 (4.95, 1.90–10.00) -20 B0.05

40� CR 6.31 ± 2.05 (6.50, 3.09–9.20)

PS 5.26 ± 2.74 (5.38, 1.50–9.68) -17 B0.05

80� CR 7.85 ± 2.36 (8.13, 4.79–12.04)

PS 6.45 ± 2.56 (6.02, 3.47–11.36) -18 B0.04

120� CR 8.70 ± 2.88 (8.90, 4.29–13.64)

PS 6.93 ± 2.10 (6.39, 4.53–11.12) -20 B0.01

Fig. 3 Mean position of the centre of patellar contact pressure after

implantation of a cruciate retaining (CR) versus a posterior stabilized

(PS) TKR from 120� knee flexion to full extension The highlighted
full stop represents the starting point at 120� flexion

1162 Knee Surg Sports Traumatol Arthrosc (2009) 17:1159–1165

123



With the determination of the centre of patellar pressure

motion, the relative patellar tracking to the femur during

the extension cycle could be followed. Correlation with the

patella motion was shown using an ultrasound based

threedimensional motion analysis system in the same

testing setup [33, 35]. During the extension cycle, the

centre of mean patella pressure moved laterally and prox-

imally in both testing conditions during the extension

cycle. Although not significant, knees with a PS design

showed less lateral shifting but increased longitudinal

shifting in the proximal direction. The centre of mean

patella pressure tracking of our study in the longitudinal

direction confirms results of the patella motion observed in

other in vitro studies evaluating patella contact after TKA

[24, 33]. The contact positions of a PS versus CR design of

the patellofemoral joint were compared under fluoroscopic

surveillance measured from the patella mass center in

subjects performing deep knee bends to maximum flexion.

Observed differences in the superior/inferior average

contact positions were comparable to our findings show-

ing a difference of 0.4 ± 2.6 mm at 90� flexion and

3.3 ± 2.5 mm at full extension [27]. The femorotibial

contact point of knees with a PS design rolls back poste-

riorly during flexion similar to normal knees whereas knees

with a CR design translate anteriorly during midflexion

(30–90�) in a substantial number of cases [15]. This was

confirmed in other studies [3, 46, 47] and may explain the

relatively constant position of the centre of patellar pres-

sure of the CR design in our study in contrast to the

apparently more physiological tracking of the PS design.

A limitation inherent to all cadaver biomechanical

models is that only approximation of the living system can

be achieved. Area and peak contact pressures were deter-

mined by an electronic pressure sensitive sensor. The

reliability of the K-Scan sensor was verified in several

studies [4, 21, 35]. Limitations of the sensor include the

thickness (0.1 mm), its sensitivity to temperature changes,

its disposition for crinkling and the establishment of the

position [5]. The simulated extension cycle in this study

did not include a weight bearing component. Nonetheless,

unlike other in vitro simulations, physiological muscle

forces were applied (up to 1,500 N), and the kinematics of

knee motion attained using this simulator have been shown

to be similar to physiological on physiological specimens

[36]. Correct balancing of the joint with tensioning of the

PCL is of utmost importance to obtain optimal kinematics

after CR TKA. Errors are less forgiving than after PS TKA.

The spacer block method that we used in our study is well

established. However, a spring loaded tensioning device

appeared to result in better radiographic alignment data and

decreased manipulation rates after TKA compared to the

spacer block method [44]. An increase of 1 mm in the

flexion gap in the tensed CR TKA knee was shown to result

in a mean anterior tibial translation of 1.25 ± 0.79 mm [9].

A possible impact on the patellofemoral joint contact

pressure must be considered, respectively.

The clinical relevance of our findings remains unclear.

A recent multicenter prospective randomized clinical trial

compared the use of a CR versus PS TKA design using the

Genesis II TKA system. While results were comparable in

regards of clinical outcomes, the PS design appeared to

support significantly improved range of motion when

compared with the CR design [20]. These findings con-

firmed previous reports comparing a CR versus a PS design

[10, 16, 45]. However, none of these studies explicitly put

attention to the patellofemoral joint. At least Harato et al.

[20] reported of five patients with anterior knee pain and

seven patients having a stiff knee with a CR design com-

pared to only two patients with anterior knee pain and one

patient with a stiff knee with a PS design. Although this

difference was not statistically significant, the authors

concluded that an explanation may be related to differences

in knee kinematics; specifically, the replication of PCL

functions with the PS design.

In conclusion, our data suggest less patellofemoral

contact pressure and superior patellofemoral kinematics of

a posterior stabilized TKA design in comparison to a cru-

ciate retaining design. It is hypothesised that decreased

patellofemoral contact pressure with a PS design is caused

by greater and more consistent posterior femoral rollback

and less paradoxical anterior sliding and may result in less

frequent anterior knee pain in an in vivo application.
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