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Abstract. The aim of the paper is to introduce the notion of a transformation unit
together with its interleaving semantics and to study it as a means of constructing
large graph transformation systems from small ones in a structured and system-
atic way. A transformation unit comprises a set of rules, descriptions of initial
and terminal graphs, and a control condition. Moreover, it may import other
transformation units for structuring purposes. Its semantics is a binary relation
between initial and terminal graphs which is given by interleaving sequences. As a
generalization of ordinary derivations, an interleaving sequence consists of direct
derivation steps interleaved with calls of imported transformation units. It must
obey the control condition and may be seen as a kind of structured derivation.
The introduced framework is independent of a particular graph transformation
approach and, therefore, it may enhance the usefulness of graph transformations
in many contexts.

1. Introduction

The significance of graphs and rules in many areas of computer science is evident:
On the one hand, graphs constitute appropriate means for the description of
complex relationships between objects. Trees, forests, Petri nets, circuit diagrams,
finite automata, flow charts, data flow graphs, and entity-relationship diagrams are
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some typical examples. On the other hand, rules are used to describe “permitted”
manipulations on objects as, for example, in the areas of functional and logic
programming, formal languages, algebraic specification, theorem proving, and
rule-based systems.

The intention of bringing graphs and rules together – motivated by several
application areas – has led to the theory of graph grammars and graph trans-
formation (see the three volumes of the Handbook of Graph Grammars and
Computing by Graph Transformation [Roz97, EEK99, EKM99] for a survey).
A wide spectrum of approaches exists within this theory and some of them are
implemented (see, for example, PROGRES [Sch91a, Sch91b], GraphEd [Him91],
Dactl [GKS91], and AGG [LöB93, TaB94]).

With the aim of enhancing the usefulness of graph transformation, we propose
a new approach-independent structuring method for building up large systems of
graph transformation rules from small pieces. The method is based on the notion
of a transformation unit and its interleaving semantics. A transformation unit is
allowed to use other units such that a system of graph transformation rules can
be structured hierarchically and existing transformation units can be re-used. The
transformation unit is a basic concept of the new graph and rule centered language
GRACE that is being developed by researchers from Berlin, Bremen, Erlangen,
München, Oldenburg, and Paderborn (see also [AEH99, Sch96]). Nevertheless,
the notion is meaningful in its own right because – independently of GRACE
– it can be employed as a structuring principle in most graph transformation
approaches one encounters in the literature where graph transformation is often
called graph rewriting.

The paper is organized as follows. Section 2 introduces the notion of a trans-
formation unit together with its interleaving semantics. In Section 3, the concepts
of a transformation unit are illustrated with an example. Section 4 presents how
some operations on binary relations can be modelled by suitable operations on
transformation units. In Section 5, some normal forms of transformation units
are considered. The paper ends with some concluding remarks. To avoid wrong
expectations, we would like to point out that the goal of the paper is to shed
some light on the usefulness of the introduced structuring method rather than to
come up with deep theory.

A short draft version of this paper without proofs is published as [KrK96].

2. Transformation Units with Interleaving Semantics

The key operation in graph transformation approaches is the direct derivation be-
ing the transformation of a graph into a graph by applying a rule. In other words,
each rule yields a binary relation on graphs. Hence, each set of rules specifies a
binary relation on graphs by iterated rule applications. This derivation process is
highly non-deterministic in general and runs on arbitrary graphs which is both
not always desirable. For example, if one wants to generate graph languages, one
may start in a particular axiom and end with certain terminal objects only. Or
if a more functional behaviour is required, one may prefer to control the deriva-
tion process and to cut down its non-determinism. The latter can be achieved
by control mechanisms for the derivation process like application conditions or
programmed graph transformation (see, e.g., [Bun79, Nag79, EhH86, KrR90,
MaW91, Sch91a, ScZ91, Kre93, LiM93, HHT96, MaW96], cf. also [DaP89] for
regulation concepts in string grammars) and the former by the use of graph class
expressions that specify subclasses of graphs. Moreover, in practical cases, one



692 H.-J. Kreowski and S. Kuske

may have to handle hundreds or thousands of rules which cannot be done in a
transparent and reasonable way without a structuring principle.

To cover all these aspects, we introduce the notion of a transformation
unit that allows to specify new rules, initial and terminal graphs, as well as
a control condition, and to import other transformation units. Semantically, a
transformation unit describes a graph transformation, i.e. a binary relation on
graphs given by the interleaving of the imported graph transformations with each
other and with rule applications. Moreover, interleaving sequences must start in
initial graphs, end in terminal graphs and satisfy the control condition. If nothing
is imported, the interleaving semantics coincides with the derivation relation.

To make the concept independent of a particular graph rewriting framework,
we assume an abstract notion of a graph transformation approach comprising
a class of graphs, a class of rules, a rule application operator, a class of graph
class expressions, and a class of control conditions. The semantic effect of control
conditions depends on so-called environments. In this way, it can be defined
without forward reference to transformation units.

Examples of graph class expressions and control conditions are given after the
introduction of transformation units and their interleaving semantics. At the end
of this section, we consider a certain class of control conditions which consists
of languages over rules and transformation units and point out its relation to
interleaving sequences.

2.1. Graph Transformation Approach

A graph transformation approach is a system A = (G,R,⇒,E,C) where

• G is a class of graphs,

• R is a class of rules,

• ⇒ is a rule application operator yielding a binary relation ⇒r ⊆ G × G for
every r ∈ R,

• E is a class of graph class expressions such that each e ∈ E specifies a subclass
SEM(e) ⊆ G, and

• C is a class of elementary control conditions over some set ID of identifiers
such that each c ∈ C specifies a binary relation SEME(c) ⊆ G × G for each

mapping E: ID −→ 2G×G.1

A pair (G,G′) ∈ ⇒r , usually written as G⇒r G
′, is called a direct derivation from

G to G′ through r. For a set P ⊆ R the union of all relations ⇒r (r ∈ P ) is
denoted by⇒P and its reflexive and transitive closure by⇒∗P . A pair (G,G′) ∈ ⇒∗P ,
usually written as G⇒∗P G′, is called a derivation from G to G′ over P . A mapping

E: ID −→ 2G×G is called an environment. In the following, we will use boolean
expressions over C as control conditions with elementary control conditions as
basic elements and disjunction, conjunction, and negation as boolean operators.

1 The power set of a set S is denoted by 2S .
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Moreover, we make use of the constant true. The semantic relations of elementary
control conditions are easily extended to boolean expressions by

SEME(true) = G× G,
SEME(e1 ∨ e2) = SEME(e1) ∪ SEME(e2),
SEME(e1 ∧ e2) = SEME(e1) ∩ SEME(e2),
SEME(e) = G× G− SEME(e).

The set of control conditions over C is denoted by B(C).
Note that we refer to the meaning of graph class expressions and control

conditions by the overloaded operator SEM. This should do no harm because it
is always clear from the context which is which.

All the graph grammar and graph transformation approaches one encounters
in the literature provide notions of graphs and rules and a way of directly
deriving a graph from a graph by applying a rule (cf. e.g. [Ehr79, Nag79, JaR80,
Cou90, KrR90, Sch91b, Him91, Hab92, Löw93]). Therefore, all of them can be
considered as graph transformation approaches in the above sense if one chooses
the components E and C in some standard way. The singleton set {all} with
SEM(all ) = G may provide the only graph class expression, and the class of
elementary control conditions may be empty. Non-trivial choices for E and C are
discussed in Subsections 2.4 and 2.5.

2.2. Transformation Units

A transformation unit encapsulates a specification of initial graphs, a set of
transformation units to be used, a set of rules, a control condition, and a
specification of terminal graphs.

LetA = (G,R,⇒,E,C) be a graph transformation approach. A transformation
unit over A is a system trut = (I,U,R,C,T) where I,T ∈ E, U is a finite set of
used transformation units over A, R ⊆ R is a finite set of rules, and C ∈ B(C).
The components of trut may be denoted by Utrut , Itrut , Rtrut , Ctrut , and Ttrut ,
respectively.

This should be taken as a recursive definition of the set TA of transformation
units over A. Hence, initially, U must be chosen as the empty set yielding
unstructured transformation units without import that may be used in the next
iteration, and so on. Note that this yields an acyclic import structure with finite
recursion depth.

If I specifies a single graph (cf. 2.4.1), U is empty, and C is the constant true,
one gets the usual notion of a graph grammar (in which approach ever) as a
special case of transformation units.

2.3. Interleaving Semantics

The operational semantics of a transformation unit is a graph transformation,
i.e. a binary relation on graphs containing a pair (G,G′) of graphs if, first, G is
an initial graph and G′ is a terminal graph, second, G′ can be obtained from G
by interleaving direct derivations with the graph transformations specified by the
used transformation units, and third, the pair is allowed by the control condition.

Let trut = (I,U,R,C,T) be a transformation unit over the graph transfor-
mation approach A = (G,R,⇒,E,C). Assume that the set ID of identifiers
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associated to C contains the disjoint union of U and R. Let the interleaving

semantics SEM(t) ⊆ G×G for t ∈ U be already defined. Let E(trut): ID → 2G×G
be defined by E(trut)(r) = ⇒r for r ∈ R, E(trut)(t) = SEM(t) for t ∈ U, and
E(trut)(id ) = {}, otherwise. Then the interleaving semantics SEM(trut) of trut
consists of all pairs (G,G′) ∈ G × G such that

1. G ∈ SEM(I) and G′ ∈ SEM(T),

2. there are graphs G0, . . . , Gn ∈ G with G0 = G, Gn = G′, and for i = 1, . . . , n,
Gi−1 ⇒r Gi for some r ∈ R or (Gi−1, Gi) ∈ SEM(t) for some t ∈ U,

3. (G,G′) ∈ SEME(trut)(C).

The sequence of graphs in point 2 is called an interleaving sequence in trut from
G to G′. Let RIS trut denote the binary relation given by interleaving sequences,
i.e. RIS trut = (⇒R ∪

⋃
t∈U SEM(t))∗. Then the interleaving semantics of trut is

defined as the intersection of RIS trut with SEM(I) × SEM(T) and SEME(trut)(C).
Note that all three relations may be incomparable with each other. For example,
(G,G′) ∈ SEME(trut)(C) does not imply in general that there is an interleaving
sequence in trut from G to G′, and vice versa.

A control condition C specifies a binary predicate depending on other bi-
nary graph relations through the notion of environments, but independent of a
particular transformation unit. As a component of trut , only the environment of
trut given by E(trut) is effective, meaning that C can restrict the semantics by
specifying certain properties of the direct derivation relations of rules in trut , the
interleaving semantics of imported transformation units, and the interrelation of
all of them. If transformation units are used in a specification language, it will be
more realistic to assume that ID is a countable set of predefined identifiers out
of which the elements of U and R are named, rather than to assume that U and
R are subsets of ID. But we prefer here to avoid an explicit naming mechanism
because it is not essential for the introduced concepts.

The definition of the interleaving semantics follows the recursive definition of
transformation units. Hence, its well-definedness follows easily by an induction
on the structure of transformation units because the import structure is assumed
to be acyclic. Initially, if U is empty, an interleaving sequence is just a derivation
such that one gets in this case

SEM(trut) = ⇒∗R ∩ (SEM(I)× SEM(T)) ∩ SEME(trut)(C).

In other words, interleaving semantics generalizes the ordinary operational
semantics of sets of rules given by derivations.

If I is a single graph (specifying itself as initial graph in the sense of 2.4.1),
the first component of the interleaving semantics of trut is insignificant. Then
all second components form a graph language that can be considered as the
language generated by the transformation unit, i.e.

L(trut) = {G ∈ SEM(T ) | (I, G) ∈ SEM(trut)}.
In this case, the transformation unit is called language-generating. If, furthermore,
U is empty and C is true, trut is a graph grammar (cf. 2.2), and its generated lan-
guage consists, as usual, of all terminal graphs derivable from the initial graph, i.e.

L(trut) = {G ∈ SEM(T ) | I ⇒∗R G}.
In this sense, the interleaving semantics covers the usual notion of graph languages
generated by graph grammars.
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2.4. Graph Class Expressions

There are various standard ways to choose graph class expressions that can be
combined with many classes of graphs and hence used in many graph transfor-
mation approaches.

1. In most cases, one deals with some kind of finite graphs with some explicit
representations. Then single graphs (or finite enumerations of graphs) may
serve as graph class expressions. Semantically, each graph G represents itself
(up to isomorphism), i.e. SEM(G) = {G′ ∈ G | G′ ∼= G}. The axiom of a graph
grammar is a typical example of this type.

2. A graph G is reduced with respect to a set of rules P ⊆ R if there is no G′ ∈ G
with G ⇒r G

′ and r ∈ P . In this way, P can be considered as a graph class
expression with SEM(P ) = RED(P ) being the set of all reduced graphs with
respect to P . Reducedness is often used in term rewriting and term graph
rewriting as a halting condition.

3. If G is a class of labelled graphs with label alphabet Σ, then a set T ⊆ Σ
is a suitable graph class expression specifying the graph class SEM(T ) = GT
consisting of all graphs labelled in T only. This way of distinguishing terminal
objects is quite popular in formal language theory.

4. Graph theoretic properties can be used as graph class expressions. In partic-
ular, monadic second order formulas for directed graphs or hypergraphs or
undirected graphs are suitable candidates (see e.g. [Cou90]).

5. Graph schemata, as used in the graph transformation approach PROGRES
are graph class expressions that allow to specify generic graph classes (see
[Sch91a, Sch91b] for more details).

6. In a transformation unit where a single initial graph is transformed into
terminal graphs, only the class of all transformed graphs is significant.2 Hence,
such a transformation unit can be used as a graph class expression specifying
the second components of all pairs in its semantics.

2.5. Control Conditions

A control condition is meant to restrict the derivation process. A typical example
is to allow only iterated rule applications where the sequences of applied rules
belong to a particular control language. Therefore, a regular expression can be
considered as a control condition because it identifies a language. In general, every
description of a binary relation on graphs may be used as a control condition.
Here, we give some examples.

1. Let E: ID → 2G×G be an environment. Then E can be extended to the power

set of the set of strings over ID in a natural, straight-forward way. Ê: 2ID∗ →
2G×G is defined by Ê(L) =

⋃
w∈L E(w) for L ⊆ ID∗ where E: ID∗ → 2G×G

is recursively given by E(λ) = ∆G, and E(xv) = E(x) ◦ E(v) for x ∈ ID and

v ∈ ID∗.3 Hence, L can be used as control condition with SEME(L) = Ê(L) for

2 An example of such a transformation unit is the unit butterfly given in Section 3.
3 ∆G denotes the identity relation on G. Given ρ, ρ′ ⊆ G×G, the sequential composition of ρ and ρ′
is defined as usual by ρ ◦ ρ′ = {(G,G′′) | (G,G′) ∈ ρ and (G′, G′′) ∈ ρ′ for some G′ ∈ G}.



696 H.-J. Kreowski and S. Kuske

all E: ID → 2G×G. In this case, the class of elementary control conditions is
2ID∗ . We refer to conditions in this class as control conditions of language type.

2. As a consequence of point 1, every grammar, automaton or expression x
which specifies a language L(x) over ID can serve as a control condition with

SEME(x) = SEME(L(x)) = Ê(L(x)) for all environments E. Whenever gram-
mars are used as control conditions in the following, it is meant in this sense.

3. In particular, the class of regular expressions over ID can be used for this pur-
pose. For explicit use below, REG(ID) is recursively given by ∅, ε ∈ REG(ID)4,
ID ⊆ REG(ID), and (e1 ; e2), (e1 | e2), (e∗) ∈ REG(ID) if e, e1, e2 ∈ REG(ID). In
order to omit parentheses we assume that ∗ has a stronger binding than ; and |
, and that ; has a stronger binding than | . The language L(e) specified by some
regular expression e is defined as L(∅) = {}, L(ε) = {λ}, L(id ) = {id} for all
id ∈ ID , L(e1 ; e2) = L(e1) ·L(e2), L(e1 | e2) = L(e1)∪L(e2) and L(e∗) = L(e)∗ 5.

4. A pair (G,G′) of graphs is reduced with respect to a control condition c ∈ C and
an environment E if there is no graph G′′ with (G′, G′′) ∈ SEME(c). In this way,
c ! defines a control condition where SEME(c !) is the set of all reduced pairs
with respect to c and E. Note that if c is a set of graph transformation rules
with SEME(c) =⇒∗c for all environments E, the set of the second components
of the pairs in SEME(c) corresponds to the graph class expression c (specifying
all reduced graphs with respect to c) introduced in Subsection 2.4.

5. A pair (C,<) consisting of a set C of control conditions and a partial order
< on C called priority is a control condition. For a given environment E, the
semantics of (C,<) is defined as follows: Let SE((C,<)) consist of all pairs
(G,G′) of graphs such that there is a condition c ∈ C with (G,G′) ∈ SEME(c)
and for all c′ ∈ C with c < c′, {G′′ ∈ G | (G,G′′) ∈ SEME(c′)} = ∅. Then
SEME(C,<) is the reflexive and transitive closure of SE((C,<)).

6. In all major graph transformation approaches a rule r is applied to a graph
G at a so-called occurrence which is a subgraph of G. In general, there may
be several occurrences for r in G. Given such an approach, another kind of
control condition with priorities is pr(P ,<) where P is a set of rules and < is
a partial order on P . For each environment E, SEME(pr(P ,<)) is the reflexive
and transitive closure of SE(pr(P ,<)) where SE(pr(P ,<)) consists of all pairs
(G,G′) of graphs such that G′ is obtained from G by applying a rule r ∈ P
at an occurrence occ, and for all r′ ∈ P with r < r′, no occurrence of r′ in G
overlaps with occ. These control conditions with priorities are introduced for
a particular graph transformation approach in [LiM93].

7. Each transformation unit trut can serve as a control condition because se-
mantically it specifies a binary relation on graphs. For each environment E,
the semantics of the control condition trut is given by the semantics of trut ,
i.e. by all pairs (G,G′) of graphs such that G can be transformed into G′ with
the transformation unit trut .

8. Each pair (e1, e2) ∈ E × E defines a binary relation on graphs by

SEM((e1, e2)) = SEM(e1)× SEM(e2)

4 While ∅ denotes the empty set {}, the expression ε denotes the regular set {λ}. We prefer a direct
reference to {λ} rather than to use ∅∗.
5 Given L, L′ ⊆ ID∗, the concatenation of L and L′ is defined as usual by L · L′ = {ww′ | w ∈
L , w′ ∈ L′}, and the Kleene closure of L is defined as usual by L∗ =

⋃∞
i=0 L

i where L0 = {λ} and

Li+1 = L · Li.
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and, therefore, it can be used as a control condition which is independent
of the choice of an environment, i.e. SEME((e1, e2)) = SEM((e1, e2)) for all
environments E.

9. For readers familiar with the graph transformation language PROGRES,
it shall be mentioned that the deterministic and non-deterministic control
structures of PROGRES serve as control conditions. They allow to define
imperative commands over control conditions.

As the following observation shows, the semantic relations given by regular
expressions as control conditions can be constructed easily according to the
recursive structure of regular expressions.

Observation 2.1. For all environments E, all id ∈ ID and all regular expressions
e, e1, e2 ∈ REG(ID) the following holds.

1. SEME(∅) = {}.
2. SEME(ε) = ∆G.

3. SEME(id ) = E(id ).

4. SEME(e1 ; e2) = SEME(e1) ◦ SEME(e2).

5. SEME(e1 | e2) = SEME(e1) ∪ SEME(e2).

6. SEME(e∗) = SEME(e)∗.6

Proof.

1. SEME(∅)=def Ê({})=def {}.7
2. SEME(ε)=def Ê({λ})=defE(λ)=def ∆G.

3. SEME(id )=def Ê({id})=defE(id )=defE(id ).

4. To show this, we use the following statement which is shown by induction on
the length of w1. Let w1, w2 ∈ ID∗; then E(w1w2) = E(w1) ◦ E(w2).
E(λw2)=defE(w2) = ∆G ◦ E(w2)=defE(λ) ◦ E(w2). Assume that the statement

holds for w1 ∈ ID∗, and let a ∈ ID . Then E(aw1w2)=defE(a)◦E(w1w2)=indE(a)◦
(E(w1) ◦ E(w2)) = (E(a) ◦ E(w1)) ◦ E(w2)=defE(aw1) ◦ E(w2).8 Now we get

SEME(e1 ; e2)=def Ê(L(e1) · L(e2))=def

⋃
w1∈L(e1),w2∈L(e2) E(w1w2)

=
⋃
w1∈L(e1),w2∈L(e2) E(w1) ◦ E(w2)

=
⋃
w1∈L(e1) E(w1) ◦⋃w2∈L(e2) E(w2)=def Ê(L(e1)) ◦ Ê(L(e2))

=def SEME(e1) ◦ SEME(e2).

5. SEME(e1 | e2)=def Ê(L(e1) ∪ L(e2))=def

⋃
w∈L(e1)∪L(e2) E(w)

=
⋃
w1∈L(e1) E(w1) ∪⋃w2∈L(e2) E(w2)=def Ê(L(e1)) ∪ Ê(L(e2))

=def SEME(e1) ∪ SEME(e2).

6. To show point 6, we first prove by induction on i that for i > 0, Ê(L(e)i) =

SEME(e)i. If i = 0 we have Ê(L(e)0)=def Ê({λ})=2 .∆G=def SEME(e)0. Moreover,

6 For ρ ⊆ G × G, ρ∗ denotes the reflexive and transitive closure of ρ that is ρ∗ =
⋃∞
i=0 ρ

i where

ρ0 = ∆G and ρi+1 = ρ ◦ ρi.
7 =def stands for equal by definition.
8 =ind stands for equal by induction hypothesis.
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Ê(L(e)i+1)=def Ê(L(e) · L(e)i)=4 .Ê(L(e)) ◦ Ê(L(e)i)
=ind SEME(e) ◦ SEME(e)i=def SEME(e)i+1.

Hence,

SEME(e∗)=def Ê(L(e)∗)=def Ê(
⋃∞
i=0 L(e)i) =

⋃∞
i=0 Ê(L(e)i)

=
⋃∞
i=0 SEME(e)i=def SEME(e)∗.

q

2.6. Application Sequences

In interleaving sequences, rules are applied and imported transformation units are
called in some order. Such sequences of applied rules and called transformation
units help to clarify the role of control conditions of the language type as defined
in 2.5.1.

Let trut = (I,U,R,C,T) be a transformation unit over the graph transforma-
tion approach A = (G,R,⇒,E,C). Assume that U and R are disjoint subsets
of the set ID associated to C. Then x1 · · · xn ∈ (U ∪ R)∗ (xi ∈ U ∪ R) is called
an application sequence of (G,G′) ∈ G × G if there is an interleaving sequence
G0, . . . , Gn with G0 = G, Gn = G′ and, for i = 1, . . . , n, Gi−1 ⇒xi Gi if xi ∈ R and
(Gi−1, Gi) ∈ SEM(xi) if xi ∈ U. In the case n = 0, the application sequence is the
empty string λ.

Using these notions and notations, the following observation states that a
language over U ∪R, used as a control condition due to 2.5.1, controls the order
in which rules are applied and imported transformation units are actually used.

Observation 2.2. Let C = 2ID∗ be the class of control conditions of language type,
and let trut = (I,U,R, L,T) with L ⊆ (U ∪R)∗ ⊆ ID∗. Then for all G,G′ ∈ G, the
following statements are equivalent.

1. (G,G′) ∈ SEM(trut).

2. (G,G′) ∈ SEME(trut)(L) ∩ SEM(I)× SEM(T ).

3. There is an application sequence w of (G,G′) with w ∈ L and (G,G′) ∈
SEM(I)× SEM(T ).

Proof. Let (G,G′) ∈ SEM(trut). Then by definition, there is an interleaving se-
quence in trut from G to G′, (G,G′) ∈ SEME(trut)(L), and (G,G′) ∈ SEM(I) ×
SEM(T ). Hence, point 1 implies point 2.

To show that point 2 implies point 3 and that point 3 implies point 1, we
prove first the following claim:

(G,G′) ∈ SEME(trut)(L) iff there is an application sequence w ∈ L of (G,G′).
By definition, we have (G,G′) ∈ SEME(trut)(L) = Ê(trut)(L) iff (G,G′)

∈ E(trut)(w) for some w ∈ L. We show now by induction on the structure
of w that (G,G′) ∈ E(trut)(w) iff w is an application sequence of (G,G′).

If w = λ, we get (G,G′) ∈ E(trut)(λ) iff (G,G′) ∈ ∆G iff G = G′ iff λ is an
application sequence of (G,G′).

Assume now that the statement holds for v ∈ (U ∪ R)∗.
And consider w = xv with x ∈ U ∪R. Then (G,G′) ∈ E(trut)(xv) = E(trut)(x)◦

E(trut)(v), means that there is some G ∈ G with (G,G) ∈ E(trut)(x) and (G,G′) ∈
E(trut)(v). The latter implies by induction that v is an application sequence
of (G,G′) such that there is an interleaving sequence G0, . . . , Gn with G = G0
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and G′ = Gn. The former means G ⇒x G if x ∈ R and (G,G) ∈ SEM(x) if
x ∈ U. Altogether, G,G0, . . . , Gn defines an interleaving sequence with xv as
corresponding application sequence. Conversely, an application sequence xv of
(G,G′) is related to an interleaving sequence G0, . . . , Gn with G = G0, G′ = Gn
and, in particular, G0 ⇒x G1 if x ∈ R and (G0, G1) ∈ SEM(x) if x ∈ U such that
(G,G1) ∈ E(trut)(x) in any case. Moreover, v is an application sequence of (G1, Gn)
because G1, . . . , Gn is an interleaving sequence. By induction hypothesis, we get
(G1, G

′) ∈ E(trut)(v). The composition yields (G,G′) ∈ E(trut)(x) ◦ E(trut)(v) =
E(trut)(xv). This completes the proof of the claim.

From the just proved claim follows directly that point 2 implies point 3.
Furthermore, let w ∈ L be an application sequence of (G,G′) with (G,G′) ∈

SEM(I) × SEM(T ). Then by definition, we have that there is an interleaving
sequence in trut from G to G′ with (G,G′) ∈ SEM(I)×SEM(T ), and by the claim,
(G,G′) ∈ SEME(trut)(L). Hence, (G,G′) ∈ SEM(trut). This completes the proof.

q

3. Butterfly Networks – An Example

In this section, we illustrate the concepts of transformation units by specifying
the set of butterfly networks. Such high-bandwidth processor organizations –
well-known from the area of VLSI theory – are well suited for performing highly
parallel computations (see e.g. Ullman [Ull84] and Lengauer [Len90]).

A butterfly network of size k for some k ∈ IN consists of (k + 1) ranks of 2k

nodes each. Let vir be the ith node on rank r and let bi(1) . . . bi(k) be the binary
representation of i (0 6 i < 2k, 0 6 r 6 k). Then for r > 0, vir is directly connected
to vj(r−1) if either i = j or bi(1) . . . bi(k) is equal to the binary representation of
j except for bit bi(r). A butterfly network of size k is denoted by Bk . In the
following, we call the nodes on rank 0 bottom nodes and label them with b. All
other nodes of a butterfly network are unlabelled. The butterfly networks B0 to
B3 can be graphically represented as in Fig. 1.

Note that butterfly networks are defined up to isomorphism. The set of all
butterfly networks is denoted by Lbutterfly .

To make the paper self-contained, we tailor a graph transformation approach
for this example. This approach can be easily expressed in many of the general
graph transformation approaches in the literature, like, e.g., PROGRES (see
[Sch91a]) or graph grammars with negative application conditions (see [HHT96]).

• The class G consists of all graphs G = (V , E, l, m) where V is the set of nodes,
E is the set of edges being 2-element subsets of V , l:V → CV , and m:E → CE
are labelling functions for nodes and edges respectively with CV = {∗, b} and
CE = {∗, c}. The symbol ∗ stands for unlabelled, b for bottom, and c for copied.
The components of G are also denoted by VG, EG, lG, and mG, respectively.
Subgraph relation and isomorphy are defined and denoted in the usual way.

• A rule is a triple r = (N,L, R) of graphs with L ⊆ N and VL ⊆ VR , i.e. L is a
subgraph of N, and each node of L is a node of R, but its label in L may be
different from that in R.

• The application of a rule r = (N,L, R) to a graph G ∈ G yields a graph in G
and is performed according to the following steps.

1. Choose L′ ⊆ G with L′ ∼= L.
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B0

b

B1

b b

B2

b b b b

B3

b b b b b b b b

Fig. 1. Butterfly networks of sizes 0 to 3.

2. Only if L is a proper subgraph of N, check the negative context condition:
It fails if there is any N ′ ⊆ G with N ′ ∼= N and L′ ⊆ N ′.

3. Remove EL′ from G.

4. Glue the remaining graph with R by merging each node v ∈ VL (⊆ VR)
with the corresponding node in L′ and labelling it with lR(v).

• We use the constant all, the graph consisting of a single b-labelled node and
sets of rules (to specify reduced graphs) as graph class expressions.

• We use regular expressions over the alphabet

{copy , next rank , copy items , delete}
as elementary control conditions.

In the following, transformation units are presented by indicating the compo-
nents with respective keywords. Trivial components (i.e. no import, no rules, the
graph class expression all , and the control condition true) are omitted. A rule
r = (N,L, R) is represented in the form N → R where the items of N that do not
belong to L are dotted. Two nodes in r are drawn with the same shape and fill
style if and only if they are equal. The label ∗ is not depicted.

The transformation unit butterfly uses the transformation units copy and
next rank and applies them repeatedly in that order which is guaranteed by the
control condition. The initial graph is the butterfly network of size 0. After k
calls of copy and next rank the butterfly network of size k is generated (cf. the
theorem below).
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butterfly
initial: b

uses: copy, next rank

conds: (copy ; next rank )∗

The transformation unit copy uses the transformation units copy items and
delete which are applied exactly once in this order.

copy
uses: copy items , delete

conds: copy items ; delete

The transformation unit copy items transforms an input graph B into a graph
B′ by copying each node and ∗-labelled edge of B (together with the labels) and
generates a c-labelled edge between each node of B and its copy.

copy items
rules: r1 : −→

x x
c

x x
c x ∈ {∗, b}

r2: −→
x x

y y

c

c

x x

y y

c

c

x ∈ {∗, b}

terminal: reduced

The transformation unit delete removes each c-labelled edge provided that it
connects ∗-labelled nodes.

delete
rules: −→c

terminal: reduced

The rule set of copy items is the union of the two rule sets r1 and r2 where
r1 contains two rules for copying the nodes of B (one rule for the ∗-labelled and
the other one for the bottom nodes). The two rules of r2 copy the edges of B
(one rule for the edges between ∗-labelled nodes and the other one for those
connecting ∗-labelled with bottom nodes). The rule set of delete contains a single
rule deleting c-labelled edges between unlabelled nodes. Note that the node labels
and the c-labelled edges, used in the rules of copy items and delete serve to control
rule application: They prevent undesired multiple rule applications to the same
subgraph and mark subgraphs rules may be applied to. The term reduced in the
terminal components of copy items and delete indicates that the terminal graphs
are reduced with respect to the actual set of rules. This means all the rules of the
respective transformation unit are applied as long as possible.

If the input graph of the transformation unit copy is a butterfly network B
of size k the output graph of copy without the c-labelled edges and the b-labels
corresponds to a butterfly network of size k+ 1 where the bottom nodes together
with all connections to them are missing. The transformation unit next rank
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−→copy −→next rank

b
c

b b

−→copy

b b

−→next rank

b b b b

c c

b b b b

Fig. 2. An interleaving sequence of butterfly.

transforms this graph into a butterfly network of size k + 1 by adding these
missing bottom nodes and connecting edges.

next rank
rules:

−→
b b

c

b b

terminal: reduced

In Fig. 2, an interleaving sequence of butterfly is shown. It generates the
butterfly networks of size 0, 1, and 2, where G −→trut G

′ means that (G,G′) ∈
SEM(trut) for some transformation unit trut and some graphs G,G′.

The second copy step is given by the interleaving sequence in Fig. 3 where one
possible derivation for the copy items step is depicted in Fig. 4.

The transformation unit butterfly is language generating, and its language can
be shown to consist exactly of all butterfly networks i.e., we have the following
correctness result.

Theorem. Lbutterfly = L(butterfly).

The proof is given in the appendix. It makes use of the structure of butterfly
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b b

−→copy items

b b b b

c c

c c

−→delete

b b b b

c c

Fig. 3. An interleaving sequence of copy.

by giving corresponding correctness results for the used transformation units and
putting them together in a suitable way.

4. Operations on Transformation Units

The concept of transformation units may be seen as an operation on trans-
formation units that describes the interleaving of the semantic relations of the
imported transformation units with each other and with a derivation relation.
This somewhat complicated operation on binary relations is motivated by the
idea that transformation units encapsulate hierarchically sets of rules and the
interleaving semantics generalizes the derivation process accordingly. But there
are many other operations on binary relations like union, inversion, complement,
transitive closure, etc. that may be of interest in various situations. Hence, one
may wonder whether and how certain operations on binary relations can be
achieved by suitable operations on transformation units. We show in this section
that various standard operations can be specified in terms of transformation
units.

4.1. Operations Without Inversion

The definition of the interleaving semantics of transformation units is based
on the union, the intersection, the sequential composition and the reflexive and
transitive closure of relations on graphs.

If regular expressions are employed as control conditions, these operations
can be modelled as constructions on transformation units in an obvious way,
because the effect of regular expressions is directly related to them.

Observation 4.1. Let A = (G,R,⇒,E,C) be a graph transformation approach
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b b

⇒r1

b b

c

⇒r1

b b

c c

⇒r1

b b b

c c

c

⇒r1

b b b b

c c

c c

⇒r2

b b b b

c c

c c

⇒r2

b b b b

c c

c c

⇒r2

b b b b

c c

c c

⇒r2

b b b b

c c

c c

Fig. 4. An interleaving sequence of copy items .

where REG(ID) ⊆ C and let t, t′ ∈ TA. Let trans(t), refl (t), union(t , t ′), sc(t , t ′) ∈
TA be defined as follows:

trans(t)
uses: t

conds: t ; t∗

refl (t)
uses: t

conds: t | ε

union(t , t ′)
uses: t, t′
conds: t | t′

sc(t , t ′)
uses: t, t′
conds: t ; t′

Then
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1. SEM(trans(t)) = SEM(t)+ 9,

2. SEM(refl (t)) = SEM(t) ∪ ∆G,

3. SEM(union(t , t ′)) = SEM(t) ∪ SEM(t′),
4. SEM(sc(t , t ′)) = SEM(t) ◦ SEM(t′).

Proof. For trut ∈ {trans(t), refl (t), union(t , t ′), sc(t , t ′)} we have

SEM(trut)=obs .2 .2 (SEM(Itrut )× SEM(Ttrut )) ∩ SEME(trut)(Ctrut )
=def (G× G) ∩ SEME(trut)(Ctrut ) = SEME(trut)(Ctrut ).

10

Then the four statements are shown as follows:

1. SEM(trans(t)) = SEME(trans(t))(t ; t
∗)

=obs .2 .1 SEME(trans(t))(t) ◦ SEME(trans(t))(t
∗)

=obs .2 .1 SEME(trans(t))(t) ◦ SEME(trans(t))(t)
∗=def SEM(t) ◦ SEM(t)∗

=def SEM(t) ◦⋃∞i=0 SEM(t)i

=
⋃∞
i=1 SEM(t)i=def SEM(t)+.

2. SEM(refl (t)) = SEME(refl (t))(t | ε)
=obs .2 .1 SEME(refl (t))(t) ∪ SEME(refl (t))(ε)
=obs .2 .1 SEME(refl (t))(t) ∪ ∆G=def SEM(t) ∪ ∆G.

3. SEM(union(t, t′)) = SEME(union(t ,t ′))(t | t′)
=obs .2 .1 SEME(union(t ,t ′))(t) ∪ SEME(union(t ,t ′))(t

′)
=def SEM(t) ∪ SEM(t′).

4. SEM(sc(t, t′)) = SEME(sc(t ,t ′))(t ; t
′)

=obs .2 .1 SEME(sc(t ,t ′))(t) ◦ SEME(sc(t ,t ′))(t
′)=def SEM(t) ◦ SEM(t′).

This completes the proof. q

In a similar way, the intersection of transformation units can be modelled.

Observation 4.2. Let A = (G,R,⇒,E,C) be a graph transformation approach
where REG(ID) ⊆ C and let t, t′ ∈ TA. Let intersect(t, t′) ∈ TA be defined as
follows:

intersect(t , t ′)
uses: t, t′
conds: t ∧ t′

Then SEM(intersect(t, t′)) = SEM(t) ∩ SEM(t′).

Proof.

SEM(intersect(t, t′))=def (SEM(t) ∪ SEM(t′))∗ ∩ SEME(intersect(t,t′)(t ∧ t′)
=def (SEM(t) ∪ SEM(t′))∗∩
(SEME(intersect(t,t′)(t) ∩ SEME(intersect(t,t′)(t

′))
=def (SEM(t) ∪ SEM(t′))∗ ∩ (SEM(t) ∩ SEM(t′)) = SEM(t) ∩ SEM(t′).

q

9 For a binary relation ρ, ρ+ denotes the transitive closure of ρ that is ρ+ =
⋃∞
i=1 ρ

i.
10 =obs .2 .2 stands for equal by Observation 2.2.
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4.2. Operations with Inversion

Under the assumption that all rules of a transformation unit are invertible and
that there is a suitable control condition, the inversion and the symmetric closure
of the binary relation on graphs induced by a transformation unit can also be
modelled. Moreover, if one puts together the reflexive, symmetric and transitive
closures, one gets a transformation unit specifying the equivalence induced by the
semantic relation of a given transformation unit.

The control condition assumed in the transformation unit for inversion can
be explicitely constructed in special cases (cf. Observation 4.4).

Observation 4.3. Let A = (G,R,⇒,E,C) be a graph transformation approach in
which, for each r ∈ R, there is an r−1 ∈ R such that (⇒r)

−1 = ⇒r−1
11, and let

t ∈ TA. Let inv (t), sym(t) and equiv (t) ∈ TA be defined as follows:

inv (t)
initial: Tt

uses: {inv (t ′) | t′ ∈ Ut}
rules: {r−1 | r ∈ Rt}
conds: C−1

t

terminal: It

where C−1
t is some control condition with

SEME(inv (t))(C
−1
t ) = (SEME(t)(Ct))

−1.

sym(t)
uses: union(t , inv (t))

conds: union(t , inv (t))

equiv (t)
uses: trans(refl (sym(t)))

conds: trans(refl (sym(t)))

Then

1. SEM(inv (t)) = SEM(t)−1,

2. SEM(sym(t)) = SEM(t) ∪ SEM(t)−1,

3. SEM(equiv (t)) = equiv (SEM(t)).11

Proof. In this and the following proof we make use of the facts that for all binary
relations P ,Q over some set R, (P ∩ Q)−1 = P−1 ∩ Q−1, (P ∪ Q)−1 = P−1 ∪ Q−1,
(P ◦ Q)−1 = Q−1 ◦ P−1, (P ∗)−1 = (P−1)∗, and ((R × R)− P )−1 = (R × R)− P−1.

1. (By induction on the recursion depth of t.)
If Ut = {} then by definition Uinv (t) = {} and we get

SEM(inv (t))=def (SEM(Tt)× SEM(It))∩ ⇒∗Rinv (t)
∩SEME(inv (t))(C

−1
t )

=def (SEM(It)× SEM(Tt))
−1 ∩ ((⇒Rt

)−1)∗ ∩ SEME(t)(Ct)
−1

= (SEM(It)× SEM(Tt))
−1 ∩ (⇒∗Rt

)−1 ∩ SEME(t)(Ct)
−1

= ((SEM(It)× SEM(Tt))∩ ⇒∗Rt
∩SEME(t)(Ct))

−1 = SEM(t)−1.

11 For a binary relation ρ, ρ−1 denotes the inversion of ρ, i.e. ρ−1 = {(G,G′) | (G′, G) ∈ ρ}, and
equiv (ρ) denotes the equivalence closure of ρ.
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If Ut 6= {} assume that for all t′ ∈ Ut SEM(inv (t′)) = SEM(t′)−1. Then for the
semantics of inv (t) we get

SEM(inv (t))=def (SEM(Tt)× SEM(It))∩
(⇒Rinv (t)

∪⋃
t′∈Ut

SEM(inv (t ′)))∗ ∩ SEME(inv (t))(C
−1
t )

=ind (SEM(It)× SEM(Tt))
−1 ∩ ((⇒Rt

)−1 ∪⋃
t′∈Ut

SEM(t′)−1)∗ ∩
SEME(t)(Ct)

−1

= (SEM(It)× SEM(Tt))
−1∩

((⇒Rt
∪⋃

t′∈Ut
SEM(t′))−1)∗ ∩ SEME(t)(Ct)

−1

= (SEM(It)× SEM(Tt))
−1 ∩ ((⇒Rt

∪⋃
t′∈Ut

SEM(t′))∗)−1∩
SEME(t)(Ct)

−1

= ((SEM(It)× SEM(Tt) ∩ (⇒Rt
∪⋃

t′∈Ut
SEM(t′))∗ ∩

SEME(t)(Ct))
−1=def SEM(t)−1.

2. SEM(sym(t))=obs .2 .1 SEME(sym(t))(union(t , inv (t)))
=def SEM(union(t , inv (t)))=obs .4 .1 SEM(t) ∪ SEM(inv (t))
=1 .SEM(t) ∪ SEM(t)−1.

3. SEM(equiv (t))=obs .2 .1 SEME(equiv (t))(trans(refl (sym(t))))
=def SEM(trans(refl (sym(t))))=obs .4 .1 SEM(refl (sym(t)))+

=obs .4 .1 (SEM(sym(t)) ∪ ∆G)+=2 .(SEM(t) ∪ SEM(t)−1 ∪ ∆G)+

=def equiv (SEM(t)).

This completes the proof. q

If t contains as control condition a boolean expression over the class CFG of
context-free grammars over ID , we can explicitly construct a control condition
for inv (t) which fulfills the condition in Observation 4.3.

Observation 4.4. Let A = (G,R,⇒,E,C) be a graph transformation approach
such that CFG ⊆ C and for each r ∈ R, there is an r−1 ∈ R with (⇒r)

−1 = ⇒r−1 .
Let t ∈ TA and let C ∈ B(CFG). Then a control condition C−1 ∈ B(CFG) can
be constructed from C such that SEME(inv(t))(C

−1) = SEME(t)(C)−1.

Proof. Let f: ID → ID be defined as follows.

f(x) =

 x−1 if x ∈ Rt

inv (x) if x ∈ Ut

x, otherwise

For L ⊆ ID∗, let L−1 = {w−1 | w ∈ L}, where λ−1 = λ and aw−1 = w−1a
for all a ∈ ID and all w ∈ ID∗. For C ∈ CFG , let C−1 be a context-free
grammar such that L(C−1) = F(L(C))−1.12 (Note that C−1 can be constructed in
a straightforward way.) Then the following claim holds:

Claim Let C ∈ CFG and let t ∈ TA. Then SEME(t)(C)−1 = SEME(inv (t))(C
−1).

Proof of the claim. By induction on the length of strings we get that E(t)(w)−1 =
E(inv (t))(f∗(w−1)) for all w ∈ ID∗ as follows:

12 For a grammar C , L(C) denotes its generated language. For a function f: ID → ID , F: 2ID∗ → 2ID∗

denotes its extension to languages, i.e. F(L) = {f∗(w) | w ∈ L} for each L ⊆ ID∗ where f∗: ID∗ → ID∗
is the natural extension of f to strings, i.e. f∗(λ) = λ and f∗(aw) = f(a)f∗(w) for each a ∈ ID , w ∈ ID∗.
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E(t)(λ)−1 = ∆G=defE(inv (t))(λ)=defE(inv (t))(f∗(λ−1).

Moreover, for each a ∈ ID , we get by definition of f and inv (t), that E(t)(a)−1 =
E(inv (t))(f(a)). Hence,

E(t)(aw)−1=def (E(t)(a) ◦ E(t)(w))−1 = E(t)(w)−1 ◦ E(t)(a)−1

= E(t)(w)−1 ◦ E(inv (t))(f(a))
=indE(inv (t))(f∗(w−1)) ◦ E(inv (t))(f(a))
= E(inv (t))(f∗(w−1)f(a))=defE(inv (t))(f∗(w−1a))
=defE(inv (t))(f∗(aw−1)).

Hence,

SEME(t)(C)−1=def Ê(t)(L(C))−1=def (
⋃
w∈L(C) E(t)(w))−1

=
⋃
w∈L(C) E(t)(w)−1 =

⋃
w∈L(C) E(inv (t))(f∗(w−1)

=def

⋃
w∈F(L(C)) E(inv (t))(w−1)=def

⋃
w∈F(L(C))−1 E(inv (t))(w)

=def Ê(inv (t))(L(C−1))=def SEME(inv (t))(C
−1).

Let true−1 = true, and for all e, e1, e2 ∈ B(CFG) let (e1 ∨ e2)−1 = e−1
1 ∨ e−1

2 ,

(e1 ∧ e2)−1 = e−1
1 ∧ e−1

2 , and (e)−1 = e−1. Then by induction, C−1 ∈ B(CFG) for
each C ∈ B(CFG).

We now show that SEME(t)(C)−1 = SEME(inv (t))(C
−1) if C ∈ B(CFG).

• If Ct = true the statement obviously holds.

• If C ∈ CFG then by the claim SEME(t)(C)−1 = SEME(inv (t)(C
−1).

• Assume that the statement holds for e1, e2, e ∈ B(CFG). Then

1. SEME(t)(e1 ∨ e2)−1=def (SEME(t)(e1) ∪ SEME(t)(e2))−1

= SEME(t)(e1)−1 ∪ SEME(t)(e2)−1

=ind SEME(inv (t))(e
−1
1 ) ∪ SEME(inv (t))(e

−1
2 )

=def SEME(inv (t))(e
−1
1 ∨ e−1

2 ) = SEME(inv (t))((e1 ∨ e2)−1).

2. The proof of SEME(t)(e1 ∧ e2)−1 = SEME(inv (t))((e1 ∧ e2)−1) is analogous to
that in point 1.

3. SEME(t)(e)
−1=def (G× G− SEME(t)(e))

−1 = G× G− SEME(t)(e)
−1

=indG× G− SEME(inv (t))(e
−1) = SEME(inv (t))(e−1)

= SEME(inv (t))(e
−1).

q

5. Normal Forms of Transformation Units

In this section, we present three unary operations on transformation units each of
which constructs a normal form without changing the interleaving semantics. The
presented normal forms give some information of how the different components
of a transformation unit are related to each other. In all three cases, the control
conditions cause some trouble (in the same way as in Subsection 4.2). The problem
is in each case that we cannot give suitable conditions explicitly in the general
situation. Hence, we only assume their existence in a first step, and give some
sufficient constructions in a second step.
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5.1. Encapsulating Rules

Let A = (G,R,⇒,E,C) be a graph transformation approach. Then, for each rule
r ∈ R, consider the transformation unit encapsulate(r) with r as rule and regular
control condition. It is easy to see that SEM(encapsulate(r)) = ⇒r .

Based on this fact, the application of a rule r ∈ R corresponds to the call of
encapsulate(r). Hence, for each t ∈ TA, one can construct a new transformation
unit t′ ∈ TA such that each rule of Rt is encapsulated in a used transformation
unit of t′, and t′ has the same interleaving semantics as t provided that there is a
suitable control condition.

Observation 5.1. Let A = (G,R,⇒,E,C) be a graph transformation approach
and let t ∈ TA. Let disperse(t) ∈ TA be defined as follows:

disperse(t)
initial: It

uses: {encapsulate(r) | r ∈ Rt} ∪ {disperse(t ′) | t′ ∈ Ut}
conds: C

terminal: Tt

where C is some control condition with SEME(disperse(t))(C) = SEME(t)(Ct). Then
SEM(disperse(t)) = SEM(t).

Proof. By definition of Idisperse(t), Tdisperse(t) and Cdisperse(t), the observation holds if
the relations given by the interleaving sequences of disperse(t) and t are equal i.e.,
RIS disperse(t) = RIS t.

If Ut={} then RIS disperse(t)=def (
⋃
r∈Rt

SEM(encapsulate(r)))∗ =⇒∗Rt
=def RIS t.

Assume inductively that for all t′ ∈ Ut, RIS disperse(t′) = RIS t′ (which implies that
SEM(disperse(t′)) = SEM(t′)). Then we get

RIS disperse(t)=def (
⋃
t′∈Udisperse(t)

SEM(t′))∗

=def (
⋃
r∈Rt

SEM(encapsulate(r)) ∪⋃
t′∈Ut

SEM(disperse(t′)))∗
= (⇒Rt

∪⋃
t′∈Ut

SEM(disperse(t′)))∗
=ind (⇒Rt

∪⋃
t′∈Ut

SEM(t′))∗=def RIS t

Hence, SEM(disperse(t)) = SEM(t). q

If t has as control condition a boolean expression over the class GT0 of all
grammars of type 0 over ID , we can explicitly construct a control condition for
disperse(t) which fulfills the condition in observation 5.1.

Observation 5.2. Let A = (G,R,⇒,E,C) be a graph transformation approach
such that GT0 ⊆ C. Let t ∈ TA and let C ∈ B(GT0 ). Then a control condition
disp(C) ∈ B(GT0 ) can be constructed from C such that

SEME(disperse(t))(disp(C)) = SEME(t)(C).

Proof. Let f: ID → ID be defined as follows:

f(x) =

{
encapsulate(x) if x ∈ Rt

disperse(x) if x ∈ Ut

x, otherwise
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For C ∈ GT0 , let disp(C) be a grammar generating the language F(L(C)).13

Then the following claim holds:

Claim Let C ∈ GT0 and let t ∈ TA. Then

SEME(t)(C) = SEME(disperse(t))(disp(C)).

Proof of the claim. By induction on the length of strings we get that E(t)(w) =
E(disperse(t))(f∗(w)) for all w ∈ ID∗:

E(t)(λ)=def ∆G=defE(disperse(t))(λ)

=defE(disperse(t))(f∗(λ)).

Moreover, for a ∈ ID ,

E(t)(aw)=defE(t)(a) ◦ E(t)(w) = E(disperse(t))(f(a)) ◦ E(t)(w)

=indE(disperse(t))(f(a)) ◦ E(disperse(t))(f∗(w))

=defE(disperse(t))(f(a)f∗(w))=defE(disperse(t))(f∗(aw)).

Hence,

SEME(t)(C)=def Ê(t)(L(C))=def

⋃
w∈L(C) E(t)(w))

=
⋃
w∈L(C) E(disperse(t))(f∗(w))=def

⋃
w∈F(L(C)) E(disperse(t))(w)

=def Ê(disperse(t))(F(L(C)))=def SEME(disperse(t))(disp(C)).

Let disp(true) = true and for all e, e1, e2 ∈ B(GT0 ) let disp(e1∨e2) = disp(e1)∨
disp(e2); disp(e1∧e2) = disp(e1)∧disp(e2); and disp(e) = disp(e). Then by induction,
disp(C) ∈ B(GT0 ) for all C ∈ B(GT0 ).

We now show that for each C ∈ B(GT0 ),

SEME(t)(C) = SEME(disperse(t))(disp(C)).

• If the C = true the statement obviously holds.

• If C ∈ GT0 then by the claim SEME(t)(C) = SEME(disperse(t)(disp(C)).

• Assume that the statement holds for e1, e2, e ∈ B(T0 G). Then

1. SEME(t)(e1 ∨ e2)=def SEME(t)(e1) ∪ SEME(t)(e2)
=ind SEME(disperse(t))(disp(e1)) ∪ SEME(disperse(t))(disp(e2))
=def SEME(disperse(t))(disp(e1) ∨ disp(e2))
=def SEME(disperse(t))(disp(e1 ∨ e2))

2. The proof of SEME(t)(e1 ∧ e2) = SEME(disperse(t))(disp(e1 ∧ e2)) is analogous
to that in point 1.

3. SEME(t)(e)=def (G× G− SEME(t)(e))
=ind G× G− SEME(disperse(t))(disp(e))

=def SEME(disperse(t))(disp(e)). q

5.2. Handling Graph Class Expressions as Control Conditions

As pointed out in 2.5, two graph class expressions form a control condition.
Hence, the specifications of initial and terminal graphs may be handled as a

13 Note that disp(C) can always be constructed.
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control condition. In the interleaving semantics of a transformation unit, the
product of initial and terminal graphs as well as the relation specified by the
actual control condition must be intersected with the relation established by the
interleaving sequences. This leads to the following observation.

Observation 5.3. Let t be a transformation unit over A = (G,R,⇒,E,C) with
E × E ⊆ C (as defined in 2.5.8). Let rem expr(t) be defined as follows:

rem expr(t)
uses: {rem expr(t′) | t′ ∈ Ut}
rules: Rt

conds: C ∧ (It,Tt)

where C is some control condition with SEME(rem expr(t))(C) = SEME(t)(Ct). Then
SEM(t) = SEM(rem expr(t)).

Proof. Since SEME(rem expr(t))(C) = SEME(t)(Ct), we get that

SEME(t)(Ct) ∩ (SEM(It)× SEM(Tt))
= SEME(rem expr(t))(C) ∩ SEM(It,Tt) ∩ (G× G)
=def SEME(rem expr(t))(C ∧ (It,Tt)) ∩ (SEM(all )× SEM(all ))

Hence, it remains to show that RIS t = RIS rem expr(t). If Ut = {} then by definition
RIS t = ⇒∗Rt

= RIS rem expr(t). Assume inductively that for all t′ ∈ Ut, RIS t′ =

RIS rem expr(t′). Since this implies that SEM(t′) = SEM(rem expr(t′)) we get

RIS t=def (⇒Rt
∪⋃

t′∈Ut
SEM(t′))∗

=ind (⇒Rt
∪⋃

t′∈Ut
SEM(rem expr(t′))∗

=def (⇒Rrem expr(t)
∪⋃

t′∈Urem expr(t)
SEM(t′))∗=def RIS rem expr(t). q

This means that the components I and T of a transformation unit are not
necessary. Nevertheless, we keep them because we would like to distinguish
between input and output conditions and other control conditions explicitly and
to emphasize the different intuitions behind.

If t contains a control condition in B(GT0 ) we can construct a control
condition for rem expr(t) fulfilling the condition in Observation 5.3.

Observation 5.4. Let A = (G,R,⇒,E,C) be a graph transformation approach
with GT0 ⊆ C. Let t ∈ TA and let C ∈ B(GT0 ). Then a control condition
C′ ∈ B(GT0 ) can be constructed from C such that

SEME(t)(C) = SEME(rem expr(t))(C
′).

The proof is analogous to that of Observation 5.2 choosing f: ID → ID with

f(x) =

{
rem expr(x) if x ∈ Ut

x, otherwise.

5.3. Flattening Transformation Units

Transformation units can be flattened meaning that if the control condition
behaves properly one can get rid of the import structure by putting together all
the occurring rules.
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To formulate this observation we need the set FLAT (t) containing all trans-
formation units occurring in the import structure of t, i.e.

FLAT (t) = Ut ∪ (
⋃
t′∈Ut

FLAT (t′))

Observation 5.5. Let A = (G,R,⇒,E,C) be a graph transformation approach
and let t ∈ TA such that SEME(t)(Ct) ⊆ RIS t. Let flatten(t) ∈ TA be defined as
follows:

flatten(t)
initial: It

rules: Rt ∪ (
⋃
t′∈FLAT (t) Rt′ )

conds: C

terminal: Tt

where C is some control condition with SEME( flatten(t))(C) = SEME(t)(Ct).

Then SEM( flatten(t)) = SEM(t).

Proof. The assumption SEME(t)(Ct) ⊆ RIS t implies that

SEM(t) = (SEM(It)× SEM(Tt)) ∩ SEME(t)(Ct)
=def (SEM(Iflatten(t))× SEM(Tflattent(t))) ∩ SEME( flattent(t))(Cflatten(t))⊇def SEM( flatten(t)).

To show that SEM(t) ⊆ SEM( flatten(t)) it is sufficient to prove that RIS t ⊆
RIS flatten(t), because then

SEM( flatten(t))=def (SEM(Iflatten(t))× SEM(Tflattent(t))) ∩
SEME( flattent(t))(Cflatten(t)) ∩ RIS flatten(t)

=def (SEM(It)× SEM(Tt)) ∩ SEME(t)(Ct) ∩ RIS flatten(t)⊇ (SEM(It)× SEM(Tt)) ∩ SEME(t)(Ct) ∩ RIS t=def SEM(t).

If Ut = {}, then RIS t ⊆ RIS flatten(t). Assume that for each t′ ∈ Ut, RIS t′ ⊆
RIS flatten(t′), which implies that SEM(t′) ⊆ SEM( flatten(t′)). Then

RIS t=def (Rt ∪⋃t′∈Ut
SEM(t′))∗⊆ind (Rt ∪⋃t′∈Ut

SEM( flatten(t′)))∗
⊆def ((Rt ∪⋃t′∈Ut

RIS flatten(t′)))
∗

=def (Rt ∪⋃t′∈Ut
(Rt′ ∪⋃t′′∈FLAT (t′) Rt′′ ))

∗
= (Rt ∪⋃t′∈Ut

Rt′ ∪⋃t′∈Ut

⋃
t′′∈FLAT (t′) Rt′′ )

∗
= (Rt ∪⋃t′∈Ut

Rt′ ∪⋃t′′∈⋃
t′∈Ut

FLAT (t′) Rt′′ )
∗

= (Rt ∪⋃t′∈Ut
Rt′ ∪⋃t′∈⋃

t′′∈Ut
FLAT (t′′) Rt′ )

∗

= (Rt ∪⋃t′∈(Ut∪⋃
t′′∈Ut

FLAT (t′′)) Rt′ )
∗ = (Rt ∪⋃t′∈FLAT (t) Rt′ )

∗

=def RIS flatten(t).
q

If each control condition occurring in t or in a transformation unit of FLAT (t)
is a context-free grammar in CFG , and if additionally, the initial and terminal
expressions of each transformation unit t′ ∈ FLAT (t) can be omitted without
changing the interleaving semantics of t′, we can construct a context-free grammar
for flatten(t) which fulfills the condition in Observation 5.5. Moreover, in this case,
the control condition of t allows only pairs of graphs which are in the relation
given by the interleaving sequences.
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Observation 5.6. Let A = (G,R,⇒,E,C) be a graph transformation approach
with CFG ⊆ C. Let t ∈ TA such that for each t′ ∈ {t} ∪ FLAT (t), Ct′ ∈ CFG , and
for each t′ ∈ FLAT (t), SEM(It′ )× SEM(Tt′ ) ⊇ SEME(t′)(Ct′ ). Then

1. SEME(t)(Ct) ⊆ RIS t, and

2. a control condition flat(Ct) ∈ CFG can be constructed from Ct such that
SEME(t)(Ct) = SEME( flatten(t))(flat(Ct)).

Proof. W.l.o.g. we assume that for each t′ ∈ {t} ∪ FLAT (t), Ct′ is a context-
free grammar over Rt′ ∪ Ut′ . (Such a context-free grammar Ct′ can be obtained
from a grammar C ∈ CFG with disjoint non-terminal and terminal symbols by
deleting each rule containing a terminal symbol in ID − (Rt′ ∪Ut′ ). Then we have
L(Ct′ ) = L(C)−{w ∈ ID∗ | w /∈ (Rt′ ∪Ut′ )

∗}. Moreover, since for all w /∈ (Rt′ ∪Ut′ )
∗,

E(t′)(w) = ∅, SEME(t′)(Ct′ ) = SEME(t′)(C).)

1. Since L(Ct) ⊆ (Rt ∪Ut)
∗ point 1 holds because of Observation 2.2.

2. Let φ:Rt ∪Ut → 2(Rt∪Ut)
∗

be defined as follows:

φ(x) =

{
Φ(L(Cx)) if x ∈ Ut{x}, otherwise

where for L ⊆ (Rt∪Ut)
∗, Φ(L) =

⋃
w∈L φ∗(w) and φ∗: (Rt∪Ut)

∗ → 2(Rt∪Ut)
∗

with

φ∗(λ) = {λ} and φ∗(aw) = φ(a)φ∗(w) for each a ∈ Rt∪Ut and w ∈ (Rt∪Ut)
∗.14

Note that φ is well-defined because of the finite recursion depth of t.
Let flat(Ct) ∈ CFG such that L(flat(Ct)) = Φ(L(Ct)). (Note that context-free
languages are closed under substitution. Moreover, flat(Ct) can be constructed
if for all x ∈ Rt ∪ Ut, φ(x) can be constructed. Hence, by induction on the
recursion depth of t we get that flat(Ct) ∈ CFG can be constructed.)
We now show that

SEME(t)(Ct) = SEME(flatten(t))(flat(Ct)).

If Ut = {} then by definition Φ(L(Ct)) = L(Ct) and E(t) = E( flatten(t)). Hence,
in this case, SEME(t)(Ct) = SEME( flatten(t))(flat(Ct)). Assume that the statement
holds for all t′ ∈ Ut. Then by induction on the length of w ∈ (Ut ∪ Rt)∗, the

equation E(t)(w) = Ê( flatten(t))(φ∗(w)) can be shown as follows:

E(t)(λ)=def ∆G=defE( flatten(t))(λ)

=def Ê( flatten(t))({λ})=def Ê( flatten(t))(φ∗(λ)).

If a ∈ Rt,

E(t)(aw)=defE(t)(a) ◦ E(t)(w)

=defE( flatten(t))(a) ◦ E(t)(w)

= Ê( flatten(t))(φ(a)) ◦ E(t)(w)

=ind Ê( flatten(t))(φ(a)) ◦ Ê( flatten(t))(φ∗(w))

= Ê( flatten(t))(φ(a)φ∗(w))

=def Ê( flatten(t))(φ∗(aw)).

14 The concatenation of sets L1 and L2 is denoted by L1L2.
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If a ∈ Ut,

E(t)(aw)=defE(t)(a) ◦ E(t)(w) = SEM(a) ◦ E(t)(w)

=obs .2 .2 (SEME(a)(Ca) ∩ (SEM(Ia)× SEM(Ta))) ◦ E(t)(w)
= SEME(a)(Ca) ◦ E(t)(w)=ind SEME( flatten(a))(flat(Ca)) ◦ E(t)(w)

=def Ê( flatten(a))(L(flat(Ca)) ◦ E(t)(w)

=def Ê( flatten(a))(Φ(L(Ca))) ◦ E(t)(w)

=def Ê( flatten(a))(φ(a)) ◦ E(t)(w)=def Ê( flatten(t))(φ(a)) ◦ E(t)(w)

=ind Ê( flatten(t))(φ(a)) ◦ Ê( flatten(t))(φ∗(w))

= Ê( flatten(t))(φ(a)φ∗(w))=def Ê( flatten(t))(φ∗(aw)).

Hence, it follows that

SEME(t)(Ct)=def Ê(t)(L(Ct))=def

⋃
w∈L(Ct)

E(t)(w)

=
⋃
w∈L(Ct)

Ê( flatten(t))(φ∗(w)) =
⋃
w∈Φ(L(Ct))

E( flatten(t))(w)

=def Ê( flatten(t))(Φ(L(Ct)))=def SEME( flatten(t))(flat(Ct)).

q

6. Conclusion

In this paper, the notion of a transformation unit together with its interleaving
semantics has been introduced, illustrated and studied with respect to operations
on transformation units and some normal forms. Transformation units provide an
approach-independent structuring method for building up large graph transfoma-
tion systems from small ones. The very first results indicate that transformation
units may also be helpful tools for proving correctness of graph transformation
systems with respect to given binary relations on graphs.

As mentioned in the introduction, transformation units are intended to be one
of the basic concepts of the new graph and rule centered language GRACE which
is under development by researchers from Berlin, Bremen, Erlangen, München,
Oldenburg, and Paderborn. The adequate use of transformation units in GRACE
(and outside) requires further investigations and considerations including the
following points and questions.

• Case-studies may help to gather experience with handling large sets of rules.

• Each construction in Section 4 or 5 builds transformation units from trans-
formation units where the shape of all resulting ones depends only on the
imported transformation units. Hence, the construction can be described syn-
tactically by a single transformation unit if one allows identifiers as formal
parameters instead of imported transformation units. A particular result of
the construction is then obtained by replacing formal parameters by actual
transformation units. It may be convenient to introduce such a concept of
parameterized transformation units explicitly.

• The recursion depth of transformation units and the lengths of interleaving
sequences provide induction principles. Under which assumptions and how
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can these be turned into proof rules and a proof theory that may lead to a
proof system for GRACE?

• A transformation unit describes a single binary relation on graphs, possibly
by using other binary relations. This excludes n-ary relations for n 6= 2 and
sets or families of relations as results. Hence, one may wonder which further
concepts of modularization should be investigated and how they may coexist
with transformation units.

• And, finally, one should study how the notion of transformation units is
related to the few other structuring principles for graph rewriting systems
encountered in the literature like, for example, the module concepts proposed
by Ehrig and Engels (see [EhE96]), by Taentzer and Schürr (see [TaS95]),
or the notion of a transaction introduced by Schürr and Zündorf in the
framework of PROGRES (see [ScZ91]).

Further aspects of the structured development of graph transformation sys-
tems based on transformation units are studied in [KKS97, KrK99].
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[ScZ91] Andy Schürr and Albert Zündorf. Nondeterministic control structures for graph rewrit-
ing systems. In G. Schmidt and Rudolf Berghammer, editors, Proc. Graph-Theoretic
Concepts in Computer Science, volume 570 of Lecture Notes in Computer Science, pages
48–62, 1991.

[TaB94] Gabriele Taentzer and Martin Beyer. Amalgamated graph transformation systems and
their use for specifying AGG – an algebraic graph grammar system. In Hans-Jürgen
Schneider and Hartmut Ehrig, editors, Proc. Graph Transformations in Computer Science,
volume 776 of Lecture Notes in Computer Science, pages 380–394, 1994.
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Appendix

In this appendix, a detailed proof of the correctness theorem of Section 3 is
presented. It proceeds along the structure of the transformation unit buttterfly
and is mainly based on induction on the length of interleaving sequences.

W.l.o.g. we assume from now on that the node and edge set of each graph are
disjoint, i.e. for each G ∈ G, EG ∩ VG = ∅.

Theorem A.1. Let G,G′ ∈ G such that G is labelled over {∗, b}. Then (G,G′) ∈
SEM(copy items) iff G′ ∼= (V , E, l, m) where

V = VG ] {cp(v) | v ∈ VG} 15

E = EG ∪ {{cp(v1), cp(v2)} | {v1, v2} ∈ EG} ∪ {{v, cp(v)} | v ∈ VG}

l(v) =

{
lG(v), v ∈ VG
lG(v′), v ∈ {cp(v′) | v′ ∈ VG} for all v ∈ V

m(e) =

{
c, e ∈ {{v, cp(v)} | v ∈ VG}∗, otherwise

for all e ∈ E.

Proof. The proof is based on two lemmas that are given and proved in the
following.

Lemma 1. Let G0 ∈ G be labelled over {∗, b}, and let G0 ⇒R G1 ⇒R · · · ⇒R Gn

15 ] denotes the disjoint union of sets.
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(n > 0) with R = Rcopy items . Then there exist sets V0, . . . , Vn ⊆ VG0
, E0, . . . , En ⊆ EG0

such that V0 ∪ E0 ⊂ · · · ⊂ Vn ∪ En, and for i = 0, . . . , n, Gi ∼= (Vi, Ei, li, mi) with

Vi = VG0
] {cp(v) | v ∈ Vi}

Ei = EG0
∪ {{cp(v1), cp(v2)} | {v1, v2} ∈ Ei} ∪ {{v, cp(v)} | v ∈ Vi}

li(v) =

{
lG0

(v), v ∈ VG0

lG0
(v′), v ∈ {cp(v′) | v′ ∈ Vi} for all v ∈ Vi

mi(e) =

{
c, e ∈ {{v, cp(v)} | v ∈ Vi}∗, otherwise

for all e ∈ Ei.

Proof of Lemma 1. We show Lemma 1 by induction on the length n of the
derivation G0 ⇒R G1 ⇒R · · · ⇒R Gn. If n = 0 the lemma obviously holds choosing
V0 = E0 = ∅. Assume that it holds for all derivations G0 ⇒R G1 ⇒R · · · ⇒R Gn.
Let d = (G0 ⇒R G1 ⇒R · · · ⇒R Gn ⇒R Gn+1). W.l.o.g. let Gn = (Vn, En, ln, mn).

If a rule of r1 is applied to Gn in d, then by definition there exists a node
v0 ∈ Vn with ln(v0) ∈ {∗, b} such that there is no c-labelled edge e ∈ En with v0 ∈ e.
Then by induction v0 /∈ Vn ∪ {cp(v) | v ∈ Vn}, i.e. v0 ∈ VG0

− Vn. By definition
Gn+1

∼= (V , E, l, m) where V = Vn]{cp(v0)}, E = En∪{{v0, cp(v0)}}, l(v) = ln(v) for
all v ∈ Vn, l(cp(v0)) = ln(v0), m(e) = mn(e) for all e ∈ En, and m({v0, cp(v0)}) = c.

Choose Vn+1 = Vn ∪ {v0} and En+1 = En. Then Vn ∪ En ⊂ Vn+1 ∪ En+1. Moreover,

by induction, we get that Vn+1∪En+1 ⊆ VG0
∪EG0

and that Gn+1 is of the required
form.

If a rule of r2 is applied to Gn in d, there are nodes v1, v2, v3, v4 ∈ Vn such
that {v1, v2}, {v1, v3}, {v2, v4} ∈ En, {v3, v4} /∈ En, ln(v1) = ln(v3) ∈ {∗, b}, ln(v2) =
ln(v4) ∈ {∗, b}, mn({v1, v2}) = ∗, and mn({v1, v3}) = mn({v2, v4}) = c. Then by

induction {v1, v2} ∈ EG0
− En because {v1, v2} ∈ En implies {v3, v4} ∈ En, {v1, v2} ∈

{{cp(vj), cp(vk)} | {vj , vk} ∈ En} implies {vi, vj} = {v3, v4} and hence {v3, v4} ∈ En,
and {v1, v2} ∈ {{v, cp(v)} | v ∈ Vn} implies mn({v1, v2}) = c. Moreover, Gn+1

∼=
(V , E, l, m) where V = Vn, E = En ∪ {{v3, v4}}, l = ln, m(e) = mn(e) for all

e ∈ En, and m({v3, v4}) = ∗. Choose Vn+1 = Vn and En+1 = En ∪ {{v1, v2}}. Then

Vn∪En ⊂ Vn+1∪En+1. Moreover, by induction, we get that Vn+1∪En+1 ⊆ VG0
∪EG0

and that Gn+1 is of the required form. This completes the proof of Lemma 1.

Lemma 2. Let G0 ∈ G be a graph over {∗, b}, and let G0 ⇒R G1 ⇒R · · · ⇒R Gn
(n > 0) with R = Rcopy items and Gn ∈ RED(R). Then Vn ∪ En = VG0

∪ EG0
, where

Vn, En are defined as in the proof of Lemma 1.

Proof of Lemma 2. W.l.o.g. we assume that Gn = (Vn, En, ln, mn) where Vn, En, ln,
and mn are defined as in Lemma 1. From Lemma 1 we know that Vn ∪ En ⊆
VG0
∪ EG0

. Assume that there is an x ∈ (VG0
∪ EG0

) − (Vn ∪ En). If x is a node,
then from Lemma 1 we get that there is no c-labelled edge e in Gn with x ∈ e.
Hence, a rule of r1 is applicable to Gn. Now assume Vn = VG0

, so x is an edge,

say {v1, v2}, and v1, v2 ∈ Vn. Then from Lemma 1 we get that mn({v1, v2}) = ∗, and
ln(v1), ln(v2) ∈ {∗, b}. Moreover, there are c-labelled edges {v1, cp(v1)}, {v2, cp(v2)}
in Gn with ln(v1) = ln(cp(v1)), ln(v2) = ln(cp(v2)), and cp(v1) and cp(v2) are not
adjacent in Gn. In this case, a rule of r2 is applicable to Gn. Hence, Gn ∈ RED(R)
implies that Vn ∪ En = VG0

∪ EG0
. This completes the proof of Lemma 2.



Graph Transformation Units with Interleaving Semantics 719

1. Now let G,G′ ∈ G such that (G,G′) ∈ SEM(copy items) and G is a graph over
{∗, b}. Then by definition there is a derivation G0 ⇒R · · · ⇒R Gn (n > 0, R =

Rcopy items ) such that G0 = G, Gn = G′, and Gn ∈ RED(R). Let Vn, En be defined
as in the proof of Lemma 1. Then from Lemma 2 and the disjointness of VG0

and EG0
we get Vn = VG0

, En = EG0
and by Lemma 1 G′ is of the required

form.

2. Conversely, let G,G′ ∈ G such that G is a graph over {∗, b} and G′ is defined
as in the theorem. Since G is finite, we get from Lemma 1 that there is a
derivation G ⇒∗R G′′ such that G′′ ∈ RED(R). Then, as shown in point 1,
G′′ ∼= G′.

This completes the proof. q

Theorem A.2. Let G,G′ ∈ G. Then (G,G′) ∈ SEM(delete) if and only if G′ ∼=
(VG, E, lG, m) where E = EG − {{v, v′} ∈ EG | mG({v, v′}) = c, lG(v) = lG(v′) = ∗},
and m = mG|E .

Proof.
1. If (G,G′) ∈ SEM(delete) then by definition there is a derivation G0 ⇒r · · · ⇒r

Gn (n > 0, {r} = Rdelete) such that G0 = G, Gn = G′, and Gn ∈ RED({r}). By
definition of r, for i = 1, . . . , n, there is a c-labelled edge {vi1 , vi2} ∈ EGi−1

such
that lGi−1

(vi1 ) = lGi−1
(vi2 ) = ∗ and Gi ∼= (VGi−1

, Ei, lGi−1
, mi) where Ei = EGi−1

−
{{vi1 , vi2}}, and mi = mGi−1

|Ei . W.l.o.g. assume that Gi = (VGi−1
, Ei, lGi−1

, mi). Then
by induction Gn = (VG0

, E, lG0
, m) where E = EG0

−{{v11
, v12
}, . . . , {vn1

, vn2
}}, and

m = mG0
|E . Moreover, Gn ∈ RED({r}) implies that E does not contain any c-

labelled ege {v1, v2} such that lGn(v1) = lGn(v2) = ∗. Hence, E = EG0
−{{v, v′} ∈

EG0
| mG0

({v, v′}) = c, lG0
(v) = lG0

(v′) = ∗}. It follows that G′ is of the required
form.

2. Conversely, let G,G′ ∈ G such that G′ is defined as in the theorem. Since
to each G ∈ G with a c-labelled edge e connecting unlabelled nodes, r is
applicable, we get from the finiteness of EG and the definition of r that there
is a derivation G ⇒∗r G′′ such that G′′ ∈ RED({r}) (because r reduces the
number of c-labelled edges by 1 if it is applied once). Then, as shown in point
1, G′′ ∼= G′.

q

Theorem A.3. Let G,G′ ∈ G such that G is labelled over {∗, b}. Then (G,G′) ∈
SEM(copy) iff G′ ∼= (V , E, l, m) where

V = VG ] {cp(v) | v ∈ VG}
E = EG ∪ {{cp(v1), cp(v2)} | {v1, v2} ∈ EG} ∪ {{v, cp(v)} | v ∈ Vb

G} 16

l(v) =

{
lG(v), v ∈ VG
lG(v′), v ∈ {cp(v′), v′ ∈ VG} for all v ∈ V

m(e) =

{
c, e ∈ {{v, cp(v)} | v ∈ Vb

G}∗, otherwise
for all e ∈ E.

16 For x ∈ CV (x ∈ CE ) the set of all x-labelled nodes (edges) in G is denoted by Vx
G (ExG).
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Proof. By Observation 4.1 we get that

SEM(copy) = SEM(copy items) ◦ SEM(delete).

Hence, by Theorems 1 and 2, (G,G′) ∈ SEM(copy) iff G′ is defined as in the
theorem. q

Theorem A.4. Let G,G′ ∈ G. Let C(G) = {{v1, v2} ∈ EcG | v1, v2 ∈ Vb
G}. Then

(G,G′) ∈ SEM(next rank ) iff G′ ∼= (V , E, l, m) where

V = VG ] {cpj(e) | e ∈ C(G), j ∈ {1, 2}}
E = EG − C(G) ∪ {{vj , cpk({v1, v2})} | {v1, v2} ∈ C(G), j, k ∈ {1, 2}}

l(v) =

 b, v ∈ {cpj(e) | e ∈ C(G), j ∈ {1, 2}}
∗, v ∈ ⋃e∈C(G) e

lG(v), otherwise
for all v ∈ V

m(e) =

{
mG(e), e ∈ EG∗, otherwise

for all e ∈ E.
Proof. The proof is based on two lemmas that are given and proved in the
following.

Lemma 3. Let G0 ∈ G. Then for each derivation G0 ⇒r · · · ⇒r Gn with {r} =
Rnext rank , there are sets C0, . . . , Cn such that C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊆ C(G0) and for
i = 0, . . . , n, Gi ∼= (Vi, Ei, li, mi) where

Vi = VG0
] {cpj(e) | e ∈ Ci, j ∈ {1, 2}}

Ei = (EG0
− Ci) ∪ {{vj , cpk({v1, v2})} | {v1, v2} ∈ Ci, j, k ∈ {1, 2}}

li(v) =

 b, v ∈ {cpj(e) | e ∈ Ci, j ∈ {1, 2}}∗, v ∈ ⋃e∈Ci e
lG0

(v), otherwise
for all v ∈ Vi

mi(e) =

{
mG0

(e), e ∈ EG0∗, otherwise
for all e ∈ Ei.

Proof of Lemma 3. If n = 0 the lemma obviously holds choosing C0 = ∅. Assume
that it holds for some n ∈ IN. Let G0 ⇒r · · · ⇒r Gn ⇒r Gn+1 such that w.l.o.g.
Gn = (Vn, En, ln, mn). Then by definition of r there exists an edge e′ = {v1, v2} ∈ EcGn
with v1, v2 ∈ Vb

Gn
. By induction hypothesis, mn(e

′) = c implies e′ ∈ C(G0) − Cn.
Moreover, Gn+1

∼= (V , E, l, m) where

V = Vn ] {cp1(e′), cp2(e′)}
E = (En − {e′}) ∪ {{vj , cpk(e′)} | j, k ∈ {1, 2}}}

l(v) =

{
b, v ∈ {cp1(e′), cp2(e′)}
∗, v ∈ e′
ln(v), otherwise

for all v ∈ V

mi(e) =

{
mn(e), e ∈ EGn∗, otherwise

for all e ∈ E.
Choose Cn+1 = Cn ∪ {e′}. Then Cn ⊂ Cn+1. Moreover, by induction, Cn+1 ⊆

C(G0) and Gn+1 is of the required form.
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Lemma 4. Let G0 ∈ G and let G0 ⇒r G1 ⇒r · · · ⇒r Gn such that {r} = Rnext rank

and Gn ∈ RED({r}). Then Cn = C(G0), where Cn is defined as in the proof of
Lemma 3.

Proof of Lemma 4. W.l.o.g. let Gn = (Vn, En, ln, mn) as defined in Lemma 3. From
Lemma 1 we know that Cn ⊆ C(G0). Let e ∈ C(G0) − Cn. Then by Lemma 3,
e ∈ C(Gn), i.e. r is applicable to Gn. This completes the proof of Lemma 4.

1. Now let (G,G′) ∈ SEM(next rank ). Then by definition there is a derivation
G0 ⇒∗r Gn such that G0 = G, Gn = G′, and G′ ∈ RED({r}). Let Cn be defined
as in the proof of Lemma 3. Then by Lemma 4, Cn = C(G) and by Lemma 3,
Gn is of the required form.

2. Conversely, let G,G′ ∈ G such that G′ is defined as in the theorem. Since C(G)
is finite, we get from Lemma 3 that there is a derivation G ⇒r G

′′ such that
G′′ ∈ RED({r}). Then, as shown in point 1, G′′ ∼= G′.

This completes the proof. q

The following theorem states that the transformation unit butterfly generates
the set of all butterfly networks.

Theorem A.5. SEM(butterfly) = {(B0, Bk) | k ∈ IN}.
Proof. For the semantics of butterfly the following holds:

SEM(butterfly)=obs .2 .2 SEME(buttterfly)(L((copy ; next rank )∗)) ∩ ({B0} × G)
=def SEME(buttterfly)((copy ; next rank )∗) ∩ ({B0} × G)
=obs .2 .1 SEME(buttterfly)(copy ; next rank )∗ ∩ ({B0} × G)
=obs .2 .1 (SEME(buttterfly)(copy) ◦ SEME(buttterfly)(next rank ))∗∩
({B0} × G)
=def (SEM(copy) ◦ SEM(next rank ))∗ ∩ ({B0} × G).

Hence, (G,G′) ∈ SEM(butterfly) iff there are graphs G0,M1, G1, . . . ,Mn, Gn (n > 0)
such that B0

∼= G0 = G, Gn = G′, and for i = 1, . . . , n, (Gi−1,Mi) ∈ SEM(copy),
and (Mi,Gi) ∈ SEM(next rank ).

1. We show by induction on n that Gn ∼= Bn if graphs G0, M1, G1, . . . ,Mn, Gn with
this property exist. For n = 0, this obviously holds. Assume that Gn ∼= Bn. Let
(Gn,Mn+1) ∈ SEM(copy), and (Mn+1, Gn+1) ∈ SEM(next rank ).
By Theorem 3, Mn+1

∼= (Vn+1, En+1, ln+1, mn+1) where

Vn+1 = VGn ] {cp(v) | v ∈ VGn}
En+1 = EGn ∪ {{cp(v1), cp(v2)} | {v1, v2} ∈ EGn}∪{{v, cp(v)} | v ∈ Vb

Gn
}

ln+1(v) =

{
lGn(v), v ∈ VGn
lGn(v

′), v ∈ {cp(v′), v′ ∈ VGn} for all v ∈ Vn+1

mn+1(e) =

{
c, e ∈ {{v, cp(v)}, v ∈ Vb

Gn
}

∗, otherwise
for all e ∈ En+1.
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Then by induction, Mn+1
∼= (V ′, E ′, l′, m′) where

V ′ = {vir, cp(vir) | i = 0, . . . , 2n − 1, r = 0, . . . , n} 17

E ′ = {{vir, vj(r−1)}, {cp(vir), cp(vj(r−1))} |
i, j = 0, . . . , 2n − 1, r = 1, . . . , n,
i = j or bi(r) 6= bj(r)
and bi(l) = bj(l) for all l ∈ {1, . . . , n} − {r}}∪
{{vi0, cp(vi0)} | i = 0, . . . , 2n − 1}

(here, as well as below, bi(1) · · · bi(n) is the binary representation
of i (0 6 i < 2n))

l′(v) =


∗, v ∈ {vir, cp(vir) |

i = 0, . . . , 2n − 1, r = 0, . . . , n}
b, v ∈ {vi0, cp(vi0) |

i = 0, . . . , 2n − 1}
for all v ∈ V ′

m′(e) =



∗, e ∈
{{vir, vj(r−1)}, {cp(vir), cp(vj(r−1))} |
i, j = 0, . . . , 2n − 1,
r = 1, . . . , n, i = j or bi(r) 6= bj(r)
and bi(l) = bj(l)
for all l ∈ {1, . . . , n} − {r}}

c, e ∈
{{vi0, cp(vi0)} | i = 0, . . . , 2n − 1}

for all e ∈ E ′.

Let C(Mn+1) be defined as in Theorem 4. Then

C(Mn+1) = {{vi0, cp(vi0)} | i = 0, . . . , 2n − 1}
and we get by Theorem 4 that Gn+1

∼= (V , E, l, m) where

V = {vir, cp(vir) | i = 0, . . . , 2n − 1, r = 0, . . . , n}∪
{cpj({vi0, cp(vi0)}) | i = 0, . . . , 2n − 1, j ∈ {1, 2}}

E = {{vir, vj(r−1)}, {cp(vir), cp(vj(r−1))} |
i, j = 0, . . . , 2n − 1, r = 1, . . . , n, i = j or bi(r) 6= bj(r)
and bi(l) = bj(l) for all l ∈ {1, . . . , n} − {r}}∪
{{vi0, cpj({vi0, cp(vi0)})} | i = 0, . . . , 2n − 1, j ∈ {1, 2}}∪
{{cp(vi0), cpj({vi0, cp(vi0)})} | i = 0, . . . , 2n − 1, j ∈ {1, 2}}

l(v) =

{
b, v ∈ {cpj({vi0, cp(vi0}) |

i = 0, . . . , 2n − 1, j ∈ {1, 2}}
∗, otherwise

for all v ∈ V

m(e) = ∗, for all e ∈ E.
Let fV :V → VBn+1

such that fV (vir) = vi(r+1), fV (cp(vir)) = v(i+2n)r+1,
fV (cp1({vi0, cp(vi0)}) = vi0, and fV (cp2({vi0, cp(vi0)}) = v(i+2n)0, for i = 0, . . .,
2n − 1, r = 0, . . . , n. Then

17 In the following, set definitions like {vir , cp(vir) | i = 0, . . . , 2n − 1, r = 0, . . . , n} are used as
abbreviations for {vir | i = 0, . . . , 2n − 1, r = 0, . . . , n} ∪ {cp(vir) | i = 0, . . . , 2n − 1, r = 0, . . . , n}.
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fV (V ) = {fV (vir), fV (cp(vir)) | i = 0, . . . 2n − 1, r = 0, . . . , n}∪
{fV (cpj({vi0, cp(vi0)})) | i = 0 . . . , 2n − 1, j ∈ {1, 2}}

= {vir | i = 0, . . . 2n+1 − 1, r = 1, . . . , n+ 1}
{vi0 | i = 0, . . . 2n+1 − 1}

= {vir | = 0, . . . 2n+1 − 1, r = 0, . . . , n+ 1}
=def VBn+1

Moreover, l = lBn+1
◦ fV . Let fE:E → EBn+1

such that for all {v1, v2} ∈ E,
fE({v1, v2}) = {fV (v1), fV (v2)}. Then

fE(E) = {{fV (vir), fV (vj(r−1))}, {fV (cp(vir)), fV (cp(vj(r−1)))} |
i, j = 0, . . . , 2n − 1, r = 1, . . . , n, i = j or bi(r) 6= bj(r)
and bi(l) = bj(l) for all l ∈ {1, . . . , n} − {r}}∪
{{fV (vi0), fV (cpk({vi0, cp(vi0)}))} | i = 0, . . . , 2n − 1,
k ∈ {1, 2}} ∪ {{fV (cp(vi0)), fV (cpk({vi0, cp(vi0)}))} |
i = 0, . . . , 2n − 1, k ∈ {1, 2}}

= {{vir, vj(r−1)} | i, j = 0, . . . , 2n+1 − 1, r = 2, . . . , n+ 1, i = j
or bi(r) 6= bj(r)and bi(l) = bj(l)
for all l ∈ {1, . . . , n+ 1} − {r}}∪
{{vi1, vj0} | i, j = 0, . . . , 2n+1 − 1, i = j or bi(1) 6= bj(1)
and bi(l) = bj(l) for all l ∈ {2, . . . , n+ 1}}.

Moreover, m = mBn+1
◦ fE . Hence, (fV , fE):Gn+1 → Bn+1 is a graph isomor-

phism, i.e. Gn+1 is a butterfly network.

2. We now show by induction on n that (B0, Bn) ∈ SEM(butterfly). Obvi-
ously, (B0, B0) ∈ SEM(butterfly). Assume that for some n ∈ IN, (B0, Bn) ∈
SEM(butterfly). Then there is an interleaving sequence in butterfly from B0 to
Bn. From Theorems 3 and 4 we get that there are graphs Mn+1, Gn+1 such
that (Bn,Mn+1) ∈ SEM(copy), and (Mn+1, Gn+1) ∈ SEM(next rank ). As shown
in point 1, Gn+1

∼= Bn+1. Hence, (B0, Bn+1) ∈ SEM(butterfly).

This completes the proof. q
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